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CS 380 - GPU and GPGPU Programming
Lecture 16: CUDA Memories, Pt. 3
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Next Lectures

Lecture 17: Tue, Oct 28 (make-up lecture; 14:30-16:00, room 3123)

no lectures on Oct 30, Nov 3, Nov 6 ! (IEEE VIS conference)

Lecture 18: Mon, Nov 10
Lecture 19: Tue, Nov 11 (make-up lecture; please choose times on discord!)
Lecture 20: Thu, Nov 13

Lecture 21: Mon, Nov 17
Lecture 22: Tue, Nov 18 (make-up lecture; please choose times on discord!)
Lecture 23: Thu, Nov 20



Reading Assignment #9 (until Nov 3)

Read (required):

« Programming Massively Parallel Processors book, 4" edition
Chapter 10: Reduction

» Optimizing Parallel Reduction in CUDA, Mark Harris,

https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

Read (optional):

* Faster Parallel Reductions on Kepler, Justin Luitjens
https://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/

« CUDA Parallel Reduction implementation in CUDA SDK:

https://github.com/NVIDIA/cuda-samples/tree/master/Samples/
2 Concepts_and Techniques/reduction/



Reading Assignment #10 (until Nov 10)

Read (required):

« Programming Massively Parallel Processors book, 4" edition
Chapter 11: Prefix Sum (Scan) — an introduction to work efficiency in parallel algorithms

» Warp Shuffle Functions
— CUDA Programming Guide, Chapter 10.22

Read (optional):

» Guy E. Blelloch: Prefix Sums and their Applications
- https://www.cs.cmu.edu/~guyb/papers/Ble93.pdf/

« CUDA Cooperative Groups
— CUDA Programming Guide, Chapter 11

— https://developer.nvidia.com/blog/cooperative-groups/



CUDA Memory:

Global Memory

 Memory coalescing

« Cached memory access (L2 / L1)



Memory and Cache Types

Global memory
 [Device] L2 cache
 [SM] L1 cache (shared mem carved out; or L1 shared with tex cache)

« [SM/TPC] Texture cache (separate, or shared with L1 cache)

« [SM] Read-only data cache (storage might be same as tex cache)

Shared memory

« [SM] Shareable only between threads in same thread block
(Hopper/CC 9.x: also thread block clusters)

Constant memory: Constant (uniform) cache

Unified memory programming: Device/host memory sharing

Markus Hadwiger, KAUST 6
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Maximize Byte Use

SM

SM

SM

DRAM

* Two things to keep in mind:
— Memory accesses are per warp

— Memory is accessed in discrete
chunks
* lines/segments

* want to make sure that bytes
that travel from DRAM to SMs
get used

— For that we should understand
how memory system works

* Note: not that different from CPUs

— X86 needs SSE/AVX memory
instructions to maximize performance
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GPU Memory System
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DRAM

* All data lives in DRAM
— Global memory
— Local memory
— Textures

— Constants
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GPU Memory System
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SM

\

s

\—

L2

U
5

DRAM

* All DRAM accesses go
through L2

* Including copies:
— P2P
— CPU-GPU
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GPU Memory System
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DRAM

" Fimn fimec: R, S
goes into one of 3
caches/buffers

* Programmer’s choice

ey,
require explicit code
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Access Path

* L1 path

— Slebalmemeny——

—= Mermerratocatedritheuaastteel—
Meapped-CPUmemorypeer-GPSmemoTy—
Globatty-scopedarraysouatifred-with—sgtobat——

— Local memory
» allocation/access managed by compiler so we’ll ignore

* Read-only/TEX path

— Data in texture objects, CUDA arrays

— CC 3.5 and higher:
* Global memory accessed via intrinsics (or specially qualified kernel arguments)

* Constant path
— Globally-scoped arrays qualified with __constant___
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Access Via L1

* Natively supported word sizes per thread:
— 1B, 2B, 4B, 8B, 16B
* Addresses must be alighed on word-size boundary
— Accessing types of other sizes will require multiple instructions

