/‘_'\

" %:‘bd o hdUT chno Igy (_,), KAUST

CS 380 - GPU and GPGPU Programming
Lecture 19: GPU Parallel Prefix Sum, Pt. 2;
GPU Texturing, Pt. 1

Markus Hadwiger, KAUST |

Reading Assignment #11 (until Nov 17)

Read (required):

* Interpolation for Polygon Texture Mapping and Shading,
Paul Heckbert and Henry Moreton

https://www.ri.cmu.edu/publications/interpolation-for-polygon-texture-mapping-and-shading/

 Homogeneous Coordinates

https://en.wikipedia.org/wiki/Homogeneous coordinates

Read (optional; highly recommended!):

* MIP-Map Level Selection for Texture Mapping
https://ieeexplore.ieee.org/stamp/stamp. jsp?arnumber=765326

Next Lectures

Lecture 20: Thu, Nov 13

Lecture 21: Mon, Nov 17 (Quiz #2)
Lecture 22: Tue, Nov 18 (make-up lecture; 14:30 — 16:00, room 3131)
Lecture 23: Thu, Nov 20

Quiz #2: Oct 17

Organization
* First 30 min of lecture

* No material (book, notes, ...) allowed

Content of questions
* Lectures (both actual lectures and slides)
* Reading assignments
* Programming assignments (algorithms, methods)

« Solve short practical examples

GPU Parallel Prefix Sum

 Basic parallel programming primitive;
parallelize inherently sequential operations

Parallel Prefix Sum (Scan)

« Definition:
The all-prefix-sums operation takes a binary associative operator
@ with identity /, and an array of n elements
[ap, @, --s @p4]
and returns the ordered set
[/, ay, (2,® a,), ..., (a, D a,©D ... D a,,)].

« Example:
if @ is addition, then scan on the set

[3170416 3]
returns the set
[03411111516 2

(From Blelloch, 1990, “Prefix
Sums and Their Applications)

Parallel08 — Control Flow

Work Efficiency

Guy E. Blelloch and Bruce M. Maggs:
Parallel Algorithms, 2004 (https://www.cs.cmu.edu/~guyb/papers/BMo4.pdf)

In designing a parallel algorithm, it is more important to make it efficient than to make it
asymptotically fast. The efficiency of an algorithm is determined by the total number of
operations, or work that it performs. On a sequential machine, an algorithm's work is the
same as its time. On a parallel machine, the work is simply the processor-time product.
Hence, an algorithm that takes time t on a P-processor machine performs work W = Pt. In
either case, the work roughly captures the actual cost to perform the computation, assuming
that the cost of a parallel machine is proportional to the number of processors in the
machine.

We call an algorithm work-efficient (or just efficient) if it performs the same amount of
work, to within a constant factor, as the fastest known sequential algorithm.

For example, a parallel algorithm that sorts n keys in O(sqrt(n) log(n)) time using sqgqrt(n)
processors is efficient since the work, O(n log(n)), is as good as any (comparison-based)
sequential algorithm.

However, a sorting algorithm that runs in O(log(n)) time using n”?2 processors is not
efficient.

The first algorithm is better than the second - even though it is slower - because its work,
or cost, is smaller. Of course, given two parallel algorithms that perform the same amount of
work, the faster one is generally better.

Vector Reduction

Array elements ——

VARV EVERVERVERV
or] 2 e 6]]

T
x:

iterations

IIIIIIIIIIIIIIIIIIIIII

Typical Parallel Programming Pattern

* log(n) steps

v
iterations -

Helpful fact for counting nodes of full binary trees:
If there are N leaf nodes, there will be N-1 non-leaf nodes

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Courtesy John Owens

Kogge-Stone Scan

Circuit family

A Parallel Algorithm for the Efficient Solution of a General Class of
Recurrence Equations, Kogge and Stone, 1973

See “carry lookahead” adders vs. “ripple carry” adders

O(n log n) Scan

a=

a=

1

2

d=3

Courtesy John Owens

Xo

X1

X2

X3

X4

X5

X6

X7

B B e e e e R

2(Xo..X)

2(X..X1)

2(X1..X2)

2(Xz..X3)

2(X3..Xy)

2(X4..Xs)

¥(Xs..X6)

¥(X¢..X7)

