

CS 380 - GPU and GPGPU Programming Lecture 27: Neural Shading on GPUs (based on NVIDIA Siggraph course)

Markus Hadwiger, KAUST

Reading Assignment #15++

Read (optional):

- SIGGRAPH 2025 course on Neural Shading, Bitterli et al. (NVIDIA) https://github.com/shader-slang/neural-shading-s25
- Random-Access Neural Compression of Material Textures, Vaidyanathan et al. (NVIDIA), 2023 https://arxiv.org/abs/2305.17105
- Real-Time Neural Materials using Block-Compressed Features, Weinreich et al. (Ubisoft), 2024 https://arxiv.org/abs/2311.16121
- Neural Texture Block Compression, Fujieda and Harada (AMD), 2024
 https://gpuopen.com/download/2024_NeuralTextureBCCompression.pdf
- Filtering After Shading With Stochastic Texture Filtering, Pharr et al. (NVIDIA), 2024 https://arxiv.org/abs/2407.06107 https://research.nvidia.com/labs/rtr/publication/pharr2024stochtex/stochtex-slides.pdf
- Improved Stochastic Texture Filtering Through Sample Reuse, Wronski et al. (NVIDIA), 2025 https://arxiv.org/abs/2504.05562
- Real-Time Neural Appearance Models, Zeltner et al. (NVIDIA), 2024 https://research.nvidia.com/labs/rtr/neural_appearance_models/
- The Neural Light Grid: A Scalable Production-Ready Learned Irradiance Volume, Iwanicki et al. (Activision), 2024
- https://www.activision.com/cdn/research/Neural_Light_Grid.pdf
- Decoding Light: Neural Compression of Global Illumination, Cao (Lightspeed Studios), 2025 https://gdcvault.com/play/1035521/Decoding-Light-Neural-Compression-for

Quiz #3: Dec 11

Organization

- First 30 min of lecture
- No material (book, notes, ...) allowed

Content of questions

- Lectures (both actual lectures and slides)
- Reading assignments
- Programming assignments (algorithms, methods)
- Solve short practical examples

Neural Shading

WHAT IS NEURAL SHADING?

- Usually: Involves Neural Networks
- Anything that's trainable

WHAT IS NEURAL SHADING?

- Usually: Involves Neural Networks
- Anything that's trainable

- Runs in the graphics pipeline
- Part of your normal shader code

HOW DO NEURAL SHADERS HELP?

- Consumer GPUs ship with neural network accelerators
- While you render, these sit at 0% utilization
- These are untapped FLOPS!
- ...and very efficient FLOPS
- Accessible in the graphics pipeline with Cooperative Vectors

HOW DO NEURAL SHADERS HELP?

[Fujieda and Harada, 2024]

[Belcour and Benyoub, 2025]

[Vaidyanathan et al., 2023]

Compression

[Kuznetsov et al., 2021]

[Mullia et al., 2024]

[Zeltner et al., 2024]

Materials

[Mildenhall et al., 2020]

[Müller et al., 2022]

[Kerbl et al., 2023]

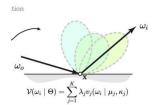
Geometry

[Müller et al., 2021]

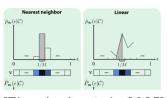
[Dereviannykh et al., 2024]

Caching

[Müller et al., 2019]



[Dong et al., 2023]



[Figueiredo et al., 2025]

Guiding

CAN WE LEARN BETTER MIP MAPS?

- Mipmaps reduce aliasing and improve coherency for distant surfaces
- Color maps downsample well using simple box filter
- Normal maps do not

CAN WE LEARN BETTER MIP MAPS?

- 1. Render a beautiful PBR material
- 2. Generate + render low res with **Mip Maps**
- 3. Generate + render reference with **Supersampling**
- 4. Calculate the loss



BASIC SLANG PROGRAM


```
struct MaterialParameters
{
    Tensor<float3, 2> albedo;
    Tensor<float3, 2> normal;
    Tensor<float, 2> roughness;

    float3 get_albedo(int2 pixel)
    {
        return albedo.getv(pixel);
    }
    float3 get_normal(int2 pixel)
    {
        return normalize(normal.getv(pixel));
    }
    float get_roughness(int2 pixel)
    {
        return roughness.getv(pixel);
    }
};
```

BASIC SLANG PROGRAM


```
float3 render(int2 pixel, MaterialParameters material, float3 light dir, float3 view dir)
   // Bright white light
   float light intensity = 5.0;
   // Sample very shiny BRDF (it rained today!)
   float3 brdf sample = sample brdf(
            material.get albedo(pixel), // albedo color
            material.get normal(pixel), // normal map sample
                                    // roughness
            0.05,
                                    // metallic (no metal)
            0.0,
                                    // specular
            1.0
            );
   // Combine light with BRDF sample to get pixel colour
   return brdf sample * light intensity;
```

BASIC PYTHON PROGRAM

app.present()


```
# Create the app and load the slang module.
app = App(width=2048, height=2048, title="Mipmap Example")
module = spy.Module.load from file(app.device, "nsc basicprogram.slang")
# Load some materials.
albedo map = spy.Tensor.load from image(app.device, "PavingStones070 2K.diffuse.jpg", linearize=True)
normal_map = spy.Tensor.load_from image(app.device, "PavingStones070_2K.normal.jpg", scale=2, offset=-1)
roughness map = spy.Tensor.load from image(app.device, "PavingStones070 2K.roughness.jpg", grayscale=True
while app.process events():
   # Allocate a tensor for output + call the render function
    output = spy.Tensor.empty like(albedo map)
    module.render(pixel = spy.call_id(),
                  material = {
                        "albedo": albedo map,
                        "normal": normal map,
                        "roughness": roughness map,
                  light dir = spy.math.normalize(spy.float3(0.2, 0.2, 1.0))
                  view dir = spy.float3(0, 0, 1),
                   result = output)
    # Blit tensor to screen.
    app.blit(output)
```


Conveniently Shiny Cobblestones!

DOWNSAMPLING


```
def downsample(source: spy.Tensor, steps: int) -> spy.Tensor:
   for i in range(steps):
       dest = spy.Tensor.empty(
                  device=app.device,
                  shape=(source.shape[0] // 2, source.shape[1] // 2),
                  dtype=source.dtype)
       module.downsample(spy.call id(), source, result=dest)
        source = dest
    return source
                                                                 float3 downsample(
                                                                       int2 pixel,
                                                                       Tensor<float3, 2> source)
                                                                     float3 res = 0;
                                                                     res += source.getv(pixel * 2 + int2(0, 0));
                                                                     res += source.getv(pixel * 2 + int2(1, 0));
                                                                     res += source.getv(pixel * 2 + int2(0, 1));
                                                                     res += source.getv(pixel * 2 + int2(1, 1));
                                                                     return res * 0.25;
```

DOWNSAMPLED INPUTS

RESULT!

Downscaled inputs

- 2x downsample (Mip level 2)
- 1 sample per map
- PBR function run once per pixel
- Optimal but noisy

Poor normal map downsampling gives nasty surface artifacts.

DOWNSAMPLED OUTPUT


```
while app.process events():
    # Allocate a tensor for output + call the render function
    output = spy.Tensor.empty like(albedo map)
    module.render(pixel = spy.call_id(),
                  material = {
                        "albedo": albedo map,
                        "normal": normal map,
                        "roughness": roughness map
                  light dir = spy.math.normalize(spy.float3(0.2, 0.2, 1.0)),
                  view dir = spy.float3(0, 0, 1),
                  _result = output)
    # Downsample the output tensor to quarter res.
    output = downsample(output, 2)
    # Blit tensor to screen.
    app.blit(output, size=spy.int2(2048,2048))
    app.present()
```

RESULT!

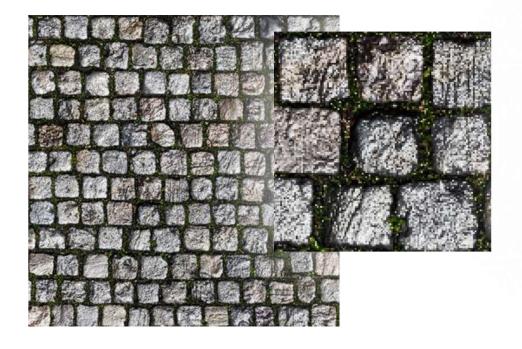
Downscaled output

- 2x downsample (Mip level 2)
- 16 high res albedo, normal + roughness pixels sampled
- Full PBR function run 16 times
- Represents an ideal output

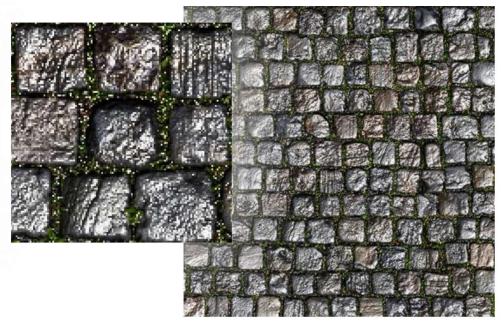
If our input mip maps were *perfect*, this is what we'd get

SIDE BY SIDE

The IdealRender at full res then downsample



The RealityDownsample inputs and then render



CALCULATING THE LOSS

CALCULATING THE LOSS

Reference

Loss

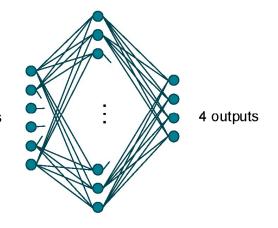
Render

Make mipmap better == Make the loss smaller

IMPLEMENTING OUR TOY NEURAL TEXTURE EXAMPLE


```
struct NeuralTexture2D
{
    NetworkParameters<6, 32> layer1;
    NetworkParameters<32, 4> layer2;

    float4 sample(float2 uv, float2 du, float2 dv)
    {
        float input[6] = {uv.x, uv.y, du.x, du.y, dv.x, dv.y};
        let latentResult = layer1.eval(input);
        let output = layer2.eval(latentResult);
        return float4(output[0], output[1], output[2], output[3]);
    }
}
```



COMPUTATION OF A 3-INPUT, 2-OUTPUT LAYER


```
outputs[0] = biases[0] +
```

inputs[0] * w[0][0] +

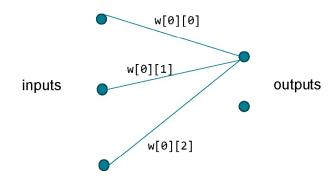
inputs[1] * w[0][1] +

inputs[2] * w[0][2];

outputs[0] = max(0.0, outputs[0]);

