/‘_'\

" %:‘bd o hdUT chno Igy (_,), KAUST

CS 380 - GPU and GPGPU Programming
Lecture 18: Shuffle Instructions, Pt. 2;
GPU Parallel Prefix Sum, Pt. 1

Markus Hadwiger, KAUST |

Reading Assignment #11 (until Nov 17)

Read (required):

* Interpolation for Polygon Texture Mapping and Shading,
Paul Heckbert and Henry Moreton

https://www.ri.cmu.edu/publications/interpolation-for-polygon-texture-mapping-and-shading/

 Homogeneous Coordinates

https://en.wikipedia.org/wiki/Homogeneous coordinates

Read (optional; highly recommended!):

* MIP-Map Level Selection for Texture Mapping
https://ieeexplore.ieee.org/stamp/stamp. jsp?arnumber=765326

Next Lectures

Lecture 18: Mon, Nov 10
Lecture 19: Tue, Nov 11 (make-up lecture; 14:30 — 16:00, room 3131)
Lecture 20: Thu, Nov 13

Lecture 21: Mon, Nov 17 (Quiz #2)
Lecture 22: Tue, Nov 18 (make-up lecture ; 14:30 — 16:00, room 3131)
Lecture 23: Thu, Nov 20

Quiz #2: Oct 17

Organization
* First 30 min of lecture

* No material (book, notes, ...) allowed

Content of questions
* Lectures (both actual lectures and slides)
* Reading assignments
* Programming assignments (algorithms, methods)

« Solve short practical examples

Shuffle: Tips and Tricks

Julien Demouth, NVIDIA

Glossary

= Warp

— tmplicitly-synchrenized group of threads (32 on current HW)

= Warp ID (warpid)
— |ldentifier of the warp in a block: threadidx.x / 32

= Lane ID (1aneid)
— Coordinate of the thread in a warp: threadidx.x % 32

— Special register (available from PTX): %¥1aneid

Shuffle (SHFL)

» [nstruction to exchange data in a warp

* Threads can “read” other threads’ registers

« " No shared memory is needed

= |t is available starting from SM 3.0

Variants

» 4 variants (idx, up, down, bfly):

alblcidle|flglh]|
/ T~
shil.idx shflLup shfl.down shil.bfly

“ 4 \ —~

,
€ifiaglh

h[a[f[elalclc]b alhlalblclalelf c[alalble[nlelt

Indexed Shift right to nt Shift left to n" Butterfly (XOR)
any-to-any neighbour neighbour exchange

Instruction (PTX)

Optional dst. predicate Lane/offset/mask

shfl.mode.b32 d[|p]l, a, b, c;

Dst. register Src. register Bound

Performance Experiment

= One element per thread

thread: FON N1 EZN B30 F48 58 S68 870 B8 FO8 N0 (11 f121 L3) 15 |

< " Each thread takes its right neighbor

-
-
= thread: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 .

Performance Experiment

= We run the following test on a K20

T X = input[tidx];

for(int 1 =0 ; 1 < 4096 ; ++1)
X = get_right_neighbor(x);

output[tidx] = x;

. " We launch 26 blocks of 1024 threads

— On K20, we have 13 SMs
— We need 2048 threads per SM to have 100% of occupancy

i " We time different variants of that kernel

Performance Experiment

» Shared memory (SMEM)

smem[threadIdx.x] = smem[32*warpid + ((laneid+1l) % 32)];

__syncthreads();

= Shuffle (SHFL)

X = __shfl(x, (laneid+1l) % 32);

= Shared memory without __syncthreads + volatile (unsafe)

__shared__ volatile T *smem = ...;

smem[threadIdx.x] = smem[32*%warpid + ((laneid+1) % 32)];

Performance Experiment (fp32)

1.4
1.8
1
0.8
4
> _ 0.6
S
::/ 0.4
'sq/ Fe 0.2
s
et °

Execution Time (ms)

EM (unsafe) SHFL

.

4.5 -

SMEM per Block (KB)

SMEM (unsafe) SHFL

Performance Experiment

= Always faster than shared memory

* Much safer than using no __syncthreads (and volatile)

— And never slower

= Does not require shared memory

— Useful when occupancy is limited by SMEM usage

Broadcast

= All threads read from a single lane

x = _shfl{x, 0); // All the threads read x from laneid O.

