B ey ((())), KAUST

CS 380 - GPU and GPGPU Programming
Lecture 22: GPU Texturing, Pt. 4

Markus Hadwiger, KAUST |

Reading Assignment #12 (until Nov 24)

Read (required):

» Look at Vulkan sparse resources, especially sparse partially-resident images
— https://docs.vulkan.org/spec/latest/chapters/sparsemem.html

* Read about shadow mapping
— https://en.wikipedia.org/wiki/Shadow_mapping

* Look at Unreal Engine 5 virtual texturing

— https://dev.epicgames.com/documentation/en-us/unreal-engine/
virtual-texturing-in-unreal-engine/

» Look at Unreal Engine 5 Megal.ights

— https://dev.epicgames.com/documentation/en-us/unreal-engine/
megalights-in-unreal-engine/

Read (optional):
* CUDA Warp-Level Primitives

— https://developer.nvidia.com/blog/using-cuda-warp-level-primitives/

* Warp-aggregated atomics

— https://developer.nvidia.com/blog/
cuda-pro-tip-optimized-filtering-warp-aggregated-atomics/

GPU Texturing

2D Texture Mapping

Texture

(82,12)

(51,%1)

For each fragment: Texture-Lookup:
interpolate the interpolate the
texture coordinates texture data
(barycentric) (bi-linear)
Or: Or:

Use arbitrary, computed coordinates Nearest-neighbor for “array lookup”

Interpolation #1

Interpolation Type + Purpose #1:

Interpolation of Texture Coordinates

(Linear / Rational-Linear Interpolation)

Markus Hadwiger, KAUST 6

Linear Interpolation / Convex Combinations

T wikipedia
1

Linear interpolation in 1D:

f((x) — (1 o a)vl —I_ avz 43'—:' piecewise Iinear\/

Line embedded in 2D (linear interpolation of vertex coordinates/attributes):

flay, @) =av + v, fla)=vi+a(vy—v)
o +on =1 o = 0

Line segment: 0,06 >0 (— convex combination)
Compare to line parameterization v(t) =vy+1t(vy —vyp)

with parameter t:

Markus Hadwiger 7

Linear Interpolation / Convex Combinations

Linear combination (7 -dim. space):

n
v
vy +0hvy +...+ 0y, = ZOCiVi 3
i=1
Affine combination: Restrict to (n — 1)-dim. subspace:
- %
OCl—l—Otz—l—...—I—OCn:ZOCi:l 1
i=1 o V2

Convex combination: o; >0

(restrict to simplex in subspace)

Markus Hadwiger 8

Linear Interpolation / Convex Combinations

n
vy +0hvy +...+ 0V, = ZOCiVi
i=1 V3
n
(Xl—I—OCz—I—...—I—OCn:ZOCiZI
i=1

Re-parameterize to get affine coordinates:

Q1v1 + 0hvy + 03vy = . 1 %0)
0 (vy—vi)+ e (vy—vy)+v; Q
o = 0
Oh = 03

Markus Hadwiger 9

Linear Interpolation / Convex Combinations

The weights O; are the (normalized) barycentric coordinates

— linear attribute interpolation in simplex

n
vy +0hvo+...+ 0y, = Z OV
i=1

n
(x1+a2+...+an:2a,-:1
i=1

OCi>O

Markus Hadwiger

attribute interpolation

AR
<

spatial position

wikipedia

Homogeneous Coordinates (1)

Projective geometry
» (Real) projective spaces RP":
Real projective line RP', real projective plane RP?, ...

« A pointin RP"is a line through the origin (i.e., all the scalar multiple
of the same vector) in an (n+1)-dimensional (real) vector space

Homogeneous coordinates of 2D projective point in RP?
» Coordinates differing only by a non-zero factor A map to the same point

(AX, Ay, A) dividing out the A gives (x, y, 1), corresponding to (x,y) in R?
» Coordinates with last component = 0 map to “points at infinity”

(AX, Ay, 0) division by last component not allowed; but again this is the
same point if it only differs by a scalar factor, e.g., this is the
same pointas (x,y, 0)

Markus Hadwiger, KAUST

Homogeneous Coordinates (2)

Examples of usage
 Translation (with translation vectorg)

« Affine transformations (linear transformation + translation)
j = AZ + b.

