
CS 380 - GPU and GPGPU Programming
Lecture 18: Shuffle Instructions, Pt. 2;

GPU Parallel Prefix Sum, Pt. 1

Markus Hadwiger, KAUST

2

Reading Assignment #11 (until Nov 17)

Read (required):

• Interpolation for Polygon Texture Mapping and Shading,
Paul Heckbert and Henry Moreton
https://www.ri.cmu.edu/publications/interpolation-for-polygon-texture-mapping-and-shading/

• Homogeneous Coordinates
https://en.wikipedia.org/wiki/Homogeneous_coordinates

Read (optional; highly recommended!):

• MIP-Map Level Selection for Texture Mapping
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=765326

3

Next Lectures

Lecture 18: Mon, Nov 10

Lecture 19: Tue, Nov 11 (make-up lecture; 14:30 – 16:00, room 3131)

Lecture 20: Thu, Nov 13

Lecture 21: Mon, Nov 17 (Quiz #2)

Lecture 22: Tue, Nov 18 (make-up lecture ; 14:30 – 16:00, room 3131)

Lecture 23: Thu, Nov 20

4

Quiz #2: Oct 17

Organization

• First 30 min of lecture

• No material (book, notes, ...) allowed

Content of questions

• Lectures (both actual lectures and slides)

• Reading assignments

• Programming assignments (algorithms, methods)

• Solve short practical examples

Safer with cooperative thread groups!

Now: Use _sync variants / shuffle in cooperative thread groups!

Now: Use _sync variants / shuffle in cooperative thread groups!

Now: Use cooperative thread groups!

butterfly pattern

GPU Parallel Prefix SumGPU Parallel Prefix Sum

• Basic parallel programming primitive;
parallelize inherently sequential operations

40

Work Efficiency

Guy E. Blelloch and Bruce M. Maggs:
Parallel Algorithms, 2004 (https://www.cs.cmu.edu/~guyb/papers/BM04.pdf)

In designing a parallel algorithm, it is more important to make it efficient than to make it
asymptotically fast. The efficiency of an algorithm is determined by the total number of
operations, or work that it performs. On a sequential machine, an algorithm's work is the
same as its time. On a parallel machine, the work is simply the processor-time product.
Hence, an algorithm that takes time t on a P-processor machine performs work W = Pt. In
either case, the work roughly captures the actual cost to perform the computation, assuming
that the cost of a parallel machine is proportional to the number of processors in the
machine.

We call an algorithm work-efficient (or just efficient) if it performs the same amount of
work, to within a constant factor, as the fastest known sequential algorithm.

For example, a parallel algorithm that sorts n keys in O(sqrt(n) log(n)) time using sqrt(n)
processors is efficient since the work, O(n log(n)), is as good as any (comparison-based)
sequential algorithm.

However, a sorting algorithm that runs in O(log(n)) time using n^2 processors is not
efficient.

The first algorithm is better than the second - even though it is slower - because its work,
or cost, is smaller. Of course, given two parallel algorithms that perform the same amount of
work, the faster one is generally better.

Helpful fact for counting nodes of full binary trees:
If there are N leaf nodes, there will be N-1 non-leaf nodes

A Parallel Algorithm for the Efficient Solution of a General Class of
Recurrence Equations, Kogge and Stone, 1973

See “carry lookahead” adders vs. “ripple carry” adders

Courtesy John Owens

Courtesy John Owens

Courtesy John Owens

Stride 4

Stride 4

Thank you.