* More complex example

// All threads evaluate a predicate.
int predicate = ...;

- . // All threads vote.
3 unsigned vote = __ballot(predicate);
:'(. ” .«é"
= // All threads get x from the “last” lane which evaluated the predicate to true.
;ai‘, 4 if(vote)
555"_:;5. x = __shfl1(x, _bfind(vote));
o
> // __bind(unsigned i): Find the most significant bit in a 32/64 number (PTX).

' i‘fﬁ; _bfind(&b, 1) { asm volatile(“bfind.u32 %0, %1;” : “=r”(b) : “r’(i)); }

Reduce

= Code

// Threads want to reduce the value in Xx.
float x = ..;

#pragma unroll
for{(int mask

X +=

// The x variable of laneid 0 contains the reduction.

= Performance
— Launch 26 blocks of 1024 threads
— Run the reduction 4096 times

Execution Time fp32 (ms)

QO = MW ko O~

WARP_SIZE / 2 ; mask > 0 ; mask >>= 1)
_ shfl_xor(x, mask);

SHFL
unsafe

SMEM per Block fp32 (KB)

QO = MW R o O~

SHFL

unsafe

butterfly pattern

bd

Rank 0 0.0

= Code

Reduce

// Threads want to reduce the value in Xx.

float x =

#pragma unroll
for(int mask = WARP_SIZE / 2 ; mask > 0 ; mask >>= 1)
X += __shfl_xor(x, mask);

SMEM per Block fp32 (KB)

// The x variable of laneid 0 contains the reduction.

= Performance
— Launch 26 blocks of 1024 threads

— Run the reduction 4096 times SMEM SMEM SHEL

(unsafe)

QO = MW R o O~

et-1p

= Code

#pragma unroll
for(int offset = 1 ; offset < 32 ; offset <<= 1)

{
float vy = __shfl_up(x, offset);
if(laneid() >= offset)
X +=Y;
3

L
.2 = Performance

— Launch 26 blocks of 1024 threads
‘# ,. — Run the reduction 4096 times
e

QO = MW ko O~

Execution Time fp32 (ms)

SHFL
unsafe

SMEM per Block fp32 (KB)

QO = MW R o O~

SHFL

unsafe

et-1p

» Use the predicate from SHFL

#pragma unroll
for(int offset = 1 ; offset < 32 ; offset <<= 1)

{
asm volatile("{"
.reg .32 rO;"
.reg .pred p;"
shfl.up.b32 rO|/p, %0, %1, Ox0;"
4 i add.f32 rO, r0, %0;"
o " mov.f32 %0, rO;"
:/ . . ll} 11} : ll+_Fll (X) : " rll (offset)) ;
3

~>— uUse CUB:
B https://nvlabs.github.com/cub

Execution Time fp32 (ms)

