

CS 380 - GPU and GPGPU Programming Lecture 22: GPU Texturing, Pt. 4

Markus Hadwiger, KAUST

Reading Assignment #12 (until Nov 24)

Read (required):

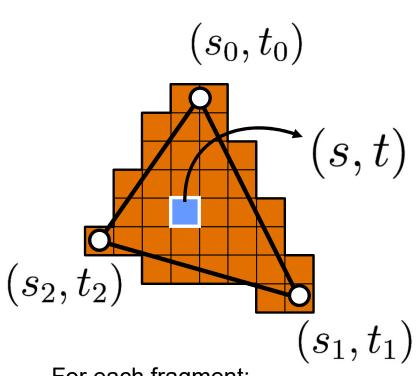
- Look at Vulkan sparse resources, especially sparse partially-resident images
 - https://docs.vulkan.org/spec/latest/chapters/sparsemem.html
- Read about shadow mapping
 - https://en.wikipedia.org/wiki/Shadow mapping
- Look at Unreal Engine 5 virtual texturing
- Look at Unreal Engine 5 MegaLights

Read (optional):

- CUDA Warp-Level Primitives
 - https://developer.nvidia.com/blog/using-cuda-warp-level-primitives/
- Warp-aggregated atomics

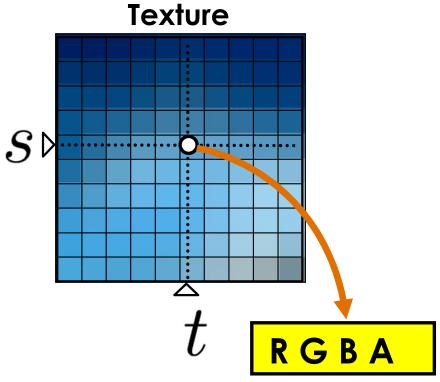
GPU Texturing

2D Texture Mapping



For each fragment: interpolate the texture coordinates (barycentric)
Or:

Use arbitrary, computed coordinates



Texture-Lookup:

interpolate the texture data (bi-linear)

Or:

Nearest-neighbor for "array lookup"

Interpolation #1

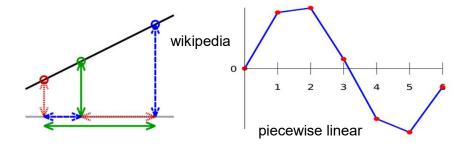
Interpolation Type + Purpose #1:

Interpolation of Texture Coordinates

(Linear / Rational-Linear Interpolation)

Linear interpolation in 1D:

$$f(\alpha) = (1 - \alpha)v_1 + \alpha v_2$$



Line embedded in 2D (linear interpolation of vertex coordinates/attributes):

$$f(\alpha_1, \alpha_2) = \alpha_1 v_1 + \alpha_2 v_2$$
$$\alpha_1 + \alpha_2 = 1$$

$$f(\alpha) = v_1 + \alpha(v_2 - v_1)$$
$$\alpha = \alpha_2$$

Line segment:

$$\alpha_1, \alpha_2 \geq 0$$

 $\alpha_1, \alpha_2 \ge 0$ (\rightarrow convex combination)

Compare to line parameterization with parameter t:

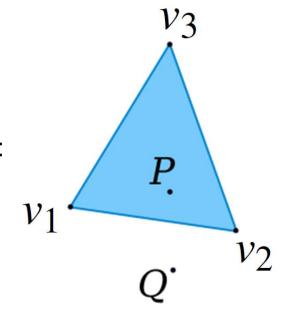
$$v(t) = v_1 + t(v_2 - v_1)$$

Linear combination (*n*-dim. space):

$$\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n = \sum_{i=1}^n \alpha_i v_i$$