* Accesses are processed per warp
— Threads in a warp provide 32 addresses
* Fewer if some threads are inactive

— HW converts addresses into memory transactions

* Address pattern may require multiple transactions for an instruction
* If N transactions are needed, there will be (N-1) replays of the instruction

35



Interlude: Vectorized Memory Access

See https://devblogs.nvidia.com/cuda-pro-tip-increase-
performance-with-vectorized-memory-access/

__global _ void device copy_vector2 kernel(int* d_in, int* d_out, int N) {
int idx = blockIdx.x * blockDim.x + threadIdx.Xx;
for (int i = idx; i < N/2; i1 += blockDim.x * gridDim.x) {
reinterpret_cast<int2*>(d_out)[i] = reinterpret_cast<int2*>(d_in)[i];

}

// in only one thread, process final element (if there is one)
if (idx==N/2 && N%2==1)
d_out[N-1] = d_in[N-1];
iy
void device_copy_vector2(int* d_in, int* d_out, int n) {
threads = 128;

blocks = min((N/2 + threads-1) / threads, MAX_BLOCKS);

device copy vector2 kernel<<<blocks, threads>>>(d_in, d_out, N);

}

/*0088*/ IMAD R1@.CC, R3, R5, c[exe][ex14e]

/*0090% / IMAD.HI.X R11, R3, R5, c[0x®][ex144] SASS

/*0098*/ IMAD R8.CC, R3, R5, c[ex8][ex148]

/*eeao*/ LD.E.64 R6, [R10] LD.E.64, LD.E.128,
/*@0ag*/ IMAD.HI.X R9, R3, R5, c[@xe][exlac] ST.E.64, ST.E.128

/*eec8*/ ST.E.64 [R8], R6




Interlude: Vectorized Memory Access

See https://devblogs.nvidia.com/cuda-pro-tip-increase-
performance-with-vectorized-memory-access/

__global  void device copy vector4 kernel(int* d_in, int* d_out, int N) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
for(int 1 = idx; i < N/4; i += blockDim.x * gridDim.x) {
reinterpret_cast<int4*>(d_out)[i] = reinterpret_cast<int4*>(d_in)[i];

}

// in only one thread, process final elements (if there are any)
int remainder = N%4;
if (idx==N/4 && remainder!=@) {
while(remainder) {
int idx = N - remainder--;
d_out[idx] = d_in[idx];
}
}
}

void device_copy vector4(int* d_in, int* d_out, int N) {
int threads = 128;

int blocks = min((N/4 + threads-1) / threads, MAX_BLOCKS);

device_copy_vectord_kernel<<<blocks, threads>>>(d_in, d_out, N);

}

/*0090%*/ IMAD R10.CC, R3, R13, c[exe][ex14e]

/*0098%/ IMAD.HI.X R11, R3, R13, c[ox@][ex144] SASS

/*00ae*/ IMAD R8.CC, R3, R13, c[@x@][ox148]

/*00as*/ LD.E.128 R4, [R1@] LD.E.64, LD.E.128,
/*00be*/ IMAD.HI.X R9, R3, R13, c[exe][exl4c] ST.E.c4, ST.E.128

/*0edoe*/ ST.E.128 [R8], R4




Global Memory Access

Aligned accesses (sequential/non-sequential)

all recent N
compute capabilities | i .
- 12.0) XTSI
Compute capability.: 2%, 3%, 5
Memory transac tions: Uncached Cached
Beware:
Uncached here means
not cached in L1 Mis-aligned accesses (sequential/non-sequential)
Addresses: %

the L2 cache is /////////W//////////W///////

always used! freecs

Compute capability: 2%, 3% 5X
Memory transac tions: Uncached Cached

X a
1x 32B at 256




A,
(¢

NVIDIA Architectures (since first CUDA GPU)