2.5

Intrinsics With predicate

Bitonic Sort

stride=1

stride=2

stride=1

11

3

3

3

il

5

11 10

jdas 15

15

i5

i5

i0

12

2

12

12

14

13

13

14

13

14

14

i3

Bitonic Sort

stride=4 3 5 8 7 LlastigflEdl 14 13 6 12 O™ SN NG

stride=2 3 5 EgENE o 10 @iSiEdl 14 13 poaele. 4 2 EONNE

S - stride=1 3 N58 7 =8 9 g6y 11 5 14 @3y 12 g6° 4 *2° 1 10

Bitonic Sort

int swap(int x, int mask, int dir)
{
int y = __shfl_xor(x, mask);
return x <y == dir ? y : x;
1
X = swap(x, 0x01, bfe(laneid, 1) A bfe(laneid, 0)); // 2
X = swap(x, 0x02, bfe(laneid, 2) A bfe(laneid, 1)); // 4
X = swap(x, 0x01l, bfe(laneid, 2) A bfe(laneid, 0));
X = swap(x, 0x04, bfe(laneid, 3) A bfe(laneid, 2)); // 8
X = swap(x, 0x02, bfe(laneid, 3) A bfe(laneid, 1));
X = swap(x, 0x01, bfe(laneid, 3) A bfe(laneid, 0));
X = swap(x, 0x08, bfe(laneid, 4) A bfe(laneid, 3)); // 16
X = swap(x, 0x04, bfe(laneid, 4) A bfe(laneid, 2));
X = swap(x, 0x02, bfe(laneid, 4) A bfe(laneid, 1));
X = swap(x, 0x01, bfe(laneid, 4) A bfe(laneid, 0));
X = swap(x, 0x10, bfe(laneid, 4)); // 32
X = swap(x, 0x08, bfe(laneid, 3));
X = swap(x, 0x04, bfe(laneid, 2));
X = swap(x, 0x02, bfe(laneid, 1));
X = swap(x, 0x01, bfe(laneid, 0)):

// int bfe(int 1,

int k):

Extract k-th bit from i

// PTX: bfe dst, src, start, len (see p.81, ptx_isa_3.1)

Execution Time int32 (ms)

35
30
25
20
15
10
; .
0 . . .
SMEM SMEM SHFL
{unsafe)
SMEM per Block (KB)

4.5

4
3.5

3
2.5

p
1.5

1
0.5

0 : .

SMEM SMEM SHFL

{unsafe)

Transpose

* When threads load or store arrays of structures, transposes
enable fully coalesced memory operations

» e.¢. when loading, have the warp perform coalesced loads,
then transpose to send the data to the appropriate thread

4 Memory Registers
>
g _‘,:‘,_‘ : : _ a A = LO ad) N S P
L” P . pr————— () > R R 8211 5, elements
. 9 / 19 22
=% e 4) 5 8 11 per thread
"o i (Store) _
4-* e A >
r e n threads in warp (8 for illustration only)

Execution Time 7*int32

Transpose :
7
6
. . 2
* You can use SMEM to implement this 4
3
transpose, or you can use SHFL 2 I
:
SHFL
- COde: unsafe
http://github.com/bryancatanzaro/trove SMEM per Block (KB)
. 3
2 s 6
= Performance .
= o5 — Launch 104 blocks of 256 threads :
N ; 1 -
,#_,gt — Run the transpose 4096 times 0 "
S 4 : unsafe

q

.

%

s

‘l-‘:f—‘-- -

L e

e

e

o
S A
<. P

Array of Structures Access via Transpose

» Transpose speeds access to arrays of structures

* High-level interface: coalesced ptr<T»>

— Just dereference like any pointer

— Up to 6x faster than direct compiler generated access

Contiguous AoS Access

200
150 — A D % /\
s SHFL Load
v
)
100 I e
S SHFL S5tore
= Direct Load
50 e *Direct Store
‘-'-?"."—""'\'Qfd_-‘_\.‘.\&_‘.\;.: !
] 10 20 30 40 50 60 70

Size of structure in bytes

GEB/s

140

120

100

Random AoS Access

s SHFL Gather
=—=SHFL Scatter
e Direct Gather
=Direct Scatter
0 10 20 30 40 50 60 70

Size of structure in bytes

Conclusion

= SHFL is available for SM >= SM 3.0

= [t is always faster than “safe” shared memory

= [t is never slower than “unsafe” shared memory

= [t can be used in many different algorithms

GPU Parallel Prefix Sum

 Basic parallel programming primitive;
parallelize inherently sequential operations

Parallel Prefix Sum (Scan)

« Definition:
The all-prefix-sums operation takes a binary associative operator
@ with identity /, and an array of n elements
[ap, @, --s @p4]
and returns the ordered set
[/, ay, (2,® a,), ..., (a, D a,©D ... D a,,)].

« Example:
if @ is addition, then scan on the set

[3170416 3]
returns the set
[03411111516 2

(From Blelloch, 1990, “Prefix
Sums and Their Applications)

Parallel08 — Control Flow

Applications of Scan

« Scan is a simple and useful parallel building block

— Convert recurrences from sequential :
for (j=1;3<n; j++)

out[j] = out[J-1]1 + £(J);
— Into parallel:
forall(j) { templ[j] = £(3) }:

scan (out, temp);
+ Useful for many parallel algorithms:
* radix sort * Polynomial evaluation

* quicksort * Solving recurrences

* String comparison Tree operations

* Lexical analysis Range Histograms

Etc.