Affine combination: Restrict to (n-1)-dim. subspace:

$$\alpha_1 + \alpha_2 + \ldots + \alpha_n = \sum_{i=1}^n \alpha_i = 1$$



Convex combination:

$$\alpha_i \geq 0$$

(restrict to simplex in subspace)

$$\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n = \sum_{i=1}^n \alpha_i v_i$$

$$\alpha_1 + \alpha_2 + \ldots + \alpha_n = \sum_{i=1}^n \alpha_i = 1$$

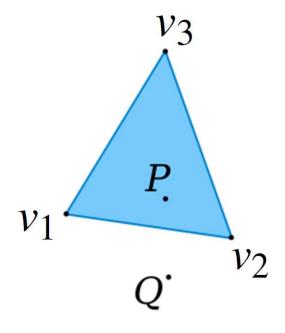
Re-parameterize to get affine coordinates:

$$\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 =$$

$$\tilde{\alpha}_1 (v_2 - v_1) + \tilde{\alpha}_2 (v_3 - v_1) + v_1$$

$$\tilde{\alpha}_1 = \alpha_2$$

$$\tilde{\alpha}_2 = \alpha_3$$



The weights α_i are the (normalized) barycentric coordinates

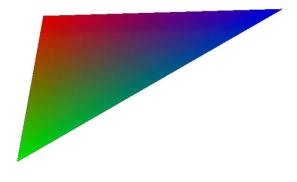
→ linear attribute interpolation in simplex

$$\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n = \sum_{i=1}^n \alpha_i v_i$$

$$\alpha_1 + \alpha_2 + \ldots + \alpha_n = \sum_{i=1}^n \alpha_i = 1$$

$$\alpha_i \geq 0$$

attribute interpolation



spatial position interpolation

wikipedia

Projective geometry

- (Real) projective spaces RPⁿ:
 Real projective line RP¹, real projective plane RP², ...
- A point in RPⁿ is a line through the origin (i.e., all the scalar multiples of the same vector) in an (n+1)-dimensional (real) vector space

Homogeneous coordinates of 2D projective point in RP²

Coordinates differing only by a non-zero factor λ map to the same point

(λx , λy , λ) dividing out the λ gives (x, y, 1), corresponding to (x,y) in R^2

Coordinates with last component = 0 map to "points at infinity"

(λx , λy , 0) division by last component not allowed; but again this is the same point if it only differs by a scalar factor, e.g., this is the same point as (x, y, 0)

Homogeneous Coordinates (2)

Examples of usage

- Translation (with translation vector \vec{b})
- Affine transformations (linear transformation + translation)

$$ec{y}=Aec{x}+ec{b}.$$

• With homogeneous coordinates:

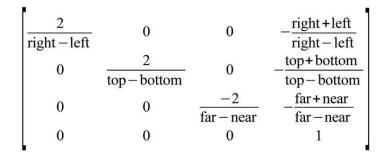
$$egin{bmatrix} ec{y} \ 1 \end{bmatrix} = egin{bmatrix} A & ec{b} \ 0 & \dots & 0 & 1 \end{bmatrix} egin{bmatrix} ec{x} \ 1 \end{bmatrix}$$

- Setting the last coordinate = 1 and the last row of the matrix to [0, ..., 0, 1] results in translation of the point \vec{x} (via addition of translation vector \vec{b})
- The matrix above is a linear map, but because it is one dimension higher, it does not have to move the origin in the (n+1)-dimensional space for translation

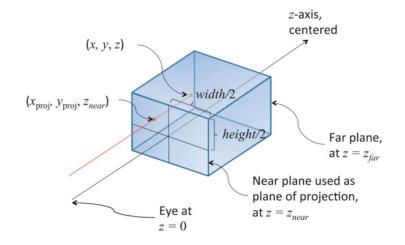
Homogeneous Coordinates (3)

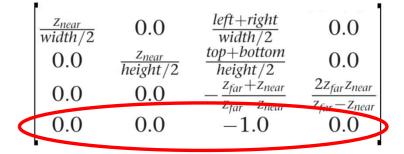
Examples of usage

Projection (e.g., OpenGL projection matrices)