Tesla[cc 1.x5: 2007-2009 Voltacc 7.0,7.21: 2017/2018
+ G80, G9x: 2007 (Geforce 8800, ...) + GV100, ...
GT200: 2008/2009 (GTX 280, ...) (Tesla V100, Titan V, Quadro GV100, ...)
Fermi[cc 2.x): 2010 (2011, 2012, 2013, ...) Turing [cc 7.5]: 2018/2019
« GF100, ... (GTX 480, ...) « TU102, TU104, TU106, TU116, TU117, ...
GF104, ... (GTX 460, ...) (Titan RTX, RTX 2070, 2080 (Ti), GTX 1650, 1660, ...)

GF110, ... (GTX 580, ...)
Ampere [CC 8.0, 8.6, 8.7, 8.8]: 2020

Kepler [CC 3.x: 2012 (2013, 2014, 2016, ...) * GA100, GA102, GA104, GA106, ...; [Nintendo Switch 2]

+ GK104, ... (GTX 680, ...) (A100, RTX 3070, 3080, 3090 (Ti), RTX A6000, ...)
GK110, ... (GTX 780, GTX Titan, ...)

Hopper [cc 9.0], Ada Lovelace [cC 8.9]: 2022/23

- GH100, AD102/103/104/106/107, ...
. GM107, ... (GTX 750Ti, ...); [Nintendo Switch] (H100, H200, GH200, L20, L40, L40S, L2, L4,
GM204, ... (GTX 980, Titan X, ...) RTX 4080 (12/16 GB), RTX 4090, RTX 6000 (Ada), ...)

Maxwell [cc 5.x]: 2015

Pascal [cc 6.x]: 2016 (2017, 2018, 2021, 2022, ...) Blackwell [cC 10.0, 10.1(-11.0), 10.3, 12.0, 12.1]: 2024/2025

+ GP100 (Tesla P100, ...) + GB100, GB200, GB202/203/205/206/207, G10, ...
o (RTX 5080/5090, HGX B200/B300, GB200/GB300 NVL72,
+ GP10x: x=2,4,6,7,8, ...

(GTX 1060, 1070, 1080, Titan X Pascal, Titan Xp, ...) RTX 4000/5000/6000 PRO Blackwell, B40, ...)

_ see https://en.wikipedia.org/wiki/List _of Nvidia_graphics_processing units
Markus Hadwiger, KAUST and https://en.wikipedia.org/wiki/CUDA 16



Compute Capab. 3.x (Kepler) [1]

K.3.2. Global Memory

Global memory accesses for devices of compute capability 3.x are cached in L2 and for devices
of compute capability 3.5 or 3.7, may also be cached in the read-only data cache described in
the previous section; they are normally not cached in L1. Some devices of compute capability
3.5 and devices of compute capability 3.7 allow opt-in to caching of global memory accesses in
L1 via the -Xptxas -dlcm=ca option to nvcec.

A cache line is 128 bytes and maps to a 128 byte aligned segment in device memory. Memory
accesses that are cached in both L1 and L2 are serviced with 128-byte memory transactions,
whereas memory accesses that are cached in L2 only are serviced with 32-byte memory
transactions. Caching in LZ only can therefore reduce over-fetch, for example, in the case of
scattered memory accesses.

If the size of the words accessed by each thread is more than 4 bytes, a memory request by a
warp is first split into separate 128-byte memory requests that are issued independently:

» Two memory requests, one for each half-warp, if the size is 8 bytes,

» Four memory requests, one for each quarter-warp, if the size is 16 bytes.



Compute Capab. 3.x (Kepler) [2]

Each memory request is then broken down into cache line requests that are issued
Independently. A cache line request is serviced at the throughput of L1 or L2 cache in case of a
cache hit, or at the throughput of device memory, otherwise.

Note that threads can access any words in any order, including the same words.

If a non-atomic instruction executed by a warp writes to the same location in global memory
for more than one of the threads of the warp, only one thread performs a write and which
thread does it is undefined.