Weighted Sum of Inputs

Activation



COMPUTATION OF A 3-INPUT, 2-OUTPUT LAYER

outputs[0] = biases[0] +

inputs[0] * w[0][0] +

inputs[1] * w[0][1] +

inputs[2] * w[0][2];

outputs[0] = max(0.0, outputs[0]);

outputs[1] = biases[1] +

inputs[0] * w[1][0] +

inputs[1] * w[1][1] +

inputs[2] * w[1][2];

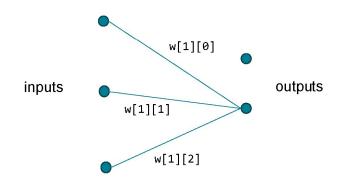
outputs[1] = max(0.0, outputs[1]);

Weighted Sum of Inputs

Activation

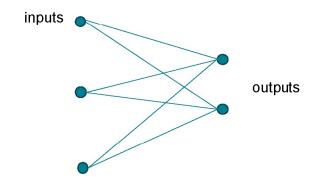
Weighted Sum of Inputs

Activation



COMPUTATION OF A 3-INPUT, 2-OUTPUT LAYER

$$\begin{bmatrix} b_0 \\ b_1 \\ b_2 \end{bmatrix} + \begin{bmatrix} w_{00} & w_{01} & w_{02} \\ w_{10} & w_{11} & w_{12} \end{bmatrix} \begin{bmatrix} i_0 \\ i_1 \\ i_2 \end{bmatrix}$$



SIMPLIFIED VIEW OF A FEED-FORWARD LAYER

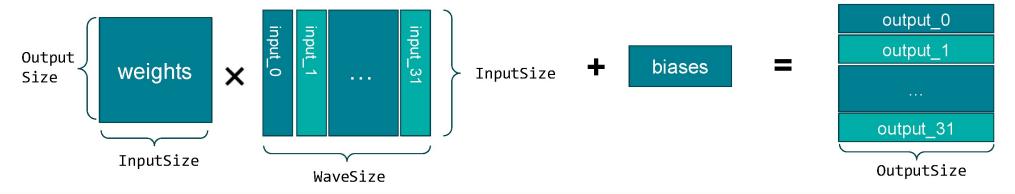

```
struct NetworkParameters<int InputSize, int OutputSize>
{
    float weights[InputSize][OutputSize];
    float biases[OutputSize];
    Array<float, OutputSize> eval(float input[InputSize])
    {
        float output[OutputSize] = biases;
        output += MatMulVec(weights, input);
        for (int i = 0; i < OutputSize; ++i)
            output[i] = max(output[i] * 0.01f, output[i]); // ReLU return output;
    }
}</pre>
```

EACH SUBGROUP IS COMPUTING A MATRIX-MATRIX MULTIPLICATION

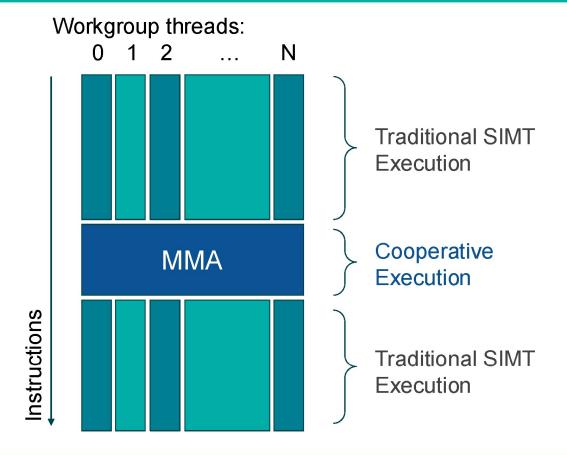

```
Array<float, OutputSize> eval(float input[InputSize])
{
   float output[OutputSize] = biases;
   output += MatMulVec(weights, input);
   ...
   return output;
}
```

Thread	Computation
0	MatMulVec(weights, input_0)
1	MatMulVec(weights, input_1)
2	MatMulVec(weights, input_2)
3	MatMulVec(weights, input_3)
31	MatMulVec(weights, input_31)

Computation done by the entire subgroup: Matrix Multiply Accumulate (a.k.a. GEneral Matrix Multiply)



MODERN GPUS HAVE HARDWARE SUPPORT FOR MATRIX-MULTIPLY-ACCUMULATION



MMA EXPOSED AS INTRINSICS IN VARIOUS APIS

DirectX® 12

WaveMatrix

SIMD Group Matrix

MMA INTRINSICS RESTRICTIONS

- Matrix operands in a Matrix-Multiply-Accumulation operation must be the same across all threads in a subgroup.
- Input vectors must be explicitly packed into a matrix and loaded in one operation.
 - Often require explicit use of group shared memory, which isn't available outside compute shaders.

COOPERATIVE VECTORS: USING MMA HARDWARE FROM SIMT CODE

DirectX® 12

Shader Model 6.9

VK_NV_cooperative_vector

Metal 4
Machine Learning

SIMPLIFIED VIEW OF A FEED-FORWARD LAYER


```
struct NetworkParameters<int InputSize, int OutputSize>
{
    float weights[InputSize][OutputSize];
    float biases[OutputSize];
    Array<float, OutputSize> eval(float input[InputSize])
    {
        float output[OutputSize] = biases;
        output += MatMulVec(weights, input);
        for (int i = 0; i < OutputSize; ++i)
            output[i] = max(output[i] * 0.01f, output[i]); // ReLU return output;
    }
}</pre>
```

FEED-FORWARD LAYER USING COOPERATIVE VECTORS


```
struct NetworkParameters<int InputSize, int OutputSize>
                                                                   Using 16-bit floats because 32-bit
{
                                                                     float is not supported by HW.
    half* weights;
    half* biases;
    CoopVec<half, OutputSize> eval(CoopVec<half, InputSize> input)
        let output = coopVecMatMulAdd<half, OutputSize>(
            input, CoopVecComponentType.Float16, // input and format
            weights, CoopVecComponentType.Float16, // weights and format
            biases, CoopVecComponentType.Float16, // biases and format
            CoopVecMatrixLayout.RowMajor, // matrix layout
            false, // transpose matrix before multiply?
            sizeof(half) * InputSize); // matrix stride
        return max(output * 0.01h, output); // Leaky ReLU activation
}
```

TRAINING WITH COOPERATIVE VECTORS

sizeof(half) * InputSize); // matrix stride

return max(output * 0.01h, output); // Leaky ReLU activation

struct NetworkParameters<int InputSize, int OutputSize>


```
half* weights;
half* biases;

1. Where should we store the gradients of the weights?

CoopVec<half, OutputSize> eval(CoopVec<half, InputSize> input)
{
    let output = coopVecMatMulAdd<half, OutputSize>(
        input, CoopVecComponentType.Float16, // input and format
        weights, CoopVecComponentType.Float16, // weights and format
        biases, CoopVecComponentType.Float16, // biases and format
        CoopVecMatrixLayout.RowMajor, // matrix layout
        false, // transpose matrix before multiply?
```

2. How to make this differentiable?

STORING THE GRADIENTS OF THE WEIGHTS


```
struct NetworkParameters<int InputSize, int OutputSize>
{
    half* weights;
    half* biases;
    half* weightsGrad;
    half* biasesGrad;
1. Where should
```

1. Where should we store the gradients of the weights?

TRAINING WITH COOPERATIVE VECTORS

struct NetworkParameters<int InputSize, int OutputSize>


```
CoopVec<half, OutputSize> eval(CoopVec<half, InputSize> input)
{
    let output = coopVecMatMulAdd<half, OutputSize>(
        input, CoopVecComponentType.Float16, // input and format
        weights, CoopVecComponentType.Float16, // weights and format
        biases, CoopVecComponentType.Float16, // biases and format
        CoopVecMatrixLayout.RowMajor, // matrix layout
        false, // transpose matrix before multiply?
        sizeof(half) * InputSize); // matrix stride
    return max(output * 0.01h, output); // Leaky ReLU activation
```

How to make eval differentiable?

- CoopVec type is nondifferentiable.
- coopVecMatMulAdd intrinsic is nondifferentiable.

WRAPPING COOPERATIVE VECTOR IN A DIFFERENTIABLE TYPE


```
struct MLVec<int N> : IDifferentiable
{
    CoopVec<half, N> data;
    typealias Differential = This;

    static Differential dadd(Differential d0, Differential d1)
    {
        return {d0.data + d1.data};
    }
    static Differential dmul<U:__BuiltinRealType>(U s, Differential d)
    {
        return {d.data * __realCast<half>(s)};
    }
    static Differential dzero()
    {
        return {};
    }
}
```

Wrap CoopVec in a MLVec type, that is declared to be Differentiable, with Differential type being itself.

UPDATE EVAL TO USE MLVEC TYPE


```
struct NetworkParameters<int InputSize, int OutputSize>
{
    ...
    half* weightsGrad;
    half* biasesGrad;

MLVec<OutputSize> eval(MLVec<InputSize> input) { ... }
}
```

MAKE EVAL DIFFERENTIABLE WITH CUSTOM DERIVATIVE


```
struct NetworkParameters<int InputSize, int OutputSize>
{
    ...
    half* weightsGrad;
half* biasesGrad;

MLVec<OutputSize> eval(MLVec<InputSize> input) { ... }

[BackwardDerivativeOf(eval)]
void evalBwd(
    inout DifferentiablePair<MLVec<InputSize> input,
    MLVec<OutputSize> resultGrad)
{
    // What goes here??
}
```

Task: propagate gradients from each output element (resultGrad) to:

- weight and bias parameters (to store in weightsGrad and biasesGrad).
- Each input element (return via input.d)

GRADIENT PROPAGATION FOR MATRIX-VECTOR MULTIPLICATION

Given matrix-vector multiplication

$$u = Mv + B$$

We have:

$$dM = d\mathbf{u} \otimes_{\text{outer}} \boldsymbol{v}$$

$$d\mathbf{B} = d\mathbf{u}$$

$$d\mathbf{v} = \mathbf{M}^T d\mathbf{u}$$

 \otimes_{outer} : outer vector product

ACCUMULATING GRADIENTS ACROSS THREADS

Given matrix-vector multiplication

$$\boldsymbol{u} = M\boldsymbol{v} + B$$

We have:

$$dM = d\mathbf{u} \otimes_{\text{outer}} \mathbf{v}$$

$$d\mathbf{B} = d\mathbf{u}$$

$$d\mathbf{v} = \mathbf{M}^T d\mathbf{u}$$

M	

dM

В

dB

Thread	Computation
0	u = malMulVecAdd(M, v0, B)
1	u = malMulVecAdd(M, v1, B)
2	u = malMulVecAdd(M, v2, B)
N	u = malMulVecAdd(M, vN, B)

 \otimes_{outer} : outer vector product

Each thread accesses different v, but the same M and B

ACCUMULATING GRADIENTS ACROSS THREADS

Given matrix-vector multiplication

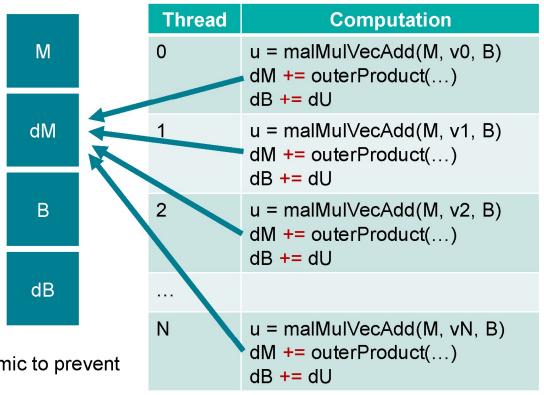
$$u = Mv + B$$

We have:

$$dM += d\mathbf{u} \otimes_{\text{outer}} \mathbf{v}$$

$$dB += d\mathbf{u}$$

$$d\mathbf{v} = \mathbf{M}^T d\mathbf{u}$$



Needs to be atomic to prevent race conditions!