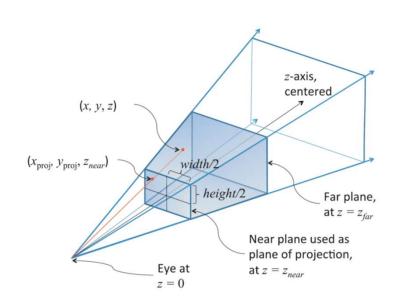


orthographic





perspective



Texture Mapping

```
2D (3D) Texture Space
         Texture Transformation
2D Object Parameters
         Parameterization
3D Object Space
         Model Transformation
3D World Space
         Viewing Transformation
3D Camera Space
                                             S
         Projection
                                     Y
2D Image Space
                                       X
```

Kurt Akeley, Pat Hanrahan

Texture Mapping Polygons

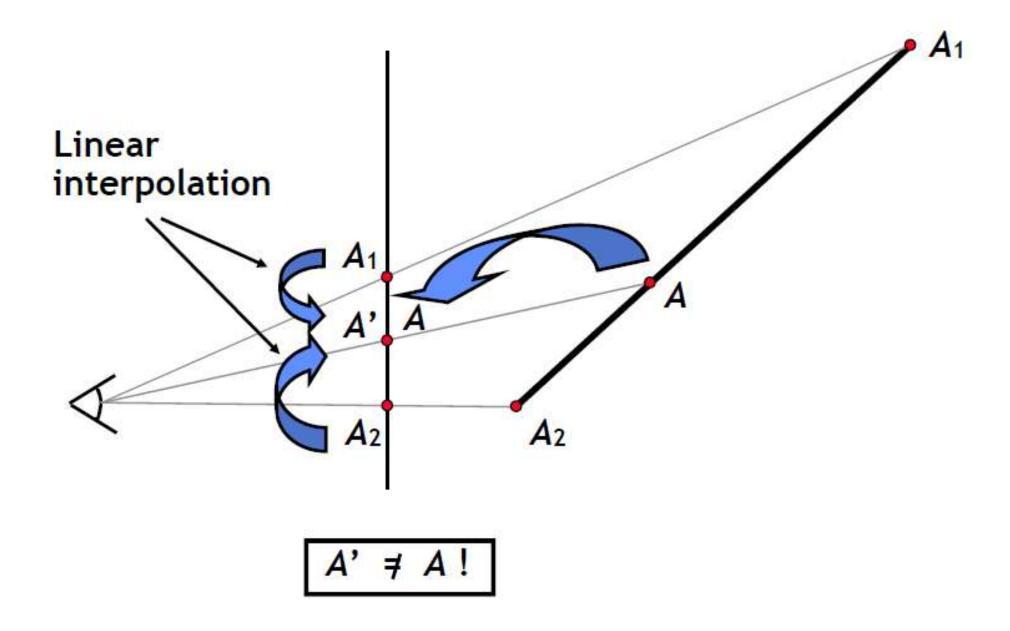
Forward transformation: linear projective map

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} s \\ t \\ r \end{bmatrix}$$

Backward transformation: linear projective map

$$\begin{bmatrix} s \\ t \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}^{-1} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Incorrect attribute interpolation



Linear interpolation

Compute intermediate attribute value

- Along a line: $A = aA_1 + bA_2$, a+b=1
- On a plane: $A = aA_1 + bA_2 + cA_3$, a+b+c=1

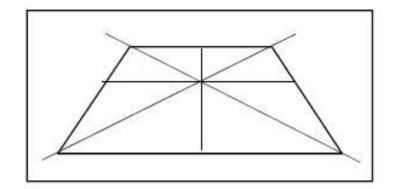
Only projected values interpolate linearly in screen space (straight lines project to straight lines)

- x and y are projected (divided by w)
- Attribute values are not naturally projected

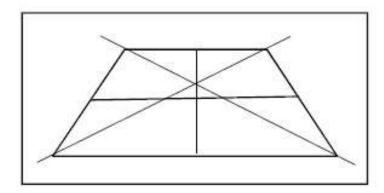
Choice for attribute interpolation in screen space

- Interpolate unprojected values
 - Cheap and easy to do, but gives wrong values
 - Sometimes OK for color, but
 - Never acceptable for texture coordinates
- Do it right