» With homogeneous coordinates:

HE AlH

» Setting the last coordinate = 1 and the last row of the matrixto [0, ..., 0, 1]
results in translation of the point z (via addition of translation vectord)

A
0O ... O

* The matrix above is a linear map, but because it is one dimension higher, it
does not have to move the origin in the (n+1)-dimensional space for translation

Markus Hadwiger, KAUST

Homogeneous Coordinates (3)

Examples of usage

* Projection (e.g., OpenGL projection matrices)

I L
right —left right — left
2 _t0p+b0tt0m
top — bottom top— bottom
=a far +near
0 0 -
far —near far —near
I L
Znear left+right
width /2 0.0 width/2 0.0
Znear fUP-I—bOIT()m
0.0 height /2 height /2 5 0.0
Zfar+Znec ZfarZnea
0.0 0.0 _ Zfar T Znear = f,,rz,, y
Lfar ENEar e 11CAT
qo00 00 -10 003
P — /l

Markus Hadwiger, KAUST

orthographic

perspective

z-axis,
centered

k Far plane,

atz=z

far

Near plane used as
— plane of projection,
at = :ML‘{H'

_Far plane,
atz = Zfar

Near plane used as
- plane of projection,
at = ZHL‘(”‘

Texture Mapping

2D (3D) Texture Space

|'I'exture Transformation
2D Object Parameters

Parameterization
3D Object Space

Model Transformation
3D World Space

[Viewing Transformation
3D Camera Space

Projection

2D Image Space

Y

Kurt Akeley, Pat Hanrahan

Texture Mapping Polygons

Forward transformation: linear projective map

% a b ¢||s
y|I=|d e f||lt
W g h il||lr

Backward transformation: linear projective map

G A e ——1r =
Ky a b e be
fl=td e f y
r g h i W

Kurt Akeley, Pat Hanrahan

Incorrect attribute interpolation

Linear
interpolation

Kurt Akeley, Pat Hanrahan

Linear interpolation

Compute intermediate attribute value
m Along aline: A =aAr + bAz, a+b=1
m Onaplane: A =aAr+ bAz + cAs, a+b+c=1

Only projected values interpolate linearly in screen space (straight
lines project to straight lines)

m x and y are projected (divided by w)
m Attribute values are not naturally projected
Choice for attribute interpolation in screen space

m Interpolate unprojected values
m Cheap and easy to do, but gives wrong values
m Sometimes OK for color, but
m Never acceptable for texture coordinates

m Do it right

Kurt Akeley, Pat Hanrahan

Linear Perspective

-

L

x -
> -
T e
‘_\Hﬁ_ gt
.-"--
-

Incorrect Perspective

(1,0)

Linear Interpolation, Bad

Perspective Interpolation, Good

Kurt Akeley, Pat Hanrahan

linear interpolation @, +bx, 4+ g2 p 2 linear interpolation

In object space aw, +bw, W, W, IN screen space

z% 2 g

z
= o
\Q\\\\

\x &

Q~.

Y
NN

&
\\
A\

Vienna University of Technology

Perspective-correct linear interpolation

Only projected values interpolate correctly, so project A

m Linearly interpolate A,/w, and A,/w,
Also interpolate 1/w, and 1/w,

m These also interpolate linearly in screen space
Divide interpolants at each sample point to recover A

m (A/w)/ (1/w)=A

m Division is expensive (more than add or multiply), so

m Recover w for the sample point (reciprocate), and
m Multiply each projected attribute by w

Barycentric triangle parameterization:

aAi/wi1 + bA2/w2 + cA3/ws3
A= —m——_— a+b+c=1
a/wi + b/wz2 + c/w3

Kurt Akeley, Pat Hanrahan

Perspective Texture Mapping

= Solution: interpolate (s/w, t/w, 1/w)

m (s/w)/ (1/w) = s etc. at every fragment
-

OBJECT-AFFINE SPACES SCREEN-AFFINE SPACES
each fragment

texture space _- div by 1/w homogeneous texture space

/ (u, v) ~ : (u/w, viw, 1/w)

object space R2 ; RP2

world space

\ homogeneous screen space : SCreen space
(XW, yw, W) > (x,y)

5 div by w 5

eachivertex

Heckbert and Moreton

Perspective-Correct Interpolation Recipe <

ri(z,y)/w(z,y)
1/w(x,y)

(1) Associate a record containing the n parameters of interest (ry,ro,---,r,) with
each vertex of the polygon.

7"?;(:13'33}) —

(2) For each vertex. transform object space coordinates to homogeneous screen space
using 4 x 4 object to screen matrix, yvielding the values (zw. yw. zw, w).

(3) Clip the polygon against plane equations for each of the six sides of the viewing
frustum, linearly interpolating all the parameters when new vertices are created.

(4) At each vertex, divide the homogeneous screen coordinates, the parameters r;,
and the number 1 by w to construct the variable list (z,y.z. 51,59, -, 8,41)

"
A

where s; = r;/w for : < n, sp41 = 1/w.