INTRINSICS TO SPEEDUP ATOMIC GRADIENT ACCUMULATION

Given matrix-vector multiplication

$$u = Mv + B$$

We have:

$$dM += d\mathbf{u} \otimes_{\text{outer}} \mathbf{v}$$

 $dB += d\mathbf{u}$

$$d\mathbf{v} = \mathbf{M}^T d\mathbf{u}$$

Each step has its corresponding coop-vector intrinsic:

coopVecOuterProductAccumulate

coopVecReduceSumAccumulate

coopVecMatMul

BACK-PROP GRADIENTS THROUGH EVAL


```
[BackwardDerivativeOf(eval)]
void evalBwd(
    inout DifferentialPair<MLVec<InputSize>> input,
    MLVec<OutputSize> resultGrad)
    let fwd = eval(input.p);
                                                                            coopVecOuterProductAccumulate
    // Back-prop resultGrad through activation.
                                                                            requires weightsGrad to be stored
    for (int i = 0; i < OutputSize; i++)</pre>
                                                                                in TrainingOptimal layout.
        if (fwd.data[i] < 0.0)</pre>
            resultGrad.data[i] *= 0.01h;
    // Back-prop gradients to the weights matrix.
    coopVecOuterProductAccumulate(
        resultGrad.data,
                                                                                     dM += d\mathbf{u} \otimes_{\text{outer}} \mathbf{v}
        input.v.data,
        weightsGrad, 0,
        CoopVecMatrixLayout.TrainingOptimal, CoopVecComponentType.Float16);
    // Back-prop gradients to the biases vector.
                                                                                     dB += d\mathbf{u}
    coopVecReduceSumAccumulate(resultGrad.data, biasesGrad, biasesOffset);
```

BACK-PROP GRADIENTS THROUGH EVAL


```
[BackwardDerivativeOf(eval)]
void evalBwd(
   inout DifferentialPair<MLVec<InputSize>> input,
   MLVec<OutputSize> resultGrad)
{
   ...
   // Back-prop gradients to the input vector.
   let dInput = coopVecMatMul<half, InputSize>(
        resultGrad.data, CoopVecComponentType.Float16,
        weights, CoopVecComponentType.Float16,
        CoopVecMatrixLayout.ColumnMajor, false, sizeof(half)*InputSize);
   input = {input.p, {dInput}};
```

Compute

i.e. transpose(weights) * resultGrad
by setting the layout of weights to ColumnMajor.

CALLERS OF FEED-FORWARD LAYER CAN NOW BE AUTODIFF'ED


```
struct NeuralTexture2D
{
    NetworkParameters<6, 32> layer1;
    NetworkParameters<32, 4> layer2;

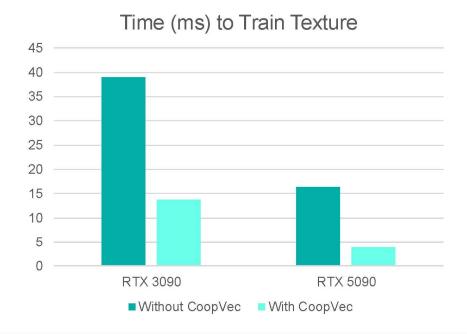
    [Differentiable]
    float4 sample(float2 uv, float2 du, float2 dv)
    {
        float input[6] = {uv.x, uv.y, du.x, du.y, dv.x, dv.y};
        let latentResult = layer1.eval(input);
        let output = layer2.eval(latentResult);
        return float4(output[0], output[1], output[2], output[3]);
    }
}
```

PERFORMANCE IMPROVEMENTS WITH COOP-VECTOR

Benchmark: Neural Texture Training

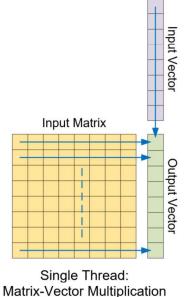
• Input: 100MB PNG

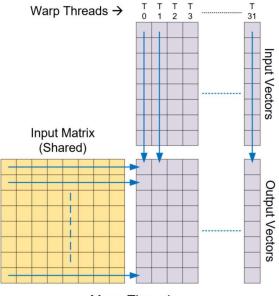
Over **3x** speedup compared to highly optimized code without coop-vec.



BATCHED MATRIX-VECTOR MULTIPLICATION

- Hardware Tensor Cores:
 - Matrix-Matrix multiplication using entire wave/warp
 - Low precision (FP16, FP8, INT8, even FP4)
- Cooperative Vector API:
 - Matrix-Vector multiplication in each thread
- Mapping CoopVec onto Tensor Cores:
 - Combine M-V multiplications from all threads in a wave
 - Divergence becomes a problem (more on that later)



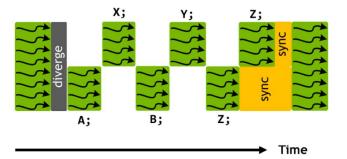


Many Threads: Matrix-Matrix Multiplication Maps to Tensor Cores

REFRESHER ON GPU SIMT ARCHITECTURE

- NVIDIA GPUs group execution threads into 32-thread "warps"
 - Other vendors have similar concepts with different thread counts
 - We use the term "wave" throughout this course for consistency
- All threads in a wave execute one instruction on different data
 - Some may be inactive
 - Following different code branches in a wave causes execution divergence
 - Divergent code branches are serialized into synchronous groups
- Memory accesses work best when addresses are packed and aligned
 - Not following optimal address patterns causes data divergence
 - Divergent memory accesses are serialized into optimal groups

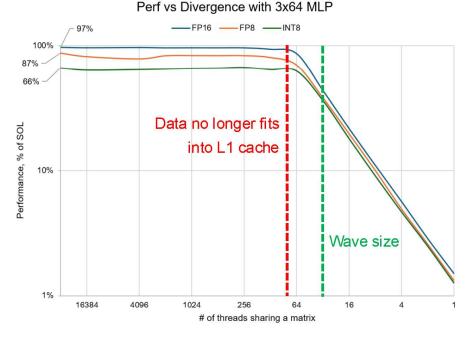
```
if (threadIdx.x < 4) {
        A;
        B;
} else {
        X;
        Y;
}
Z;
__syncwarp()</pre>
```



Source: Volta architecture whitepaper

TENSOR CORES AND DIVERGENCE

- Tensor Cores compute a single MMA using the entire wave
 - MMA = Matrix Multiply Accumulate
 - We can wake up inactive threads if needed
- Wave-wide coopVecMatMul[Add] might be incompatible:
 - Vector inputs are trivially combined into a matrix
 - Matrix inputs must be the same for all threads
 - Programming model allows matrix inputs to be different per-thread
- Solution: Serialize divergent matrix operations
 - Handled transparently by the driver
 - Has severe performance effects
- Avoid CoopVec operations with divergent matrices
 - Group draw calls by material
 - Sort threads manually or use Shader Execution Reordering (SER)



Measured on RTX 4090 using a directed test - Log/Log scale

https://github.com/jeffbolznv/vk_cooperative_vector_perf

TENSOR CORE MATRIX LAYOUT PROBLEM

- Tensor cores use custom matrix layouts
 - Components of matrices are shuffled between threads
 - Specific layout depends on the GPU and data types
- Need to shuffle data before and after MMAs.
 - Weight matrix must be pre-shuffled in memory
 - DX12 and Vulkan provide functions to shuffle the weights
 - Input and output shuffling is handled transparently by the driver
- Output of one MMA can be used as input of another MMA without shuffle
 - Redundant shuffles can be eliminated

MMA computation 1							-	
Row\ Col	0	1	2	3	4	5	6	7
0		ТО	: { c0,	c1, c2,	c3, c4,	c5, c6	, c7 }	
3		T3	: { c0, d	1, c2,	c3, c4,	c5, c6	, c7 }	
4		T16	5: { c0,	c1, c2,	c3, c4	, c5, c6	i, c7 }	
7		T19): { c0,	c1, c2,	c3, c4	, c5, c€	i, c7 }	

Row\Col	0	1	2	3	4	5	6	7
0		Т8	: { c0, d	1, c2, c	3, c4, c	5, c6, c	7 }	
3		T1	1: { c0,	c1, c2,	c3, c4, c	5, c6, c	7 }	
4		T2	4: { c0,	c1, c2,	c3, c4, c	5, c6, c	7 }	
7		T2	7: { c0,	c1, c2,	c3, c4, c	5, c6, c	7 }	

MMA computation 2								
Row\Col	0	1	2	3	4	5	6	7
0		T4 :	{ c0, c	1, c2,	c3, c4,	c5, c6,	c7 }	
3		T7:	{ c0, c	1, c2, c	3, c4,	c5, c6,	c7 }	
4		T20	: { c0, d	1, c2,	c3, c4,	c5, c6	, c7 }	
7		T23	: { c0, d	c1, c2,	c3, c4,	c5, c6	, c7 }	

MMA computation 4								
Row\Col	0	1	2	3	4	5	6	7
0		T1:	2 : { c0,	c1, c2,	c3, c4, c	5, c6, c	7 }	
3		T1	5: { c0,	c1, c2, c	3, c4, c	5, c6, c	7 }	
4		T2	8: { c0,	c1, c2, c	3, c4, c	5, c6, c	7 }	
7		T3	1: { c0,	c1, c2, c	3, c4, c	5, c6, c	7 }	

Output matrix layout for an FP16 MMA operation (maps to 4 instructions) https://docs.nvidia.com/cuda/parallel-thread-execution/index.html

WEIGHT MATRIX LAYOUT CONVERSIONS

- Query shuffled matrix size from VK/DX12
 - Could be larger than the optimally packed data
- Upload row- or column-major matrix to GPU
- Convert layout (perform the shuffle) on the GPU
 - Inference Optimal
 - Training Optimal
- Use converted matrix in CoopVec operations
 - Specify layout as coopVecMatMulAdd argument -

FEED-FORWARD LAYER USING COOPERATIVE VECTORS

MATRIX LAYOUT CONVERSION APIS

Vulkan (VK_NV_cooperative_vector)

- vkConvertCooperativeVectorMatrixNV
 - CPU conversion / size query
- vkCmdConvertCooperativeVectorMatrixNV
 - GPU conversion

DX12 (Agility SDK 717 Preview)

- Device::GetLinearAlgebraMatrixConversion...
 DestinationInfo
 - Size query
- CommandList::ConvertLinearAlgebraMatrix
 - GPU conversion
 - Note: No CPU conversion function!