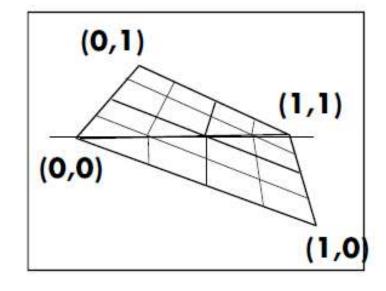
Linear Perspective



Correct Linear Perspective



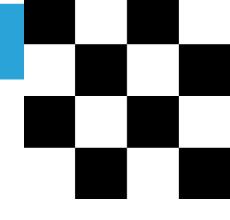
Incorrect Perspective



Linear Interpolation, Bad

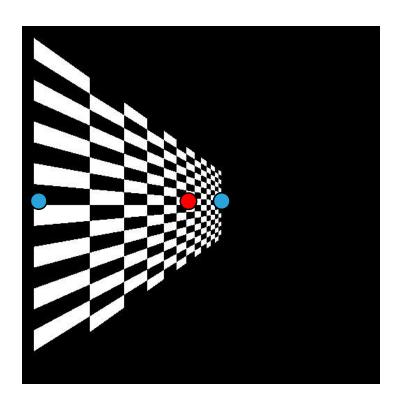
Perspective Interpolation, Good

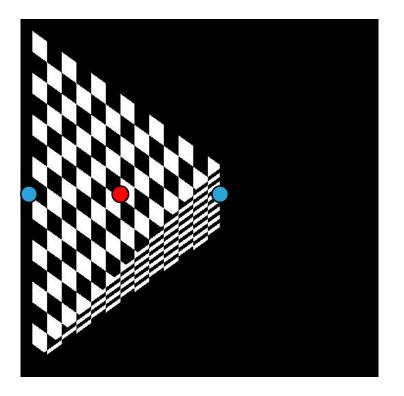
Perspective Texture Mapping



linear interpolation in object space

$$\frac{ax_1 + bx_2}{aw_1 + bw_2} \neq a\frac{x_1}{w_1} + b\frac{x_2}{w_2}$$
 linear interpolation in screen space





$$a = b_{19} = 0.5$$

Perspective-correct linear interpolation

Only projected values interpolate correctly, so project A

■ Linearly interpolate A_1/w_1 and A_2/w_2

Also interpolate $1/w_1$ and $1/w_2$

These also interpolate linearly in screen space

Divide interpolants at each sample point to recover A

- \blacksquare (A/w) / (1/w) = A
- Division is expensive (more than add or multiply), so
 - Recover w for the sample point (reciprocate), and
 - Multiply each projected attribute by w

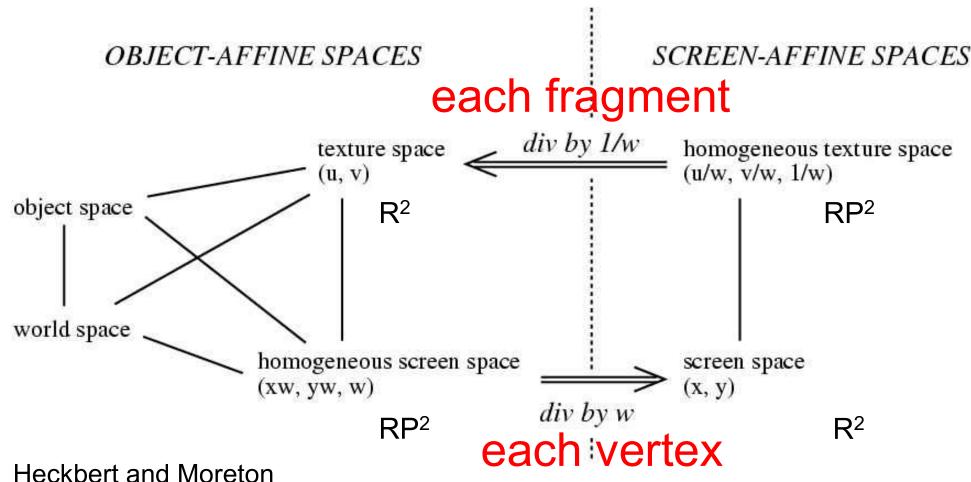
Barycentric triangle parameterization:

$$A = \frac{aA_1/w_1 + bA_2/w_2 + cA_3/w_3}{a/w_1 + b/w_2 + c/w_3}$$

$$a + b + c = 1$$

Perspective Texture Mapping

- Solution: interpolate (s/w, t/w, 1/w)
- (s/w) / (1/w) = s etc. at every fragment