* Stream compaction

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Scan on the CPU

void scan(float* scanned, float* input, int length)

{
scanned[0] = 0;
for(int 1 = 1; 1 < length; ++1)
{

scanned[i] = input[i-1] + scanned[i-1];
}
}

 Just add each element to the sum of the elements
before it

* Trivial, but sequential
« Exactly n adds: optimal in terms of work efficiency

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Prefix Sum Application
- Compaction -

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Parallel Data Compaction

« Given an array of marked values
30117142156

3101
OB O[Oo[O[OMNO[O0

* Output the compacted list of marked values

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Using Prefix Sum

« Calculate prefix sum on index array
3714211516131

OB 0[0[0]|0 00
011222]2]2]3]3

 For each marked value lookup the destination index in
the prefix sum

« Parallel write to separate destination elements

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Prefix Sum Application
- Range Histogram -

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Range Histogram

* A histogram calculate the occurance of each value in an
array.

hii]=|J| J={] vl = i}
 Range query: number over elements in interval [a,b].

+ Slow answer:
hrange = 0;
for (1 = a; i<=b,; ++1)
hrange += h[i];

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Fast Range Histogram

« Compute prefix sum of histogram

 Fast answer:
hrange = pref[B] - pref[A];

= D Hlil= D hlil= Y hli]

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Prefix Sum Application
- Summed Area Tables -

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Summed Area Tables

* Per texel, store sum from (0, 0) to (u, v)

A B

B
 Many bits per texel (sum!)

« Evaluation of 2D integrals in constant time!
AxAy

| [1e.y)dxdy=A4-B-C+D

BxCy
:H C
D

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Summed Area Table with Prefix Sums

* One possible way:
« Compute prefix sum horizontally

« ... then vertically on the resulit

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Work Efficiency

Guy E. Blelloch and Bruce M. Maggs:
Parallel Algorithms, 2004 (https://www.cs.cmu.edu/~guyb/papers/BMo4.pdf)

In designing a parallel algorithm, it is more important to make it efficient than to make it
asymptotically fast. The efficiency of an algorithm is determined by the total number of
operations, or work that it performs. On a sequential machine, an algorithm's work is the
same as its time. On a parallel machine, the work is simply the processor-time product.
Hence, an algorithm that takes time t on a P-processor machine performs work W = Pt. In
either case, the work roughly captures the actual cost to perform the computation, assuming
that the cost of a parallel machine is proportional to the number of processors in the
machine.

We call an algorithm work-efficient (or just efficient) if it performs the same amount of
work, to within a constant factor, as the fastest known sequential algorithm.

For example, a parallel algorithm that sorts n keys in O(sqrt(n) log(n)) time using sqgqrt(n)
processors is efficient since the work, O(n log(n)), is as good as any (comparison-based)
sequential algorithm.

However, a sorting algorithm that runs in O(log(n)) time using n”?2 processors is not
efficient.

The first algorithm is better than the second - even though it is slower - because its work,
or cost, is smaller. Of course, given two parallel algorithms that perform the same amount of
work, the faster one is generally better.

40

Vector Reduction

Array elements ——

VARV EVERVERVERV
or] 2 e 6]]

T
x:

iterations

IIIIIIIIIIIIIIIIIIIIII

Typical Parallel Programming Pattern

* log(n) steps

v
iterations -

Helpful fact for counting nodes of full binary trees:
If there are N leaf nodes, there will be N-1 non-leaf nodes

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Courtesy John Owens

Kogge-Stone Scan

Circuit family

A Parallel Algorithm for the Efficient Solution of a General Class of
Recurrence Equations, Kogge and Stone, 1973

See “carry lookahead” adders vs. “ripple carry” adders

O(n log n) Scan

a=

a=

1

2

d=3

Courtesy John Owens

Xo

X1

X2

X3

X4

X5

X6

X7

B B e e e e R

2(Xo..X)

2(X..X1)

2(X1..X2)

