
CS 380 - GPU and GPGPU Programming
Lecture 19: GPU Parallel Prefix Sum, Pt. 2;

GPU Texturing, Pt. 1

Markus Hadwiger, KAUST

2

Reading Assignment #11 (until Nov 17)

Read (required):

• Interpolation for Polygon Texture Mapping and Shading,
Paul Heckbert and Henry Moreton
https://www.ri.cmu.edu/publications/interpolation-for-polygon-texture-mapping-and-shading/

• Homogeneous Coordinates
https://en.wikipedia.org/wiki/Homogeneous_coordinates

Read (optional; highly recommended!):

• MIP-Map Level Selection for Texture Mapping
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=765326

3

Next Lectures

Lecture 20: Thu, Nov 13

Lecture 21: Mon, Nov 17 (Quiz #2)

Lecture 22: Tue, Nov 18 (make-up lecture; 14:30 – 16:00, room 3131)

Lecture 23: Thu, Nov 20

4

Quiz #2: Oct 17

Organization

• First 30 min of lecture

• No material (book, notes, ...) allowed

Content of questions

• Lectures (both actual lectures and slides)

• Reading assignments

• Programming assignments (algorithms, methods)

• Solve short practical examples

GPU Parallel Prefix SumGPU Parallel Prefix Sum

• Basic parallel programming primitive;
parallelize inherently sequential operations

7

Work Efficiency

Guy E. Blelloch and Bruce M. Maggs:
Parallel Algorithms, 2004 (https://www.cs.cmu.edu/~guyb/papers/BM04.pdf)

In designing a parallel algorithm, it is more important to make it efficient than to make it
asymptotically fast. The efficiency of an algorithm is determined by the total number of
operations, or work that it performs. On a sequential machine, an algorithm's work is the
same as its time. On a parallel machine, the work is simply the processor-time product.
Hence, an algorithm that takes time t on a P-processor machine performs work W = Pt. In
either case, the work roughly captures the actual cost to perform the computation, assuming
that the cost of a parallel machine is proportional to the number of processors in the
machine.

We call an algorithm work-efficient (or just efficient) if it performs the same amount of
work, to within a constant factor, as the fastest known sequential algorithm.

For example, a parallel algorithm that sorts n keys in O(sqrt(n) log(n)) time using sqrt(n)
processors is efficient since the work, O(n log(n)), is as good as any (comparison-based)
sequential algorithm.

However, a sorting algorithm that runs in O(log(n)) time using n^2 processors is not
efficient.

The first algorithm is better than the second - even though it is slower - because its work,
or cost, is smaller. Of course, given two parallel algorithms that perform the same amount of
work, the faster one is generally better.

Helpful fact for counting nodes of full binary trees:
If there are N leaf nodes, there will be N-1 non-leaf nodes

A Parallel Algorithm for the Efficient Solution of a General Class of
Recurrence Equations, Kogge and Stone, 1973

See “carry lookahead” adders vs. “ripple carry” adders

Courtesy John Owens

Courtesy John Owens

Courtesy John Owens

Stride 4

Stride 4

A Regular Layout for Parallel Adders, Brent and Kung, 1982

Courtesy John Owens

Courtesy John Owens

/ 2

/ 2

/ 2

Down-Sweep Variant 1: Exclusive Scan

/ 2

/ 2
/ 2

Down-Sweep Variant 2: Inlusive Scan

/ 2

/ 2

with 32 banks:
…access each of 16 banks

with 32 banks: Th(0,16) access bank 0

with 32 banks: Th(1,17) access bank 2

with 32 banks:
…access each of 16 banks

with 32 banks:
…access each of 8 banks

with 32 banks again same concept,
but different numbers

32 for full warps!

32-thread full warp!

Use Padding to Reduce Conflicts

>> 5 on current GPUs

5 on current GPUs
(32 banks on current GPUs)

GPU TexturingGPU Texturing

53

GPU Texturing

Rage / id Tech 5 (id Software)

54

Why Texturing?

Idea: enhance visual appearance of surfaces by
applying fine / high-resolution details

Vienna University of Technology

Vienna University of Technology 55

OpenGL Texture Mapping

Basis for most real-time rendering effects

Look and feel of a surface

Definition:

A regularly sampled function that is mapped onto
every fragment of a surface

Traditionally an image, but…

Can hold arbitrary information

Textures become general data structures

Sampled and interpreted by fragment programs

Can render into textures  important!

Vienna University of Technology 56

Types of Textures

Spatial layout

Cartesian grids: 1D, 2D, 3D, 2D_ARRAY, …

Cube maps, …

Formats (too many), e.g. OpenGL

GL_LUMINANCE16_ALPHA16

GL_RGB8, GL_RGBA8, …: integer texture formats

GL_RGB16F, GL_RGBA32F, …: float texture formats

compressed formats, high dynamic range formats, …

External (CPU) format vs. internal (GPU) format
OpenGL driver converts from external to internal

for Vulkan, see vkImageView

for Vulkan, see vkImage
and vkImageView

use VK_IMAGE_TILING_OPTIMAL
for VkImageCreateInfo::tiling

Eduard Gröller, Stefan Jeschke 57

Texturing: General Approach

Texture space (u,v) Object space (xO,yO,zO) Image Space (xI,yI)

Parametrization Rendering
(Projection etc.)

Texels

58

Perspective Projection

Thank you.