MAPPING AN MLP ONTO TENSOR CORES 1/3

ORIGINAL CODE

```
coopVecMatMul(layer0, input, weightBuffer, offset0);
layer0 = max(layer0, 0);
coopVecMatMul(layer1, layer0, weightBuffer, offset1);
layer1 = max(layer1, 0);
coopVecMatMul(output, layer1, weightBuffer, offset2);
```

ADD SHUFFLES AROUND MMA OPS

```
shflinput = shuffle(input);
coopVecMatMul(temp0, shflinput, weightBuffer, offset0);
layer0 = unshuffle(temp0);

layer0 = max(layer0, 0);

shfllayer0 = shuffle(layer0);
coopVecMatMul(temp1, shfllayer0, weightBuffer, offset1);
layer1 = unshuffle(temp1);

layer1 = max(layer1, 0);

shuffles

shuffles

shuffle(layer1);
coopVecMatMul(temp2, shfllayer1, weightBuffer, offset2);
output = unshuffle(temp2);
```

Baseline implementation – functional but slow

MAPPING AN MLP ONTO TENSOR CORES 2/3

shflinput = shuffle(input); coopVecMatMul(temp0, shflinput, weightBuffer, offset0); layer0 = unshuffle(temp0); layer0 = max(layer0, 0); shfllayer0 = shuffle(layer0); coopVecMatMul(temp1, shfllayer0, weightBuffer, offset1); layer1 = unshuffle(temp1); layer1 = max(layer1, 0); shfllayer1 = shuffle(layer1); coopVecMatMul(temp2, shfllayer1, weightBuffer, offset2); output = unshuffle(temp2);

REMOVE UNSHUFFLE / SHUFFLE PAIRS

```
shflinput = shuffle(input);
coopVecMatMul(temp0, shflinput, weightBuff, offset0);
temp0_1 = max(temp0, 0);

coopVecMatMul(temp1, temp0_1, weightBuff, offset1);
temp1_1 = max(temp1, 0);

coopVecMatMul(temp2, temp1_1, weightBuff, offset1);
output = unshuffle(temp2);
```

The shuffle removal is called "Layer fusion" Sometimes it fails

MAPPING AN MLP ONTO TENSOR CORES 3/3

shflinput = shuffle(input); coopVecMatMul(shfllayer0, shflinput, weightBuff, offset0); temp0_1 = max(temp0, 0); coopVecMatMul(temp1, temp0_1, weightBuff, offset1); temp1_1 = max(temp1, 0); coopVecMatMul(temp2, temp1_1, weightBuff, offset1); output = unshuffle(temp2);

PEEL THE DIVERGENT MATRICES

```
shflinput = shuffle(input);

foreach (unique combination of offsets)
{
    coopVecMatMul(temp0, shflinput, weightBuff, offset0);
    temp0_1 = max(temp0, 0);

    coopVecMatMul(temp1, temp0_1, weightBuff, offset1);
    temp1_1 = max(temp1, 0);

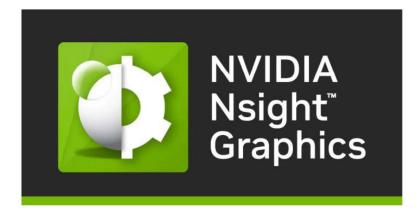
    coopVecMatMul(temp2, temp1_1, weightBuff, offset2);

    mergeThreadResults(temp2);
}

output = unshuffle(temp2);
```

DIAGNOSING LAYER FUSION FAILURES

- No publicly available diagnostic tool at this time
- Experimental approach:
 - Measure performance of the original code
 - Remove all code between coopVecMatMul[Add] operations
 - See if performance increases dramatically
 - Re-introduce pieces of that code looking for perf cliffs



Nsight Graphics is a great tool, but it doesn't fully support CoopVec yet

PREVENTING LAYER FUSION FAILURES 1/3

Avoid elementwise operations on CoopVec's between layers

BAD

```
coopVecMatMul(layer0, input, weightBuffer, offset0);
for (int i = 0; i < 64; ++i)
{
    // Leaky ReLU
    if (layer0[i] < 0)
        layer0[i] *= 0.01;
}
coopVecMatMul(layer1, layer0, weightBuffer, offset1);</pre>
```

GOOD

```
coopVecMatMul(layer0, input, weightBuffer, offset0);
// Use vector operations to express the same math
layer0 = max(layer0, layer0 * 0.01);
coopVecMatMul(layer1, layer0, weightBuffer, offset1);
```

Useful vector intrinsics: min, max, clamp, **step**Look in "hlsl.meta.slang" for more

PREVENTING LAYER FUSION FAILURES 2/3

Use vector load and store operations instead of elementwise ones

BAD

BETTER

```
coopVecMatMul(layer0, input, weightBuffer, offset0);
let bias = CoopVec<half, 64>.load(biasBuffer, biasOffset0);
layer0 += bias;
layer0 = max(layer0, 0); // ReLU
coopVecMatMul(layer1, layer0, weightBuffer, offset1);
```

PREVENTING LAYER FUSION FAILURES 3/3

Use vector load and store operations instead of elementwise ones

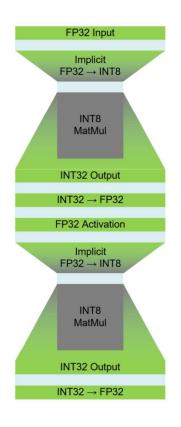
BETTER

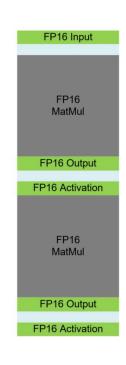
```
coopVecMatMul(layer0, input, weightBuffer, offset0);
let bias = CoopVec<half, 64>.load(biasBuffer, biasOffset0);
layer0 += bias;
layer0 = max(layer0, 0); // ReLU
coopVecMatMul(layer1, layer0, weightBuffer, offset1);
```

GOOD

```
coopVecMatMulAdd(layer0, input, weightBuffer, offset0,
    biasBuffer, biasOffset0);
layer0 = max(layer0, 0); // ReLU
coopVecMatMul(layer1, layer0, weightBuffer, offset1);
```

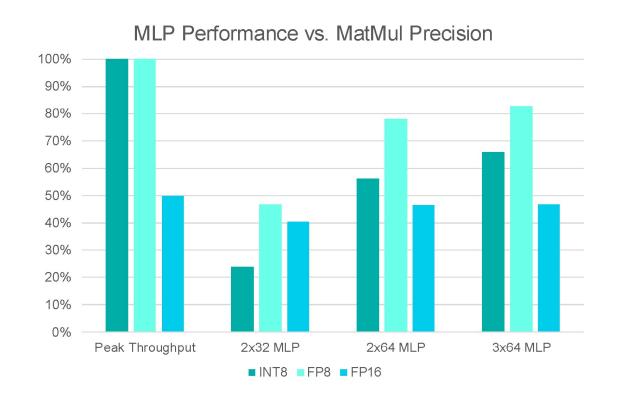
MATH PRECISION CONSIDERATIONS





- INT8 Most difficult to use
 - Extra scale operations needed for each layer
 - INT->FP conversions are not cheap
 - 32-bit per element vectors take many registers
- FP8 (E4M3 and E5M2)
 - No scaling or conversions needed, small register footprint
 - Very low precision, mostly suitable for hidden layers
- FP16 Easiest to use
 - Lower peak throughput than FP8 or INT8
 - Enough precision for all practical inference needs

MATH PRECISION COMPARISON



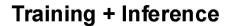
PERFORMANCE TIPS - SUMMARY

- Convert matrices to optimal layouts offline
- Minimize matrix divergence
- Avoid elementwise access to vectors between network layers
- Watch out for layer fusion failures

Math Precision Tradeoffs

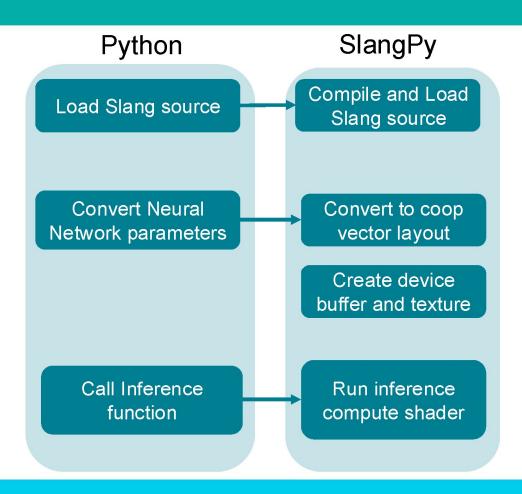
	INT8	FP8	FP16
Precision	✓	×	~ ~
Throughput	✓	✓ ✓	×
Register Pressure	×	✓	✓
Ease of Use	×	✓	✓ ✓
GPU Compatibility	~ ~	~	~ ~