Perspective-Correct Interpolation Recipe

$$r_i(x,y) = \frac{r_i(x,y)/w(x,y)}{1/w(x,y)}$$

- (1) Associate a record containing the n parameters of interest (r_1, r_2, \dots, r_n) with each vertex of the polygon.
- (2) For each vertex, transform object space coordinates to homogeneous screen space using 4×4 object to screen matrix, yielding the values (xw, yw, zw, w).
- (3) Clip the polygon against plane equations for each of the six sides of the viewing frustum, linearly interpolating all the parameters when new vertices are created.
- (4) At each vertex, divide the homogeneous screen coordinates, the parameters r_i , and the number 1 by w to construct the variable list $(x, y, z, s_1, s_2, \dots, s_{n+1})$, where $s_i = r_i/w$ for $i \leq n$, $s_{n+1} = 1/w$.
- (5) Scan convert in screen space by linear interpolation of all parameters, at each pixel computing $r_i = s_i/s_{n+1}$ for each of the *n* parameters; use these values for shading.

Heckbert and Moreton

Projective Map vs. Interpolation Recipe (1)

In general (see previous slides), we had the projective map:

Let's rename and rewrite this as:

$$\begin{bmatrix} s \\ t \\ q \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x_{world} \\ y_{world} \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \cdot w \\ y \cdot w \\ w \end{bmatrix}$$

Backward transformation: linear projective map

$$\begin{bmatrix} s \\ t \\ r \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}^{-1} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

For homogeneous points we can also divide by w:

Coordinates on the right become screen space coordinates!

$$\begin{bmatrix} s \\ t \\ q \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \cdot w \\ y \cdot w \\ w \end{bmatrix},$$
$$\begin{bmatrix} s/w \\ t/w \\ q/w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}.$$

Projective Map vs. Interpolation Recipe (2)

In general (see previous slides), we had the projective map:

Let's rename and rewrite this as:

$$\begin{bmatrix} s \\ t \\ q \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x_{world} \\ y_{world} \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \cdot w \\ y \cdot w \\ w \end{bmatrix}$$

Backward transformation: linear projective map

$$\begin{bmatrix} s \\ t \\ r \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}^{-1} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

For homogeneous points we can also divide by w:

Coordinates on the right become screen space coordinates!

$$\begin{bmatrix} s \\ t \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \cdot w \\ y \cdot w \\ w \end{bmatrix},$$

$$\begin{bmatrix} s/w \\ t/w \\ 1/w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}.$$
(special case $q = 1$)

Projective Map vs. Interpolation Recipe (3)

In general (see previous slides), we had the projective map:

Backward transformation: linear projective map

$$\begin{bmatrix} s \\ t \\ r \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}^{-1} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Now consider scanline interpolation:

(barycentric interpolation is linear along any line: here, horizontal line)

$$\begin{bmatrix} s/w \\ t/w \\ 1/w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x + \Delta x \\ y \\ 1 \end{bmatrix},$$