2(Xq..X0)

2(Xp..X1)

2(Xq..X2)

Z(Xo..X3)

2(X1..Xy)

2(X3..X5)

2(X3..X6)

2(X4..X7)

Ha

Z(Xo. .X())

Z(Xo..Xl)

Z(Xo. .Xz)

Z(Xo..Xg)

Z(Xo. .X4)

Z(Xo..X5)

Z(Xo. .X6)

Z(Xo. .X7)

e Step efficient (log n steps)
e Not work efficient (n log n work)
¢ Requires barriers at each step (WAR dependencies)

Courtesy John Owens
Hillis-Steele Scan Implementation

No WAR conflicts, O(2N) storage

\

€

-
3

& (&)

H
;“\' m

A First-Attempt Parallel Scan
Algorithm

1 6 3 1. Read input from

~ N device memory to
\\\\\N\\ shared memory. Set
0 4 1 6 first element to zero
and shift others right

by one.

Each thread reads one value from the input
array in device memory into shared memory array TO.
Thread O writes 0 into shared memory array.

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

A First-Attempt Parallel Scan

Algorithm

ol In| 3 | 1

7

0

6

3

\\\\\\\\

1.

2.

(previous slide)

Iterate log(n)

times: Threads stride
to n: Add pairs of
elements stride
elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

TO [O 3 1
Stride 1 l\n \->@\>.
T1 0
lteration #1 » Active threads: stride to n-1 (n-stride threads)
Setr?“ dlon_ 1 » Thread j adds elements j and j-stride from TO and
ride = writes result into shared memory buffer T1 (ping-pong)

Parallel08 — Control Flow

Hendrik Lensch and Robert Strzodka

A First-Attempt Parallel Scan

Algorithm

In 3

1 7

0

6

3

T0

1

O\B\\\\\\\

6

Stride 1

!

\)@\).\,.\,@

T1

Stride 2

T0| O

lteration #2
Stride =2

. Read input from

device memory to
shared memory. Set
first element to zero
and shift others right
by one.

. Iterate log(n)

times: Threads stride
to n: Add pairs of
elements stride
elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

Parallel08 — Control Flow

Hendrik Lensch and Robert Strzodka

A First-Attempt Parallel Scan
Algorithm

In 3 1 7 0 6 3 1. Read input from
0 device memory to
\\\ \\\\\ shared memory. Set
TO 1 6 first element to zero
and shift others right

Stride 1 M\@\)@\)@\».\)@\)@ by one.

T1 O j 2. lterate log(n)
Vv times: Threads stride

Stride 2 to n: Add pairs of
TO| O 3 4 11111112112 | 1 elements stride
 — < elements apart.
Stride 4 — XD @ & Double stride at each
Y ¥ —T— e iteration. (note must
M| 0|3 |4 111 ol Bl K double buffer shared
mem arrays)
lteration #3
Stride = 4

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

A First-Attempt Parallel Scan

Algorithm

0 In | 3 1 7 0 4 1 6 3
TO 1 7 0 4l 1 6
Stride 1 \)é\é\)@\)é
T1
Stride 2
TO| O 3 4l
Stride 4 —— D O—>F
\ 2 /
T | 0 3 4 |11 |11 (15| 16 | 22
R A AR
Out| 0 3 4 |11 |11 (15| 16 | 22

. Read input from

device memory to
shared memory. Set
first element to zero
and shift others right
by one.

. Iterate log(n)

times: Threads stride
to n: Add pairs of
elements stride
elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

. Write output to device

memory.

Parallel08 — Control Flow

Hendrik Lensch and Robert Strzodka

Work Efficiency Considerations

« The first-attempt Scan executes log(n) parallel
iterations

— Total adds: n * (log(n) — 1) + 1 > O(n*log(n)) work

« This scan algorithm is not very work efficient
— Sequential scan algorithm does n adds
— A factor of log(n) hurts: 20x for 10*6 elements!