THE TRANSITION STORY



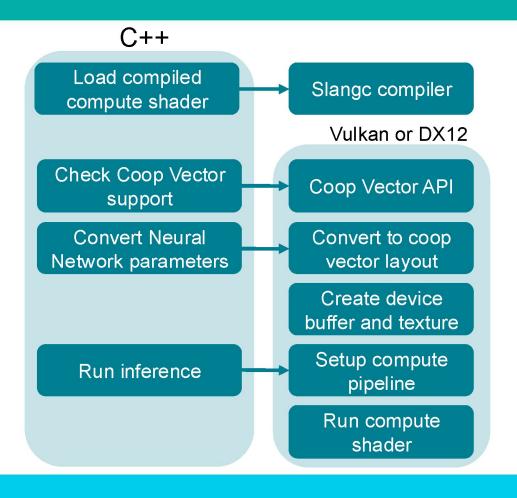
Inference

PYTHON IMPLEMENTATION

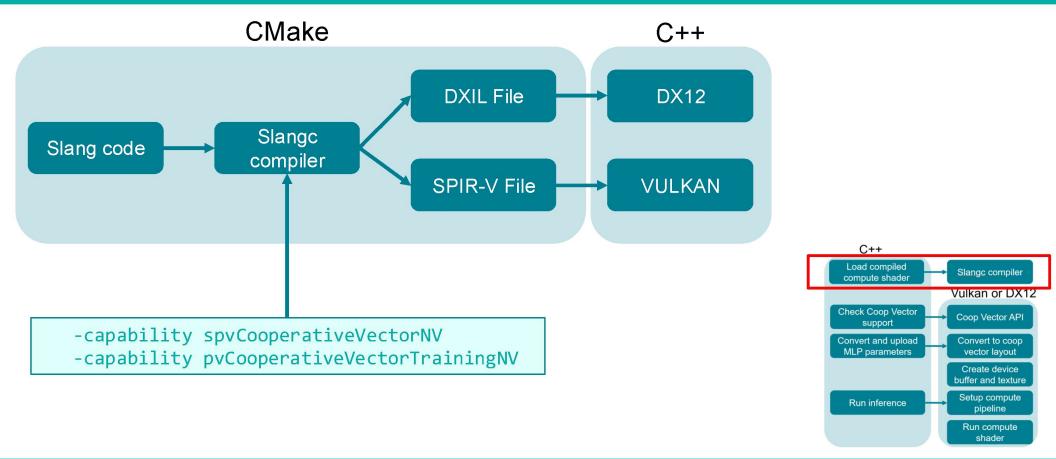


```
import slangpy as spy
module = spy.Module.load_from_file(app.device, "inference.slang")
app = App(width=512*3+10*2, height=512, title="Mipmap Example",
          device type=spy.DeviceType.vulkan
# Load values of biases and weights
weights_np = np.array(data['weights'], dtype=np.float16).reshape((outputs, inputs))
biases_np = np.array(data['biases'], dtype=np.float16)
# Convert weights into coopvec layout
desc = app.device.coopvec create matrix desc(self.outputs, self.inputs,
                                              self.layout,
                                              spy.DataType.float16, 0)
weight_count = desc.size // 2 # sizeof(half)
params_np = np.zeros((weight_count, ),
app.device.coopvec convert matrix host (weights np, params np,
                                       dst_layout=self.layout)
self.biases = app.device.create_buffer(struct_size=2, element_count=self.outputs,
                                       data=biases np)
self.weights = app.device.create_buffer(struct_size=2, element_count=weight_count,
                                        data=params_np)
lr output = spy.Tensor.empty like(image)
module.inference(pixel = spy.call_id(),
                 resolution = res,
                 network = network,
                 result = lr_output)
```

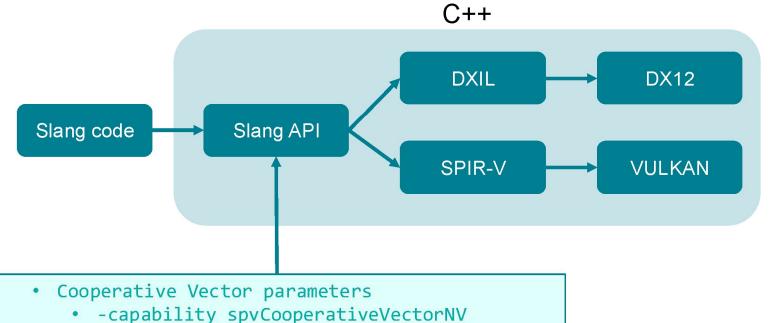
C++ IMPLEMENTATION



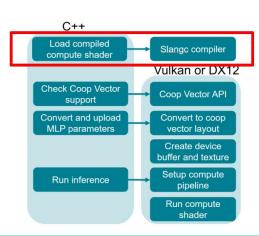
STEP 1 – SLANG AS SHADER MODULE



STEP 1 – SLANG AS SHADER MODULE



- -capability pvCooperativeVectorTrainingNV
- Compile time parameters
- Template parameters
- Reflection



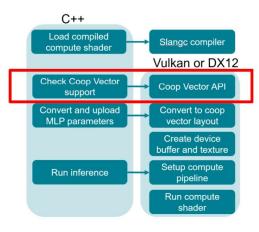
STEP 2 - FEATURE DETECTION FOR COOPERATIVE VECTORS (VULKAN)

Required Vulkan device extensions:

VK_NV_cooperative_vector

Required Vulkan physical device features:

VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COOPERATIVE_VECTOR_FEATURES_NV
cooperativeVector = true
cooperativeVectorTraining = true



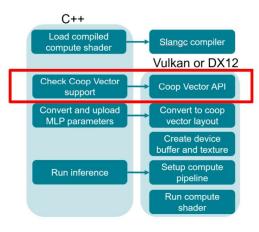
STEP 2 - FEATURE DETECTION FOR COOPERATIVE VECTORS (DX12)

Call D3D12EnableExperimentalFeatures to enable following features:

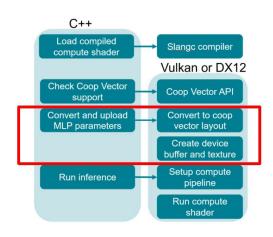
- D3D12ExperimentalShaderModels
- D3D12CooperativeVectorExperiment

Call D3D12 device method CheckFeatureSupport for D3D12_FEATURE_D3D12_OPTIONS_EXPERIMENTAL and check:

- D3D12_COOPERATIVE_VECTOR_TIER_1_0 for inference support
- D3D12_COOPERATIVE_VECTOR_TIER_1_1 for training support



STEP 3 - MATRIX OPTIMAL LAYOUTS



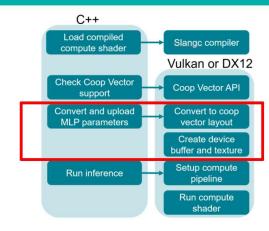
- Tensor cores use custom matrix layouts
 - · Components of matrices are shuffled between threads
 - Specific layout depends on the GPU and data types

STEP 3 - MATRIX LAYOUT CONVERSION

- 1. Create parameters buffer in optimal layout
 - Query shuffled matrix size from VK/DX12
 - Upload row- or column-major matrix to GPU
 - Convert layout (perform the shuffle) on the GPU
 - Inference Optimal
 - Training Optimal

Vulkan

- vkConvertCooperativeVectorMatrixNV
 - CPU conversion / size query
- vkCmdConvertCooperativeVectorMatrixNV
 - GPU conversion
- Create constant buffer
- 3. Create output texture



DX12

- GetLinearAlgebraMatrixConversionDestinationInfo
 - Size query
- ConvertLinearAlgebraMatrix
 - GPU conversion

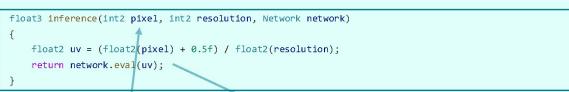
STEP 4 – CONVERT INFERENCE FUNCTION TO SHADER


```
SLANG

struct NetworkParameters<int Inputs, int Outputs> {
    ByteAddressBuffer<half> weights, biases;

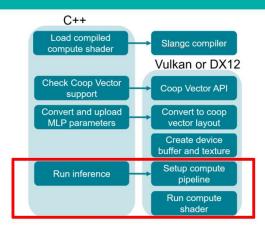
    CoopVec<half, Outputs> forward(CoopVec<half, Inputs> x);
}

struct Network {
    NetworkParameters<16, 32> layer0, layer1, layer2;
    float3 eval(no_diff float2 uv);
}
```



C++

```
lr_output = spy.Tensor.empty_like(image)
module.inference(pixel = spy.call_id(), resolution = res, network = network, _result = lr_output)
```



Compute Shader

STEP 4 – CONVERT INFERENCE FUNCTION TO SHADER


```
C++
SLANG
                                                                                                                                                      Load compiled
                                                                                                                                                                           Slangc compiler
                                                                                                                                                     compute shader
                                                                                                                                                                         Vulkan or DX12
struct NetworkParameters<int Inputs, int Outputs> {
                                                                                                                                                     Check Coop Vector
                                                                                                                                                                          Coop Vector API
     ByteAddressBuffer <half> weights, biases;
                                                                                                                                                         support
                                                                                                                                                    Convert and upload
                                                                                                                                                                           Convert to coop
     CoopVec<half, Outputs> forward(CoopVec<half, Inputs> x);
                                                                                                                                                     MLP parameters
                                                                                                                                                                            vector layout
                                                                                                                                                                           Create device
                                                                                                                                                                          buffer and texture
                                                                                                                                                                           Setup compute
struct Network {
                                                                                                                                                       Run inference
                                                                                                                                                                              pipeline
     NetworkParameters<16, 32> layer0;
                                                                                                                                                                            Run compute
     NetworkParameters<32, 32> layer1;
     NetworkParameters<32, 3> layer2;
     float3 eval(no_diff float2 uv);
                                                                                  Network network;
                                                                                 ConstantBuffer<NeuralConstants> gConst;
float3 inference(int2 pixel, int2 resolution, Network network)
                                                                                  RWTexture2D<float4> outputTexture;
     float2 uv = (float2(pixel) + 0.5f) / float2(resolution);
                                                                                  [shader("compute")]
     return network.eval(uv);
                                                                                  [numthreads(8, 8, 1)]
                                                                                  void main cs(uint3 pixel : SV DispatchThreadID)
                                                                                      outputTexture[pixel.xy] = inference(pixel.xy,
                                                                                                                               gConst.resolution,
                                                                                                                               network);
```

STEP 4 – CONVERT INFERENCE FUNCTION TO SHADER


```
SLANG
struct NetworkParameters<int Inputs, int Outputs> {
    ByteAddressBuffer <half> weights, biases;
    CoopVec<half, Outputs> forward(CoopVec<half, Inputs> x);
}
struct Network {
    NetworkParameters<16, 32> layer0;
    NetworkParameters<32, 32> layer1;
    NetworkParameters<32, 3> layer2;
    float3 eval(no_diff float2 uv);
Network network;
 ConstantBuffer<NeuralConstants> gConst;
RWTexture2D<float4> outputTexture;
[shader("compute")]
 [numthreads(8, 8, 1)]
 void main_cs(uint3 pixel : SV_DispatchThreadID){
 // Compute shader
```

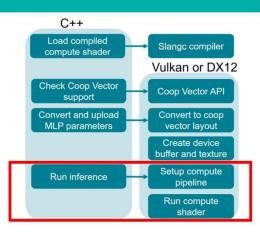
```
C++

// Initialize parameters buffers

// Setup up constant buffer

// Bind output texture

// Dispatch compute shader
nvrhi::ComputeState state;
m_CommandList->setComputeState(state);
m_CommandList->dispatch(textureWidth, textureHeight, 1);
```



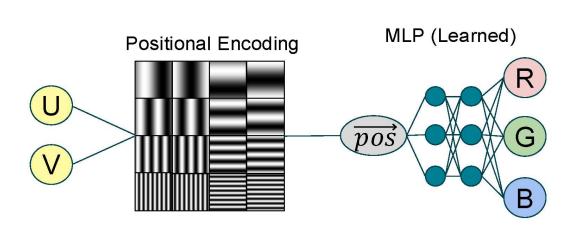
YOUR NEURAL SHADER IS NOW SHIPPED!