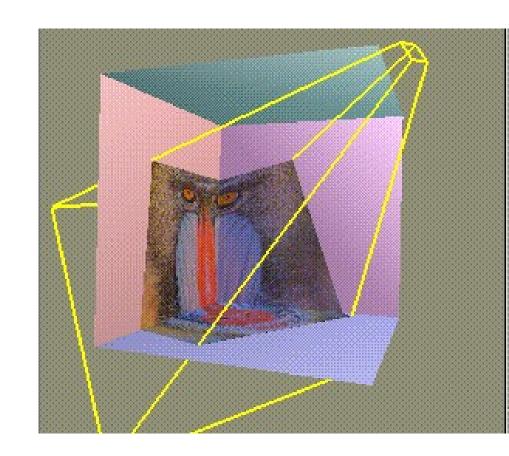
$$\begin{bmatrix} s/w \\ t/w \\ 1/w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} + \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} \Delta x \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} s/w \\ t/w \\ 1/w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} + \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} \Delta x \\ 0 \\ 0 \end{bmatrix} \qquad \Delta_x \begin{bmatrix} s/w \\ t/w \\ 1/w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} \Delta x \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} a \cdot \Delta x \\ d \cdot \Delta x \\ g \cdot \Delta x \end{bmatrix} = \begin{bmatrix} a \\ d \\ g \end{bmatrix}$$

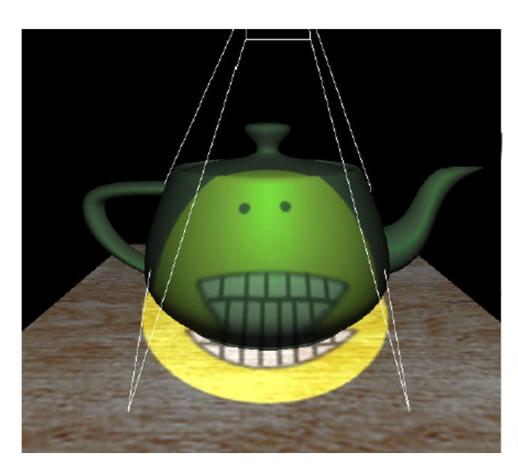
$$(\Delta x = 1)$$

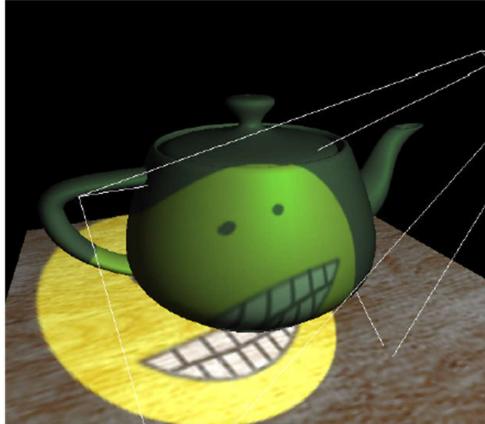
Projective Texture Mapping

- Want to simulate a beamer
 - or a flashlight, or a slide projector
- Precursor to shadows
- Interesting mathematics:2 perspectiveprojections involved!
- Easy to program!