A parallel algorithm can be slow when execution
resources are saturated due to low work efficiency

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Balanced Trees

« Forimproving efficiency
« A common parallel algorithm pattern:

— Build a balanced binary tree on the input data and sweep it to and from the

root
— Tree is not an actual data structure, but a concept to determine what each

thread does at each step

« For scan:
— Traverse down from leaves to root building partial sums at internal nodes
in the tree
* Root holds sum of all leaves
— Traverse back up the tree building the scan from the partial sums

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Typical Parallel Programming Pattern

« 2 log(n) steps

log(n)

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Typical Parallel Programming Pattern

« 2 log(n) steps

I I I
| 1]
]
N

‘NN NN

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Courtesy John Owens
Brent Kung Scan

Circuit family

XYoo X X X X X5 X X, X Xy X Xy Xy Xy Xy X5

N Y

Y
Upsweep phase

N NN
N |
\

NREAN

NNN NN

XoXp ... XoiXz XoiXy XoXe XoiXg XoiXp XoiX12 P <
XpiXy XX XpXs XpiX5 XpiXo Xo:¥y Xo-¥13 XpiXys

§ /
Y
Downsweep phase

A Regular Layout for Parallel Adders, Brent and Kung, 1982

O(n) Scan [Blelloch] “*m

X0 |Zex)| %2 |ZGox)| x4 |EEexs)| %6 | E(xe.x7)
d=2 /T
% |Zex)| x |Zeo.x)| x| S(exs)| Z(X;..XT)
d=1 /7 /'T
X0 |Exex)| % Z(x;..xs) X, |TEex)| z(x;..x7)
d=0 /T /T /T /T
% N Xz “ 5o | x w |
%o |ZGox)| % |Exexs)| x |ZGexs)| x| Ee.xs)
|
Z$O
Xo | S(xo.%1)
d=0
e
d=1 N

* Work efficient (O(n) work) W | 0
. d=2 / / /
® Bank conflicts, and lots of ‘em e == = e
0 X 2% %) | B(Xp..X2) | 2(Xg. X3) | 2(Xg.. %y) | Z(Xg.. %5) | 2(Xg..Xe)

Build the Sum Tree

Assume array is already in shared memory

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Build the Sum Tree

Stride \‘ \‘ \>‘ \; Iteration 1, n/2 threads

lterate log(n) times. Each thread adds value stride /2 elements away to its own value.

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Build the Sum Tree

ride \5 \)‘ \>$ \é

ide 4 \>O \>é eration 2, n/4 threads

rl

11 14

lterate log(n) times. Each thread adds value stride /2 elements away to its own value.

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Build the Sum Tree

T | 3
Stride 2
T | 3
Stride 4
T | 3
Stride 8 Iteration log(n), 1 thread
T | 3

lterate log(n) times. Each thread adds value stride /2 elements away to its own vaIL'Je.

Note that this algorithm operates in-place: no need for double buffering

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Down-Sweep Variant 1: Exclusive Scan

We now have an array of partial sums. Since this is an exclusive scan,
set the last element to zero. It will propagate back to the first element.

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Build Scan From Partial Sums

T | 3

4

7

11

4

5

6

0

Parallel08 — Control Flow

Hendrik Lensch and Robert Strzodka

Build Scan From Partial Sums

Iteration 1
1 thread

Stride 8

Iterate log(n) times. Each thread adds value stride /2 elements away to its own value.
and sets the value stride elements away to its own previous value.

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Build Scan From Partial Sums

ride 8

Iteration 2
2 threads

ride 4

Iterate log(n) times. Each thread adds value stride /2 elements away to its own value.
and sets the value stride /2 elements away to its own previous value.

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Build Scan From Partial Sums

T |3 | 4
Stride 8
T |3 | 4
Stride 4
T 3 0
Stride 1 ~ Ite;?zti;)hr: ;c;g(sn)
T|]0]| 3

Done! We now have a completed scan that we can write out to device memory.

Total steps: 2 * log(n).
Total work: 2 * (n-1) adds = O(n) Work Efficient!

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Down-Sweep Variant 2: Inlusive Scan

25

We now have an array of partial sums. Let’s propagate the sums back.

Parallel08 — Control Flow

Hendrik Lensch and Robert Strzodka

Build Scan From Partial Sums

11

Stride 8 —>§ no operation

11

Iterate log(n) times. Each thread adds value stride /2 elements away to its own value.
First element adds zero.

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Build Scan From Partial Sums

11
ride 8 —>?
4 11 5
V¥ 7 -
) Iteration 2
Stride 4 ? ? 2 threads
4 6

lterate log(n) times. Each thread adds value stride /2 elements away to its own value.
First element adds zero.