Python

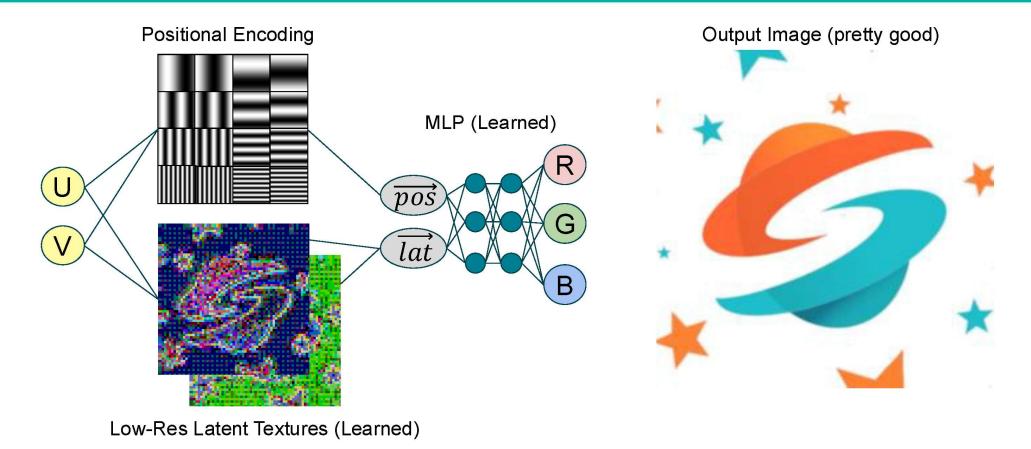
C++

NEURAL TEXTURE COMPRESSION

FLASHBACK: PREVIOUS BEST RESULT



ADDING LATENT TEXTURES



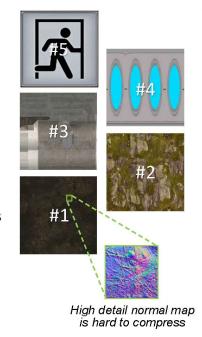
KEY FACTS ABOUT NTC

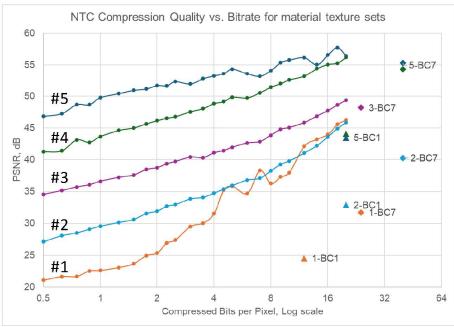
- Wide range of latent texture parameters
 - Independent resolution, channel count, bits per feature controls
 - Overall practical range of 0.5 20 bits per pixel storing up to 16 channels
 - MLP weights are tiny compared to the latents (~12 KB vs. many MB)
- Each texel can be decoded independently
 - Suitable for use as a replacement for regular material textures
- Neural compression without hallucinations
 - Compression is training of the network and latent textures
 - Network is small and overfitted to reproduce only one material
- Original paper describing NTC and STF:
 - K. Vaidyanathan et al. "Random-Access Neural Compression of Material Textures"

Crops from an NTC compressed texture at 0.5 and 20.0 bpp

NEURAL TEXTURE COMPRESSION QUALITY

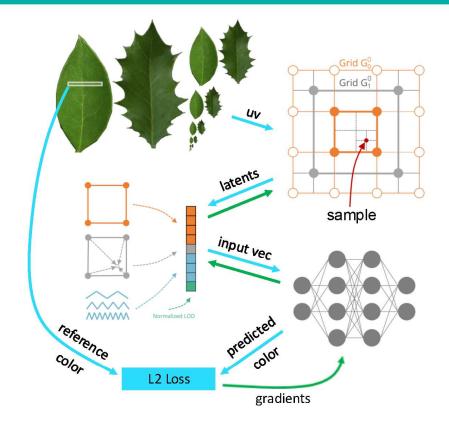
- Consistently better than BCn
 - More benefit for complex materials
 - Up to 8x better at similar visual quality
 - Introduces blur, not blockiness
- Mostly monotonic vs. BPP
 - More information means higher quality
 - Training finds effective ways to use the bits
- Benefits from correlated channels
 - All textures for a PBR material are better compressed together than separately





NTC TRAINING PROCESS

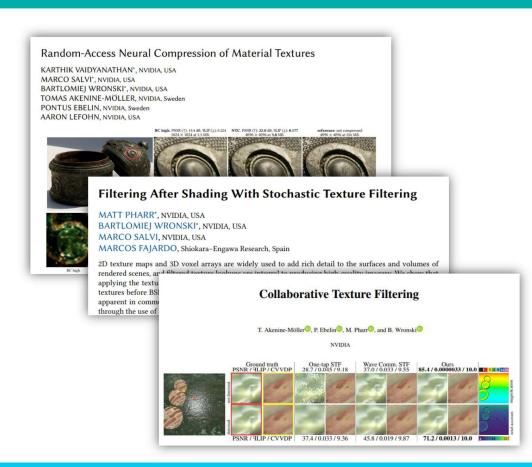
- Pick a set of pixels to process on this step
 - 64k pixels per step is usually good
- For each pixel in parallel:
 - Calculate positional encoding based on UV
 - Sample the latent textures at UV
 - Prepare MLP input vector
 - Evaluate MLP
 - Load reference texture channels
 - Compute gradient ~= (predicted reference)
 - Backpropagate gradients
 - Accumulate gradients for MLP and features
- Run an optimizer step
 - Add the quantization noise
- Repeat 100-200k times



NTC MODES OF OPERATION 1/3

INFERENCE ON SAMPLE

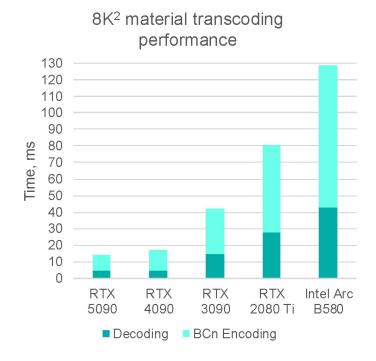
- Replace material texture sampling with NTC decode
- Apply Stochastic Texture Filtering (STF) instead of hardware filtering
 - NTC gives one pixel per decode, direct trilinear or aniso filtering would be too expensive
- Benefits:
 - Minimal VRAM footprint
- Drawbacks:
 - Makes shaders larger and slower (depends...)
 - STF is a requirement



NTC MODES OF OPERATION 2/3

INFERENCE ON LOAD

- Transcode NTC materials into BCn at load time
- Sample BCn textures as usual
- Benefits:
 - Easy integration
 - Rendering performance is unaffected
- Drawbacks:
 - No VRAM savings, only disk space / network traffic



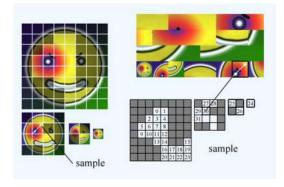
Using FP8 inference with CoopVec for NTC

Encoding 2x BC7 and 1x BC5

NTC MODES OF OPERATION 3/3

INFERENCE ON FEEDBACK

- Extension for a virtual texturing system
- Track which texture MIPs and tiles are needed
- Transcode the necessary tiles to BCn at runtime
- Benefits:
 - Low performance impact on render passes
- Drawbacks:
 - VRAM usage includes both NTC and partial BCn data
 - Potentially uneven frame times



Virtual texture

Image: Sean Barrett, GDC 2008

https://silverspaceship.com/src/svt/

NTC PERFORMANCE COMPARISON

Intel Sponza scene in the NTC SDK Renderer

Mode	Render Time	Texture Memory
On Load	0.39 ms	2041 MB
On Sample	0.82 ms	243 MB
On Feedback	0.65 ms	555 MB

Measured on an RTX PRO 6000 Blackwell WE

BENEFITS OF NEURAL TEXTURE COMPRESSION

PRACTICAL

- Saves disk space
- Saves download traffic
- Saves VRAM (maybe)
- Can be used on any platform
 - High-end PC on-sample
 - Low-end and consoles on-load or on-feedback
- Can be used now
 - SDK available: <u>github.com / NVIDIA-RTX / RTXNTC</u>

CONCEPTUAL

- Allows using higher detail materials
 - Fewer bits per pixel => more pixels with the same storage
- Can be extended with perceptual loss functions
 - Higher compression ratios with better visual detail
 - Ongoing research direction

MORE NEURAL COMPRESSION TECHNIQUES

INSPIRATION: REAL MATERIALS ARE COMPLEX

Real-Time Neural Appearance Models

Tizian Zeltner[†] Benedikt Bitterli[†] Fabrice Rousselle[†]
Alex Evans

Andrea Weidlich[†] Tomáš Davidovič Petrik Clarberg[†]
Simon Kallweit

Jan Novák[†] Aaron Lefohn

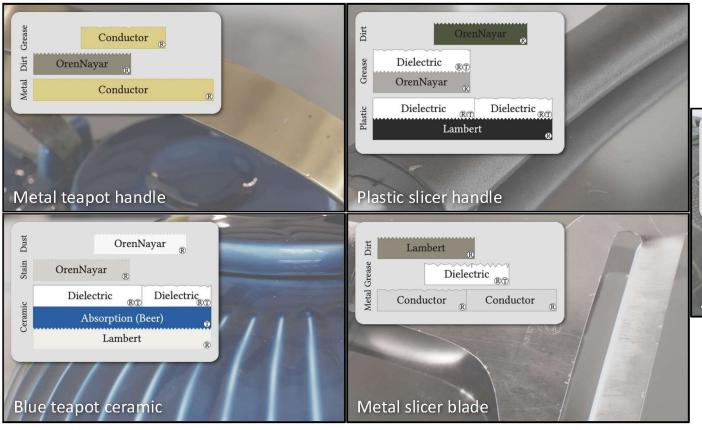
NVIDIA

[†]equal contribution, order determined by a rock-paper-scissors tournament.