Data that is read-only for the entire lifetime of the kernel can also be cached in the read-only
data cache described in the previous section by reading it using the  1dg () function (see

Read-Only Data Cache Load Function). When the compiler detects that the read-only condition
s satisfied for some data, it willuse  1dg() to read it. The compiler might not always be able
to detect that the read-only condition is satisfied for some data. Marking pointers used for
loading such data with both the const and  restrict  qualifiers increases the likelihood
that the compiler will detect the read-only condition.

Figure 21 shows some examples of global memory accesses and corresponding memory
transactions.



Compute Capab. 5.x (Maxwell)

20.4.2. Global Memory

Global memory accesses are always cached in L2.

Data that is read-only for the entire lifetime of the kernel can also be cached in the unified L1/texture
cache described in the previous section by reading it using the __1dg( ) function (see Read-Only Data
Cache Load Function). When the compiler detects that the read-only condition is satisfied for some
data, it will use __1dg() to read it. The compiler might not always be able to detect that the read-
only condition is satisfied for some data. Marking pointers used for loading such data with both the
const and __restrict__ qualifiers increases the likelihood that the compiler will detect the read-
only condition.

Data that is not read-only for the entire lifetime of the kernel cannot be cached in the unified
L1/texture cache for devices of compute capability 5.0. For devices of compute capability 5.2, it is,
by default, not cached in the unified L 1/texture cache, but caching may be enabled using the following
mechanisms:

» Perform the read using inline assembly with the appropriate modifier as described in the PTX
reference manual;

» Compile with the -Xptxas -dlcm=ca compilation flag, in which case all reads are cached, except
reads that are performed using inline assembly with a modifier that disables caching;

» Compile with the -Xptxas -fscm=ca compilation flag, in which case all reads are cached, in-
cluding reads that are performed using inline assembly regardless of the modifier used.

When caching is enabled using one of the three mechanisms listed above, devices of compute capa-
bility 5.2 will cache global memory reads in the unified L1/texture cache for all kernel launches except
for the kernel launches for which thread blocks consume too much of the SM'’s register file. These

exceptions are reported by the profiler.
19



PTX State Spaces (1)

Memory type/access etc. organized using notion of state spaces

Table 6 State Spaces

Name Description
.reg Registers, fast.
.sreg Special registers. Read-only; pre-defined; platform-specific.
.const Shared, read-only memory.
.global Global memory, shared by all threads.
.local Local memory, private to each thread.
-param Kernel parameters, defined per-grid; or
Function or local parameters, defined per-thread.
.shared Addressable memory shared between threads in 1 CTA.
.tex Global texture memory (deprecated).

Markus Hadwiger, KAUST 20



PTX State Spaces (2)

Table 7 Properties of State Spaces

Name Addressable Initializable Access Sharing

.reg No No R/W per-thread

.sreg No No RO per-CTA

.const Yes Yes' RO per-grid

.global Yes Yes' R/W Context

.local Yes No R/W per-thread
.param (as input Yes? No RO per-grid

to kernel)

.param (used in Restricted’ No R/W per-thread
functions)

.shared Yes No R/W per-CTA

.tex No* Yes, via driver RO Context

Notes:

! Variables in .const and .global state spaces are initialized to zero by default.

2 Accessible only via the 1d.param instruction. Address may be taken via mov instruction.

3 Accessible via ld.param and st.param instructions. Device function input and return parameters may
have their address taken via mov; the parameter is then located on the stack frame and its address is in
the .local state space.

* Accessible only via the tex instruction.

21



PTX Cache Operators

Table 27

Cache Operators for Memory Load Instructions

Operator

Meaning

.ca

Cache at all levels, likely to be accessed again.