Scan convert 1n screen space by linear interpolation of all parameters, at each
pixel computing r; = s;/s,41 for each of the n parameters; use these values for

——
b |
—

shading.

Heckbert and Moreton

AR
<

Projective Map vs. Interpolation Recipe (1)

In genera| (See previous S|ides), Backward transformation: linear projective map
we had the projective map: sT [a b ¢'[x]
fil=ld & J| | ¥
r| |g h 1] |w

Let’'s rename and rewrite this as:

S g 8 2| | %z a b c||x-w
tl=1d e f||Yworia|=|d e f||y-w
q g h i w g h i|| w
_ s] [a b c][x-w
For homogeneous points [t =ld e f|ly w]
we can also divide by w: ql 9 h i]|w
Coordinates on the right become ix ~ ; I; JCC B
screen space coordinates! B 11
qg/w| |9 h i]]l

Markus Hadwiger, KAUST 23

AR
<

Projective Map vs. Interpolation Recipe (2)

In genera| (See previous S|ides), Backward transformation: linear projective map

Ll A _ -1 —_

we had the projective map: s| [a b c
fil=ld & J| | ¥

_ _ r g h i w
Let’'s rename and rewrite this as:

S g 8 2| | %z a b c||x-w

tl=1(d e f||Yworta| =1|d e f||ly-w

q g h i w g h i|| w

] S a b c][x-w

For homogeneous points \t =|d e f y.wl

we can also divide by w: 1 g h i]]lw (special case ¢=1)
Coordinates on the right become ;x 3 3 l; ; *

screen space coordinates! 1 B =T

/wl g h i]|l

Markus Hadwiger, KAUST 24

AR
<

Projective Map vs. Interpolation Recipe (3)

In genera| (see previous slides), Backward transformation: linear projective map
we had the projective map: 51 [a b ¢ [x]

fil=ld & J| |3

rl g h 1| |w

Now consider scanline interpolation:
(barycentric interpolation is linear along any line: here, horizontal line)

s/w| [a b c][x+Ax

tfwl|=1|d e f y

1/w| |g h i]]| 1

s/w|l [a b c][x a b c||Ax s/w a b cf|Ax a- Ax a

t/wi=1d e f|lyl+|d e f||O Ax |t/w]|=|d e f|]lO0|=|d-Ax|=|d

1/w| g h]|l g h i||0 1/w g h i||O g - Ax g
(/_\.le)

Markus Hadwiger, KAUST 25

Projective Texture Mapping

Want to simulate a beamer
» ... or aflashlight, or a slide projector
m Precursor to shadows
= Interesting mathematics:
2 perspective

e e
e

projections involved!
= Easy to program!

Hi

Vienna University of Technology 26

Projective Texture Mapping

Vienna University of Technology

Projective Shadows in Doom 3

Vienna University of Technology

Projective Texturing

What about homogeneous texture coords?
Need to do perspective divide also for projector!
= (s,t,q) =2 (s/q, t/q) for every fragment
How does OpenGL do that?
m Needs to be perspective correct as well!
m Trick: interpolate (s/w, t/w, riw, g/w)
m (s/w)/ (g/w) = s/q etc. at every fragment

Remember: s,t,r,q are equivalent to x,y,z,w Iin
projector space! - r/q = projector depth!

Vienna University of Technology 29

Multitexturing

m Apply multiple textures in one pass

m Integral part of programmable shading
m e.g. diffuse texture map + gloss map
m e.g. diffuse texture map + light map

m Performance issues
= How many textures are free?
= How many are available

Vienna University of Technology 30

Example: Light Mapping

m Used In virtually every commercial game

m Precalculate diffuse lighting on static objects
= Only low resolution necessary
= Diffuse lighting is view independent!

= Advantages:

= No runtime lighting necessary
= VERY fast!

m Can take global effects (shadows, color
bleeds) into account

Vienna University of Technology 31

Light Mapping

Original LM texels Bilinear Filtering

Vienna University of Technology 32

Light Mapping Issues
= Why premultiplication is bad...

Full Size Texture
(with Lightmap)

Tiled Surface Texture
plus Lightmap

- use tileable surface textures and low
resolution lightmaps

Vienna University of Technology 33

Light Mapping

- s
- A iy
- A -~
e

i 3 . a%
- L o g =
-y P .
- —‘-- -

v

s
e
"

. Oriinal scene Light-mapped

Vienna University of Technology

Example: Light Mapping

m Precomputation based on non-realtime
methods

= Radiosity
= Ray tracing
= Monte Carlo Integration

m Path tracing
= Photon mapping

Vienna University of Technology 35

Light Mapping

Vienna University of Technology 36

Light Mapping

Original scene Lighted

Vienna University of Technology 37