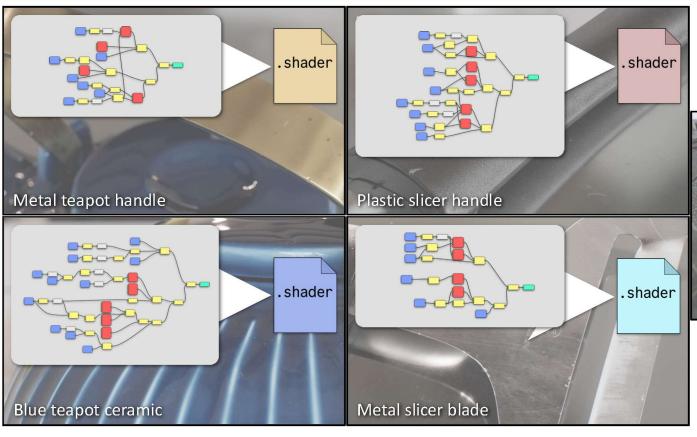
INSPIRATION: REAL MATERIALS ARE COMPLEX

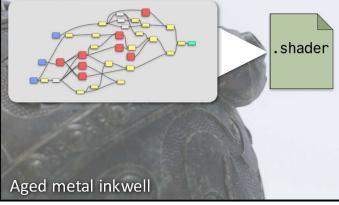
WE CAN RENDER THESE, BUT NOT IN REAL-TIME

THESE ARE COMPLEX MATERIAL GRAPHS...



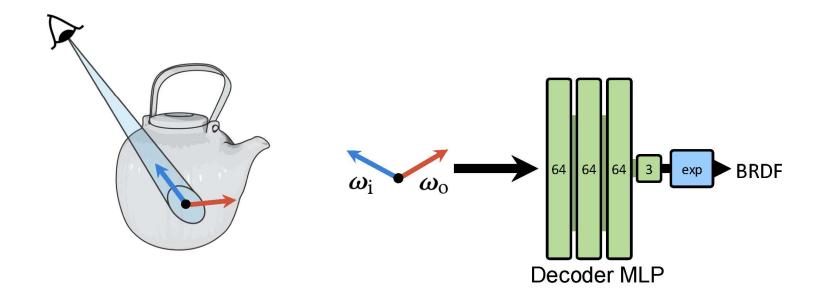
...AND WE DON'T KNOW HOW TO SIMPLIFY THEM WELL



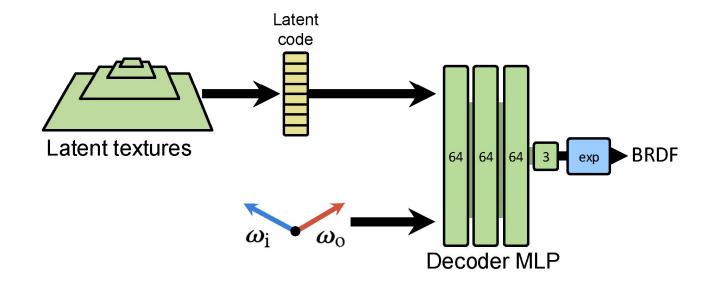


WHAT IF WE USED A NEURAL NETWORK FOR THE TASK?

SIMPLEST FIRST: PASS DIRECTIONS TO A NETWORK



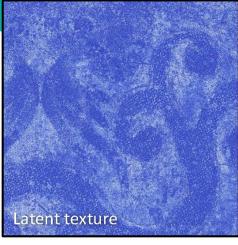
...AND THEN TEXTURE IT



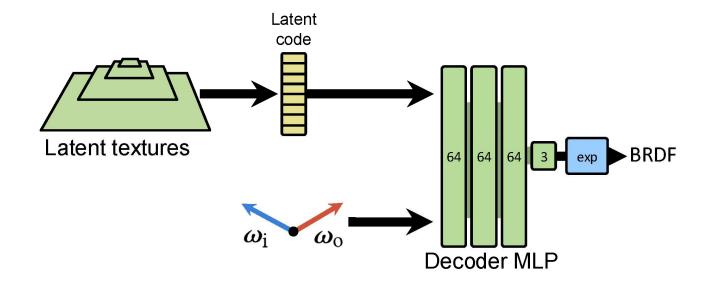
THIS WORKS!

...UP TO A POINT

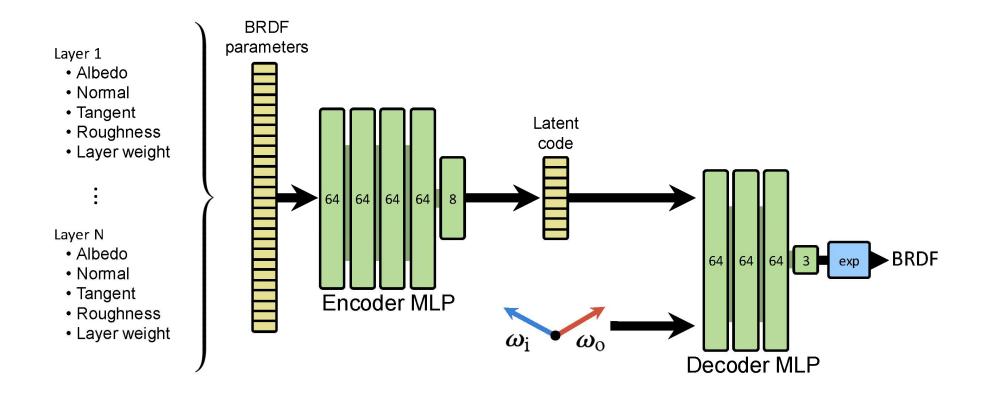
512 x 512



WE'RE LACKING A "GLOBAL" VIEW

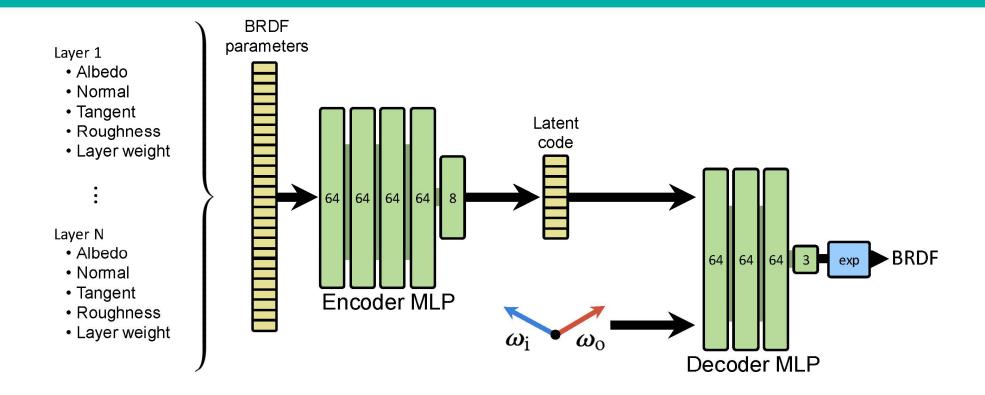


IDEA: LEARN TO TRANSLATE THE ORIGINAL TEXTURES

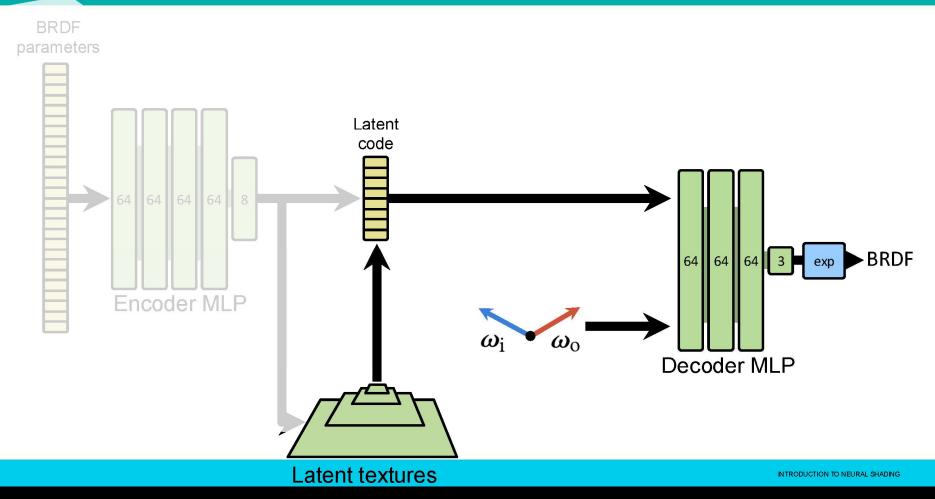


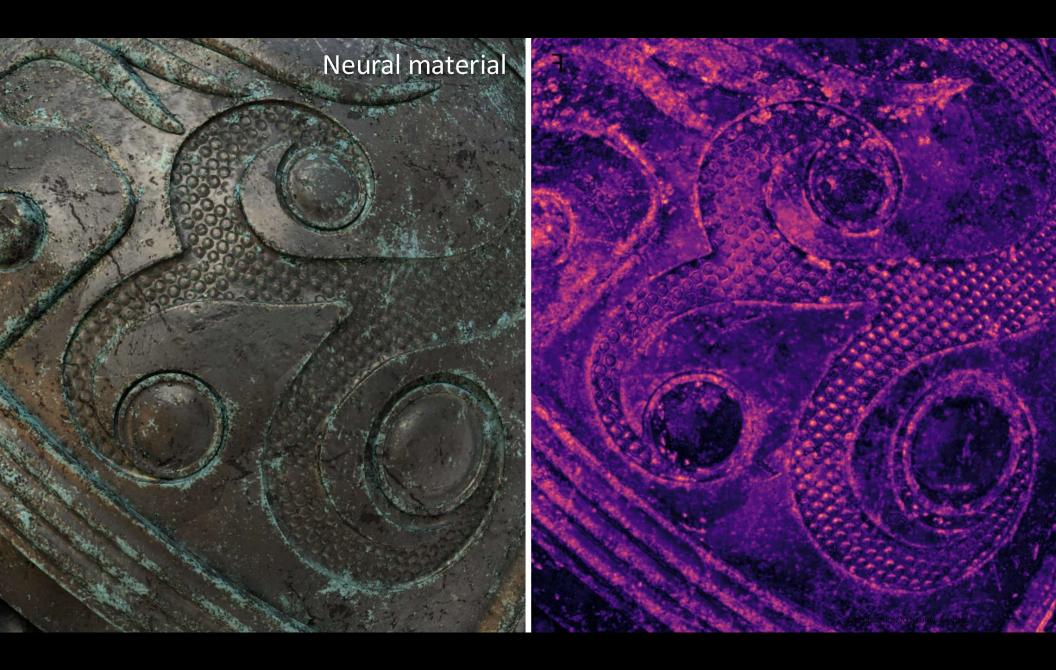
IDEA: LEARN TO TRANSLATE THE ORIGINAL TEXTURES

YOU ONLY NEED THIS TRICK DURING TRAINING!