2(Xz..X3)

2(X3..Xy)

2(X4..Xs)

¥(Xs..X6)

¥(X¢..X7)

2(Xq..X0)

2(Xp..X1)

2(Xq..X2)

Z(Xo..X3)

2(X1..Xy)

2(X3..X5)

2(X3..X6)

2(X4..X7)

Ha

Z(Xo. .X())

Z(Xo..Xl)

Z(Xo. .Xz)

Z(Xo..Xg)

Z(Xo. .X4)

Z(Xo..X5)

Z(Xo. .X6)

Z(Xo. .X7)

e Step efficient (log n steps)
e Not work efficient (n log n work)
¢ Requires barriers at each step (WAR dependencies)

Courtesy John Owens
Hillis-Steele Scan Implementation

No WAR conflicts, O(2N) storage

\

€

-
3

& (&)

H
;“\' m

A First-Attempt Parallel Scan
Algorithm

1 6 3 1. Read input from

~ N device memory to
\\\\\N\\ shared memory. Set
0 4 1 6 first element to zero
and shift others right

by one.

Each thread reads one value from the input
array in device memory into shared memory array TO.
Thread O writes 0 into shared memory array.

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

A First-Attempt Parallel Scan

Algorithm

ol In| 3 | 1

7

0

6

3

\\\\\\\\

1.

2.

(previous slide)

Iterate log(n)

times: Threads stride
to n: Add pairs of
elements stride
elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

TO [O 3 1
Stride 1 l\n \->@\>.
T1 0
lteration #1 » Active threads: stride to n-1 (n-stride threads)
Setr?“ dlon_ 1 » Thread j adds elements j and j-stride from TO and
ride = writes result into shared memory buffer T1 (ping-pong)

Parallel08 — Control Flow

Hendrik Lensch and Robert Strzodka

A First-Attempt Parallel Scan

Algorithm

In 3

1 7

0

6

3

T0

1

O\B\\\\\\\

6

Stride 1

!

\)@\).\,.\,@

T1

Stride 2

T0| O

lteration #2
Stride =2

. Read input from

device memory to
shared memory. Set
first element to zero
and shift others right
by one.

. Iterate log(n)

times: Threads stride
to n: Add pairs of
elements stride
elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

Parallel08 — Control Flow

Hendrik Lensch and Robert Strzodka

A First-Attempt Parallel Scan
Algorithm

In 3 1 7 0 6 3 1. Read input from
0 device memory to
\\\ \\\\\ shared memory. Set
TO 1 6 first element to zero
and shift others right

Stride 1 M\@\)@\)@\».\)@\)@ by one.

T1 O j 2. lterate log(n)
Vv times: Threads stride

Stride 2 to n: Add pairs of
TO| O 3 4 11111112112 | 1 elements stride
 — < elements apart.
Stride 4 — XD @ & Double stride at each
Y ¥ —T— e iteration. (note must
M| 0|3 |4 111 ol Bl K double buffer shared
mem arrays)
lteration #3
Stride = 4

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

A First-Attempt Parallel Scan

Algorithm

0 In | 3 1 7 0 4 1 6 3
TO 1 7 0 4l 1 6
Stride 1 \)é\é\)@\)é
T1
Stride 2
TO| O 3 4l
Stride 4 —— D O—>F
\ 2 /
T | 0 3 4 |11 |11 (15| 16 | 22
R A AR
Out| 0 3 4 |11 |11 (15| 16 | 22

. Read input from

device memory to
shared memory. Set
first element to zero
and shift others right
by one.

. Iterate log(n)

times: Threads stride
to n: Add pairs of
elements stride
elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

. Write output to device

memory.

Parallel08 — Control Flow

Hendrik Lensch and Robert Strzodka

Work Efficiency Considerations

« The first-attempt Scan executes log(n) parallel
iterations

— Total adds: n * (log(n) — 1) + 1 > O(n*log(n)) work

« This scan algorithm is not very work efficient
— Sequential scan algorithm does n adds
— A factor of log(n) hurts: 20x for 10*6 elements!

A parallel algorithm can be slow when execution
resources are saturated due to low work efficiency

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