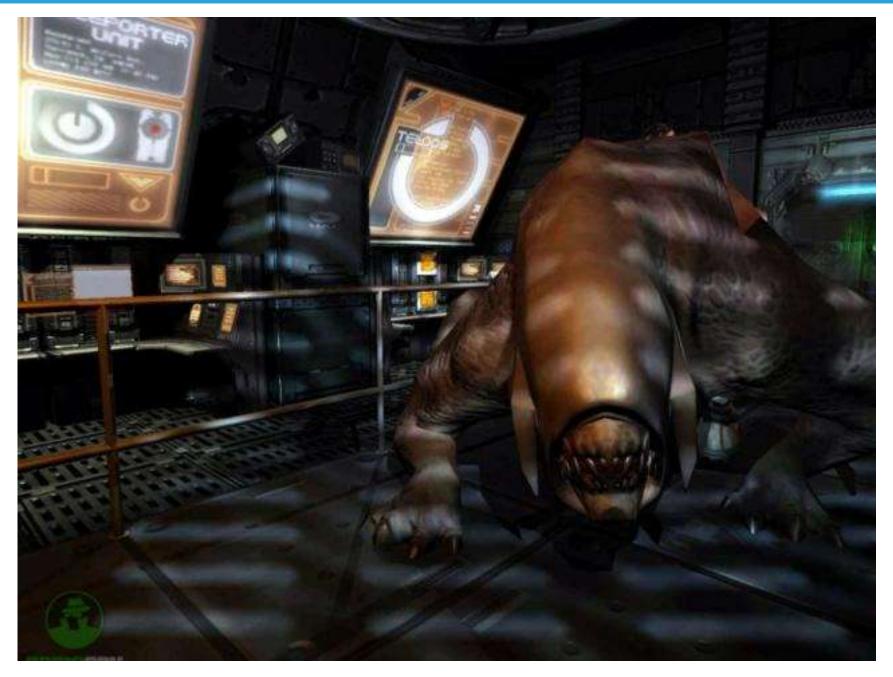


Projective Texture Mapping





Projective Shadows in Doom 3



Projective Texturing

- What about homogeneous texture coords?
- Need to do perspective divide also for projector!
 - \bullet (s, t, q) \rightarrow (s/q, t/q) for every fragment
- How does OpenGL do that?
 - Needs to be perspective correct as well!
 - Trick: interpolate (s/w, t/w, r/w, q/w)
 - (s/w) / (q/w) = s/q etc. at every fragment
- Remember: s,t,r,q are equivalent to x,y,z,w in projector space! → r/q = projector depth!

Multitexturing

- Apply multiple textures in one pass
- Integral part of programmable shading
 - e.g. diffuse texture map + gloss map
 - e.g. diffuse texture map + light map
- Performance issues
 - How many textures are free?
 - How many are available

Example: Light Mapping

- Used in virtually every commercial game
- Precalculate diffuse lighting on static objects
 - Only low resolution necessary
 - Diffuse lighting is view independent!
- Advantages:
 - No runtime lighting necessary
 - VERY fast!
 - Can take global effects (shadows, color bleeds) into account

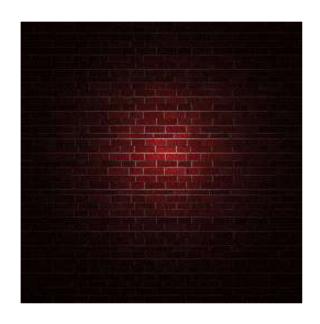
Light Mapping

Original LM texels

Bilinear Filtering

Light Mapping Issues

Why premultiplication is bad...



Full Size Texture (with Lightmap)

Tiled Surface Texture plus Lightmap

use tileable surface textures and low resolution lightmaps

Light Mapping

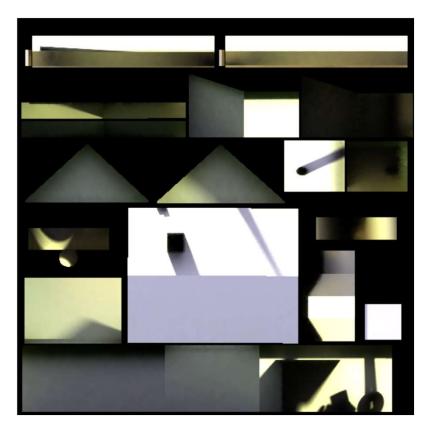
Original scene

Light-mapped

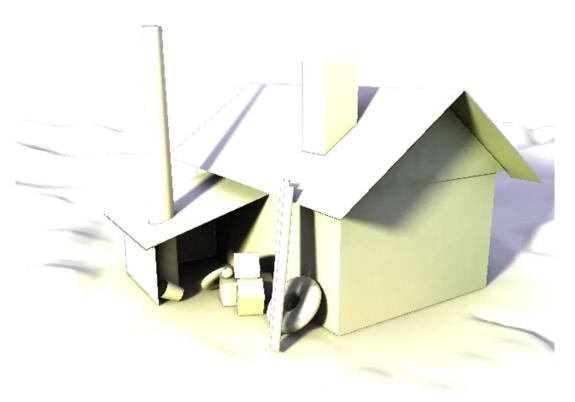
Example: Light Mapping

- Precomputation based on non-realtime methods
 - Radiosity
 - Ray tracing
 - Monte Carlo Integration
 - Path tracing
 - Photon mapping

Light Mapping



Lightmap



mapped

Light Mapping

Original scene

Light-mapped