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Build Scan From Partial Sums

T|3 | 4|7 |11 4|5 | 6 |25

Stride 8
L 25
Stride
! 25
Stride Ite’|;72t|;)hnr:;ggn)
- 25

Done! We now have a completed scan that we can write out to device memory.

Total steps: 2 * log(n).
Total work: <2 *(n-1) adds = O(n) Work Efficient!

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Summary

« Parallel Programming requires careful planning
— of the branching behavior
— of the memory access patterns
— of the work efficiency

* Vector Reduction
— branch efficient
— bank efficient

« Scan Algorithm
— based in Balanced Tree principle:
bottom up, top down traversal

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Bank Conflicts in Scan
- Non-power-of-two -

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Initial Bank Conflicts on Load

« Each thread loads two shared mem data elements

 Tempting to interleave the loads
temp[2*thid] = g 1datal[2*thid];
temp[2*thid+1l] = g idatal[Z*thid+1];

* Threads:(0,1,2,...,8,9,10,...)>banks:(0,2,4,...,0,2,4,...)

« Better to load one element from each half of the array
temp[thid] = g idatalthid];
temp[thid + (n/2)] = g 1datal[thid + (n/2)];

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Bank Conflicts in the tree algorithm

« When we build the sums, each thread reads two shared
memory locations and writes one:

« Th(0,8) access bank 0 with 32 banks: Th(0,16) access ban

111213 |14 | 15 1 2 | ..

(X
w
5
o
o
~
o0
w0
—
o
—

Bank: 1

with 32 banks:
...access each of 16 banks

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

thm

the tree algori

IN

ICtS |

Bank Confl

tes one:

d wr
Th(1,9) access bank 2, etc.

When we build the sums, each thread reads two shared

memory locations an

Th(1,17) access bank 2

th 32 banks:

WI

0

15

0

14

16

13

14

12

13

11

12

10

11

9

10

9

8

1

0

3|11(7|/0{4(1|16[3(5|8(2|0(3(3|1(9(4|5|7

hAAEAEAEREALEALE

Bank

314(7|7|14,5|6(9|5(13/2|2(3|6|1(10|14 |97

th 32 banks
...access each of 16 banks

gHEEEE
&

OGa:
R
i i
ey & b T

b, K

g

SO

g
G
e R
G
2 8 B

G888 ooaae:
s e
i

Eesns

s
s
o B
Y

G
R
i 2
o
S I
Erirbr:
e
B
LR

Hendrik Lensch and Robert Strzodka

Parallel08 — Control Flow

thm

the tree algori

ICtS In

Bank Confl

2nd jteration

for example

even worse

H

ts

4-way bank conflic

etc.

H

access Bank 5

!13)
with 32 banks again same concept,

2

H

5

!

(1

Th

]

Th(0,4,8,12) access bank 1

but different numbers

0

15

0

14

16

13

14

12

13

11

12

10

11

9

10

9

8

314(7|4|14|5|6(9|5(13|/2|2(3|6|1(1014(9|7

SR

Bank

314(7|11|145|6(14|5(13|/2|15(3|6|1(16|/4 |9 |7

;

3‘3:2‘

.03132

HEEM

Siiipg
5

g
M
BRages
il

R

th 32 banks
...access each of 8 banks

WI

Ji:
o

ora e o]

Hendrik Lensch and Robert Strzodka

Parallel08 — Control Flow

« A full binary tree with 64 leaf nodes:

Scan Bank Conflicts (1)

Scale (s) Thread addresses
1 o[2T4]6[8[10]12]14]16]18]20]22]24] 262830 32]34[36]38[40]42[44]46]48[50]52] 545658 6062]
2 O[4]8|12|16]120]24(28(32|36(40]|44]48]52|56(60
4 0|8 |16]24|32]140]|48(36
8 0([16]32]48
16 0|32
32 0
Conflicts | Banks
2way |02 [4]6 1012 THE 10 B HEEE HBEFE BEERE EiE
4way [0[32 12104 12014 4
4-way 0 0 0 0
4-way 0|0]0]O0
2-way 00
None 0

« Multiple 2-and 4-way bank conflicts

« Shared memory cost for whole tree
1 32-thread warp = 6 cycles per thread w/o conflicts
Counting 2 shared mem reads and one write (s[a] += s[b])

6 * (2+4+4+4+2+1) = 102 cycles

36 cycles if there were no bank conflicts (6 * 6)

Parallel08 — Control Flow

Hendrik Lensch and Robert Strzodka

Scan Bank Conflicts (2)

+ It’s much worse with bigger trees!