The default load instruction cache operation is ld.ca, which allocates cache lines in all
levels (L1 and L2) with normal eviction policy. Global data is coherent at the L2 level,

but multiple L1 caches are not coherent for global data. If one thread stores to global
memory via one L1 cache, and a second thread loads that address via a second L1 cache
with 1d.ca, the second thread may get stale L1 cache data, rather than the data stored
by the first thread. The driver must invalidate global L1 cache lines between dependent
grids of parallel threads. Stores by the first grid program are then correctly fetched by the
second grid program issuing default 1d. ca loads cached in L1.

.cg

Cache at global level (cache in L2 and below, not L1).

Use 1d.cg to cache loads only globally, bypassing the L1 cache, and cache only in the L2
cache.

.CS

Cache streaming, likely to be accessed once.

The 1d.cs load cached streaming operation allocates global lines with evict-first policy
in L1 and L2 to limit cache pollution by temporary streaming data that may be accessed
once or twice. When 1d.cs is applied to a Local window address, it performs the 1d.1u
operation.

.1u

Last use.

The compiler/programmer may use 1d.1lu when restoring spilled registers and popping
function stack frames to avoid needless write-backs of lines that will not be used again.
The 1d. 1u instruction performs a load cached streaming operation (1d.cs) on global
addresses.

.CV

Don't cache and fetch again (consider cached system memory lines stale, fetch again).

The ld.cv load operation applied to a global System Memory address invalidates (discards)
a matching L2 line and re-fetches the line on each new load.

22



SASS LD/ST Instructions

ArCh |te Ctu re-d e p . Compute Load/Store Instructions

LDC Load from Constant
LD Load from Memory
LDG Non-coherent Global Memory Load
LDL Load from Local Memory
LDS Load from Shared Memory
LDSLK Load from Shared Memory and Lock
ST Store to Memory

Kep I er. STL Store to Local Memory
STS Store to Shared Memory
STSCUL Store to Shared Memory Conditionally and Unlock
ATOM Atomic Memory Operation
RED Atomic Memory Reduction Operation
CCTL Cache Control
CCTLL Cache Control (Local)
MEMBAR Memory Barrier

(see also LDG.CI etc.)

Markus Hadwiger, KAUST 23



Compute Capab. 6.x (Pascal)

20.5.2. Global Memory

Global memory behaves the same way as in devices of compute capability 5.x (See Global Memory).

Markus Hadwiger, KAUST 24



Compute Capab. 7.x (Volta/Turing)

20.6.3. Global Memory

Global memory behaves the same way as in devices of compute capability 5.x (See Global Memory).

Markus Hadwiger, KAUST 25



Compute Capab. 8.x (Ampere/Ada)

20.7.2. Global Memory

Global memory behaves the same way as for devices of compute capability 5.x (See Global Memory).

Markus Hadwiger, KAUST 26



Compute Capab. 9.x (Hopper)

20.8.2. Global Memory

Global memory behaves the same way as for devices of compute capability 5.x (See Global Memory).

Markus Hadwiger, KAUST 27



Compute Capab. 10.x (Blackwell) [1]

20.9.2. Global Memory

Global memory behaves the same way as for devices of compute capability 5.x (See Global Memory).

Markus Hadwiger, KAUST 28



Compute Capab. 12.x (Blackwell) [2]

20.10.2. Global Memory

Global memory behaves the same way as for devices of compute capability 5.x (See Global Memory).

Markus Hadwiger, KAUST 29



OPTIMIZE

Kernel Optimizations: Global Memory Throughput




Kepler Memory Hierarchy

SIVI-N

SMEM

Global Memory




Load Operation

Memory operations are issued per warp (32 threads)
Just like all other instructions

Operation:
Threads in a warp provide memory addresses

Determine which lines/segments are needed
Request the needed lines/segments




Memory Throughput Analysis

Two perspectives on the throughput:
Application’s point of view:
count only bytes requested by application
HW point of view:
* count all bytes moved by hardware
The two views can be different:

Memory is accessed at 32 byte granularity
* Scattered/offset pattern: application doesn’t use all the hw transaction bytes

Broadcast: the same small transaction serves many threads in a warp
Two aspects to inspect for performance impact:

