
CS 380 - GPU and GPGPU Programming
Lecture 17: GPU Parallel Reduction;

Shuffle Instructions, Pt. 1

Markus Hadwiger, KAUST

2

Next Lectures

no lectures on Oct 30, Nov 3, Nov 6 ! (IEEE VIS conference)

Lecture 18: Mon, Nov 10

Lecture 19: Tue, Nov 11 (make-up lecture; please choose times on discord!)

Lecture 20: Thu, Nov 13 (probably Quiz #2; tba on discord)

Lecture 21: Mon, Nov 17

Lecture 22: Tue, Nov 18 (make-up lecture; please choose times on discord!)

Lecture 23: Thu, Nov 20

3

Reading Assignment #9 (until Nov 3)

Read (required):

• Programming Massively Parallel Processors book, 4th edition
Chapter 10: Reduction

• Optimizing Parallel Reduction in CUDA, Mark Harris,
https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

Read (optional):

• Faster Parallel Reductions on Kepler, Justin Luitjens
https://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/

• CUDA Parallel Reduction implementation in CUDA SDK:
https://github.com/NVIDIA/cuda-samples/tree/master/Samples/

2_Concepts_and_Techniques/reduction/

4

Reading Assignment #10 (until Nov 10)

Read (required):

• Programming Massively Parallel Processors book, 4th edition
Chapter 11: Prefix Sum (Scan) – an introduction to work efficiency in parallel algorithms

• Warp Shuffle Functions
– CUDA Programming Guide, Chapter 10.22

Read (optional):

• Guy E. Blelloch: Prefix Sums and their Applications
– https://www.cs.cmu.edu/~guyb/papers/Ble93.pdf/

• CUDA Cooperative Groups
– CUDA Programming Guide, Chapter 11
– https://developer.nvidia.com/blog/cooperative-groups/

GPU ReductionGPU Reduction

• Parallel reduction is a basic parallel programming primitive;
see reduction operation on a stream, e.g., in Brook for GPUs

Helpful fact for counting nodes of full binary trees:
If there are N leaf nodes, there will be N-1 non-leaf nodes

=

now: __syncwarp()
or better: Cooperative Groups

Look at CUDA SDK reduction example and slides!

out-of-bounds check missing, see SDK code

be careful that shared variables are declared volatile! see SDK code

now also need __syncwarp() !!
see later slides

now also need __syncwarp() !!
see later slides

And More...

1. On Volta and newer (Turing, Ampere, Hopper, Blackwell, ...),
reduction in shared memory must use
warp synchronization! __syncwarp() or Cooperative Groups

2. Last optimization step for parallel reduction:

Do not use shared memory for last 5 steps (which would
cause branch divergence and bank conflicts), but use

warp shuffle instructions (CUDA Programming Guide, Chapter 10.22)

Markus Hadwiger, KAUST 32

Safer with cooperative thread groups!

Now: Use _sync variants / shuffle in cooperative thread groups!

Thank you.