« A full binary tree with 128 leaf nodes
— Only the last 6 iterations shown (root and 5 levels below)

Scale (s) Thread addresses

2 0 [4]8]12]16]20]24]28]32]36]40]44]48]52] 56| 60| 64]68] 72| 76]B80] 84]88] 92 | 96 |100]104[108]112]116]120]122]
4 0 | 8 [16]24[32[40[48] 56| 64| 72| 80| 88 96 [104]112[120

8 0 [16]32[48[64[80] 96112

16 0 [32]64] 9%

32 0 |64

64 0

Conflicts Banks

4way [0 [4 2] 0 8 2] 04 2] 04 2] 04 2] 0 4 Bl 2] 0 [4 8l 2] 0 [4 el 10]
8-way 0 [O | 0 0 0 [O |8 O R8N O |

gway [0 |0[0|0[0]J0[D0]O

d-way 0l0jJ0]0O

2-way g]0

None 0

« Cost for whole tree:
— 12%2 + 6*(4+8+8+4+2+1) = 186 cycles
— 48 cycles if there were no bank conflicts! 12*1 + (6*6)

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Bank Conflicts in the tree algorithm

« We can use padding to prevent bank conflicts
— Just add a word of padding every 16 words:

« No more conflicts! 32 for full warps!

9 (10|11 |12 |13 |14 | 15 1121]3]..
82(0(3(3(1 9.4 5(7|...
\x AR

0 1 2 3 4 5 6 7 10 | 11| 12 13 14 15 1 2 3 | ..
3(a|7|7|4|5|6|9]5(13]2]2(3|6|1|10pM4]9]7]..

Now, within a 16-thread half-warp, all threads access different banks.

32-thread full warp!
(Note that only arrows with the same color happen simultaneously.)

Bank:

o
—
(X
w
5
o
o
~
o0

w
-
~l
=
o
—
»
w

~J
)

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Use Padding to Reduce Conflicts

« This is a simple modification to the last exercise

« After you compute a shared mem address like this:
Address = stride * thid;

« Add padding like this:

Address += (Address >> 4); // divide by NUM BANKS
>> 5 on current GPUs

« This removes most bank conflicts
— Not all, in the case of deep trees

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Fixing Scan Bank Conflicts

« Insert padding every NUM_BANKS elements

const int LOG NUM BANKS = 4; // 16 banks (32 banks on current GPUs)
int tid = threadIdx.x; 5 on current GPUs
int s = 1;
// Traversal from leaves up to root
for (d = n>>1; 4 > 0; d >>= 1)
{
if (thid <= d)
{
int a = s*¥(2*¥tid); int b = s* (2*tid+1)
a += (a >> LOG NUM BANKS); // insert pad word
b += (b >> LOG NUM BANKS); // insert pad word
shared[a] += shared[b]:;

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Fixing Scan Bank Conflicts

« A full binary tree with 64 leaf nodes

Leaf Nodes Scale (s) Thread addresses

64 1 ol2[4afe]af10[12]1417[18]21[23]25[27[25]31[34|36]|38]40[42]44]|46]48[51]|53]55]57]|59]61]63]

2 0148 12|17|21]|25]|29]|34|38|42|46]51|55(|59(63

4 08 |17]125]134|42]|51]| 5%

8 0 117]34] 51

16 [0 [34)= Padding inserted
32 0

Conflicts Banks

None

None

None

None

None

None

« No more bank conflicts!
— However, there are ~8 cycles overhead for addressing
+ Foreach s[a] += s[b] (8 cycles/iter. * 6 iter. = 48 extra cycles)
— Sojust barely worth the overhead on a small tree
+ 84 cycles vs. 102 with conflicts vs. 36 optimal

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Fixing Scan Bank Conflicts

A full binary tree with 128 leaf nodes
— Only the last 6 iterations shown (root and 5 levels below)