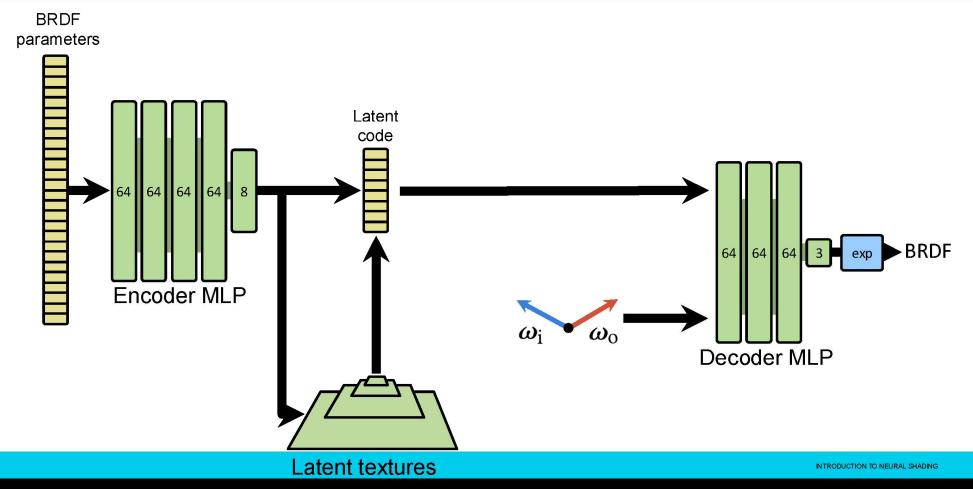


YOU ONLY NEED THIS TRICK DURING TRAINING!

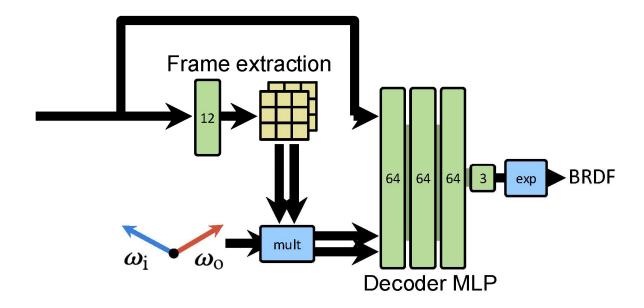


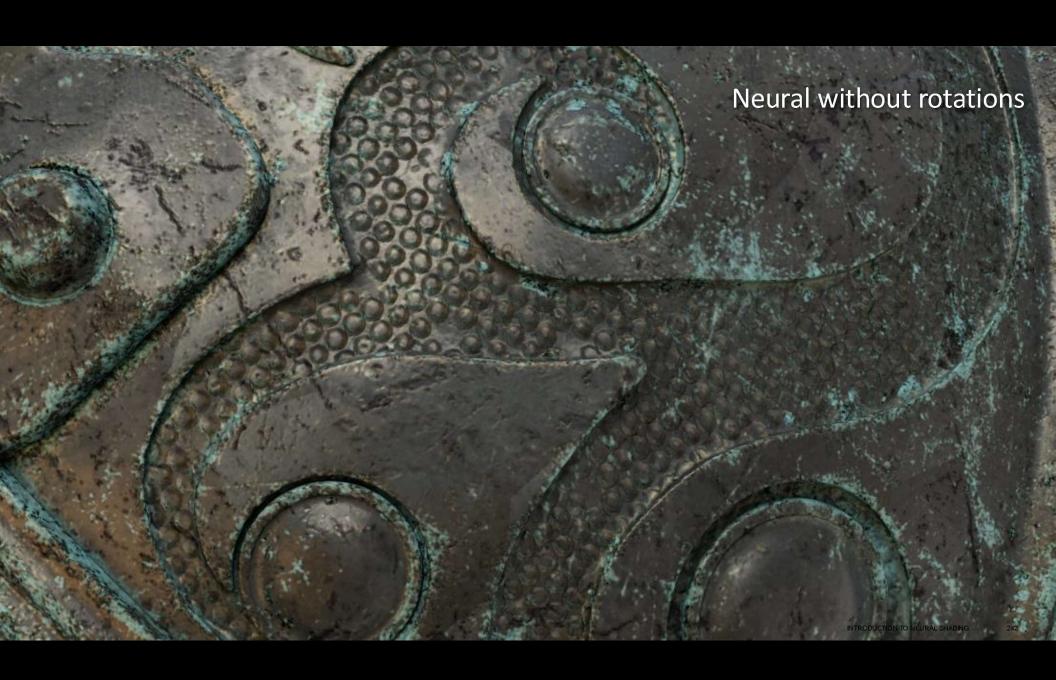


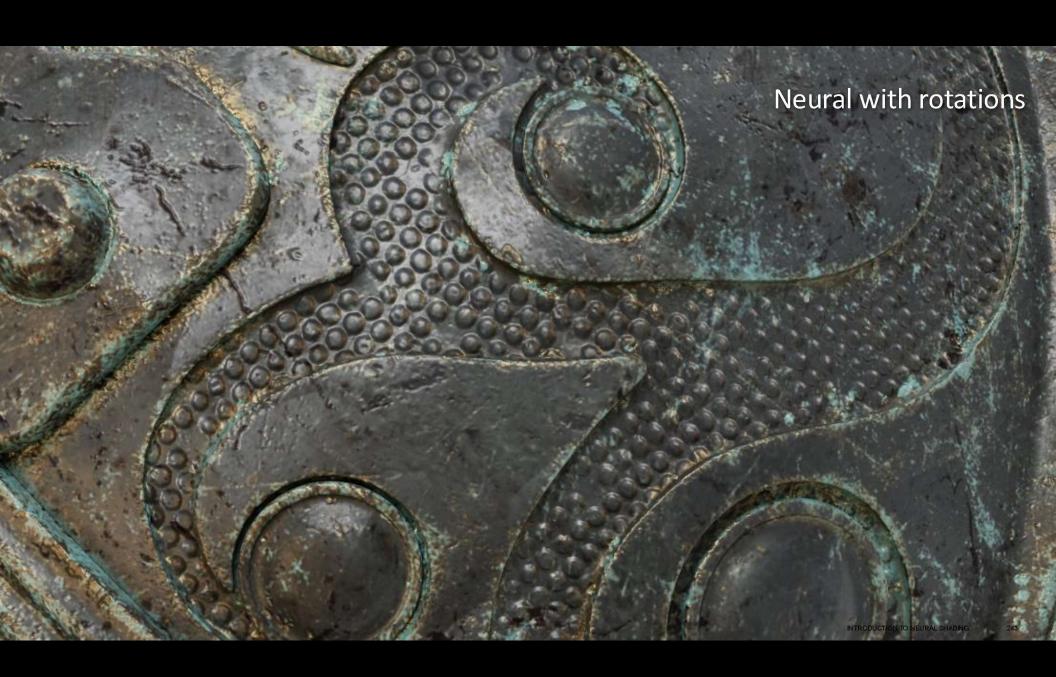
LET'S ADD A FIXED-FUNCTION FRAME TRANSFORM



LET'S ADD A FIXED-FUNCTION FRAME TRANSFORM

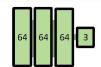






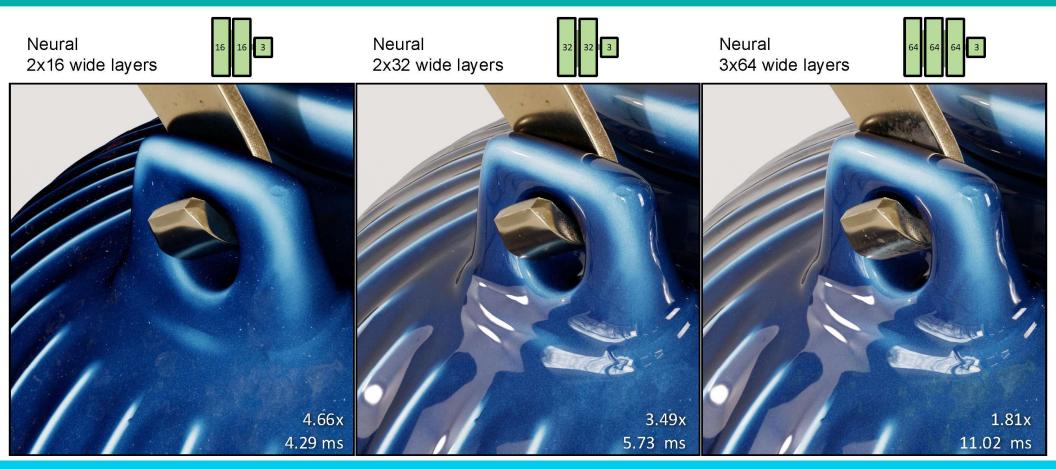
END RESULT

Neural 3x64 wide layers

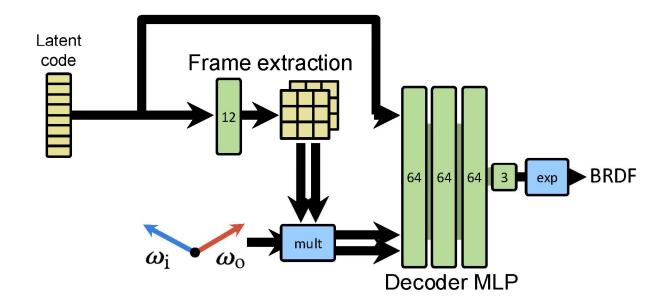


Reference

NEURAL SHADING GIVES YOU A QUALITY/COST DIAL



ADDING ADDITIONAL CAPABILITIES



ADDING ADDITIONAL CAPABILITIES