Scale (s) Thread addresses

2 [o[aJ s8] 12Ta7[21] 25| 29 [34]38]42]46] 51 55 [59 [63 [68] 72]76[80]85]39] 93[97[102] 106] 110] 114]118] 123] 127[131]
4 o] 8|47] 25 [34] 42|51 59 |68]76]85] 93] 102] 110[118] 127
8 |o[17]34] 51 [e8]85] 102|119
16 |0]34]68] 102
32 [ofes []= Padding inserted
64 |0]
Conflicts Banks
None [0]4 A HE 2610%3 12[o[5]oJiS] 6 [10]14] 2
None [0 9 |2[10] 3 4[12] 5 6
None |O 2] 314]|5] 6
None |0l 2| 4] 6
None |0] 4
None |0|

« No more bank conflicts!
— Significant performance win:
+ 106 cycles vs. 186 with bank conflicts vs. 48 optimal

ParallelO

8 — Control Flow

Hendrik Lensch and Robert Strzodka

Fixing Scan Bank Conflicts

« A full binary tree with 512 leaf nodes
— Only the last 6 iterations shown (root and 5 levels below)

Scale (s) Thread addresses

8 [o[17]34]51]68] 85 [102[119]136]153[170]187[204[221] 238 [255] 272 [289 [306 [323 [340[357 [374] 391 [408 [425[442 [459 476 [483 [510 527 |
16 [o] 34 [68 [102[136] 170|204 | 238 | 272|306 | 340|374 | 408 [442|476 | 510
32 [o] 68136204272 340(408] 476
64 [0[136]272]408
128 |o|272 = Padding inserted
256 [0
Conflicts |Banks
None [0 6 9 [10 2 14]96] 0 Il 23 4] 56 [l s [1o a2 sy 14 [15]
2-way |0 21140 2[4a] 6 10 [F2Y 14
2-way |0 12
2-way |0
2-way |0
MNone E

 Wait, we still have bank conflicts
— Method is not foolproof, but still much improved
— 304 cycles vs. 570 with bank conflicts vs. 120 optimal

« But it does not pay off to optimize for the rest. Address
calculations are getting too expensive

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Summary

« Parallel Programming requires careful planning
— of the branching behavior
— of the memory access patterns
— of the work efficiency

* Vector Reduction
— branch efficient
— bank efficient

« Scan Algorithm
— based in Balanced Tree principle:
bottom up, top down traversal

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

GPU Texturing

GPU Texturing >~

Rage / id Tech 5 (id Software)

53

Why Texturing?

» ldea: enhance visual appearance of surfaces by
applying fine / high-resolution details

Vienna University of Technology

OpenGL Texture Mapping

Basis for most real-time rendering effects
= Look and feel of a surface
m Definition:

m A reqularly sampled function that is mapped onto
every fragment of a surface

= Traditionally an image, but...
= Can hold arbitrary information
m Textures become general data structures
m Sampled and interpreted by fragment programs
m Can render into textures - important!

#

Vienna University of Technology 55

Types of Textures

= Spatial layout
m Cartesian grids: 1D, 2D
m Cube maps, ...

= Formats (too many), e.g. OpenGL

, 3D, 2D_ARRAY, ...

for Vulkan, see vkImageView

= GL LUMINANCE16_ALPHA16
GL _RGB8, GL _RGBAS, ...: integer texture formats

N
» GL RGB16F, GL RGB
m compressed formats, hi

A32F, ...: float texture formats
gh dynamic range formats, ...

m External (CPU) format vs. internal (GPU) format

m OpenGL driver converts from external to internal

for Vulkan, see vkimage
and vkImageView

use VK_IMAGE_TILING OPTIMAL
for VkImageCreateInfo::tiling

Vienna University of Technology

56

Texturing: General Approach

yTeers

Texture space (u,v) Object space (xy,Y0,20) Image Space (x,y)

Eduard Groller, Stefan Jeschke 57

Texture Mapping

2D (3D) Texture Space

|'I'exture Transformation
2D Object Parameters

Parameterization
3D Object Space

Model Transformation
3D World Space

[Viewing Transformation
3D Camera Space

Projection

2D Image Space

Y

Kurt Akeley, Pat Hanrahan