Address pattern
Number of concurrent accesses in flight




Global Memory Operation

Memory operations are executed per warp
32 threads in a warp provide memory addresses
Hardware determines into which lines those addresses fall

Memory transaction granularity is 32 bytes

There are benefits to a warp accessing a contiguous aligned region of 128 or
256 bytes

* Access word size
Natively supported sizes (per thread): 1, 2, 4, 8, 16 bytes
* Assumes that each thread’s address is aligned on the word size boundary

If you are accessing a data type that’s of non-native size, compiler will
generate several load or store instructions with native sizes




Access Patterns vs. Memory Throughput

Scenario:

Warp requests 32 aligned, consecutive 4-byte words
Addresses fall within 4 segments

Warp needs 128 bytes

128 bytes move across the bus
Bus utilization: 100%

addresses from a warp

Hlll — 2!

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses




Access Patterns vs. Memory Throughput

Scenario:

Warp requests 32 aligned, permuted 4-byte words
Addresses fall within 4 segments

Warp needs 128 bytes

128 bytes move across the bus
Bus utilization: 100%

addresses from a warp
s

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses




Access Patterns vs. Memory Throughput

Scenario:

Warp requests 32 misaligned, consecutive 4-byte words
Addresses fall within at most 5 segments

Warp needs 128 bytes

At most 160 bytes move across the bus

Bus utilization: at least 80%
Some misaligned patterns will fall within 4 segments, so 100% utilization

addresses from a warp

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses




Access Patterns vs. Memory Throughput

Scenario:

All threads in a warp request the same 4-byte word
Addresses fall within a single segment

Warp needs 4 bytes

32 bytes move across the bus
Bus utilization: 12.5%

addresses from a warp

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses




Access Patterns vs. Memory Throughput

Scenario:
Warp requests 32 scattered 4-byte words
Addresses fall within N segments
Warp needs 128 bytes

N*32 bytes move across the bus
Bus utilization: 128 / (N*32)

addresses from a warp

PR _

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses




Structures of Non-Native Size

Say we are reading a 12-byte structure per
thread

struct Position

{
float x, v, z;

I 7

__global  void kernel( Position *data, ... )
{

int idx = blockIdx.x * blockDim.x + threadIdx.x;
Position temp = data[idx];




Structure of Non-Native Size

Compiler converts temp = data[idx] into 3 loads:

Each loads 4 bytes

Can’t do an 8 and a 4 byte load: 12 bytes per element means that every
other element wouldn’t align the 8-byte load on 8-byte boundary

Addresses per warp for each of the loads:
Successive threads read 4 bytes at 12-byte stride




First Load Instruction

addresses from a warp

N S O T O

O 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64




Second Load Instruction

addresses from a warp

N S S Y T O

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64




Third Load Instruction

addresses from a warp

N A S O T O O

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64




Performance and Solutions

Because of the address pattern, we end up moving 3x more bytes
than application requests
We waste a lot of bandwidth, leaving performance on the table

Potential solutions:

Change data layout from array of structures to structure of arrays
* In this case: 3 separate arrays of floats
* The most reliable approach (also ideal for both CPUs and GPUs)
Use loads via read-only cache
* As long as lines survive in the cache, performance will be nearly optimal

Stage loads via shared memory




Global Memory Access Patterns

» SOA vs AoS: “'”
leloieh point.x(i] —l——
Not so good: point|i].x
» Strided array access:
~OK: x[i] = a[i+1] - ali]
Slower: x[i] = a[64*1] — a[i]
' .

* Random array access: /
Slower: afrand(i)] [ l_l_




Summary: GMEM Optimization

Strive for perfect address coalescing per warp
» Align starting address (may require padding)
A warp will ideally access within a contiguous region

Avoid scattered address patterns or patterns with large strides between
threads

Analyze and optimize address patterns:
Use profiling tools (included with CUDA toolkit download)
Compare the transactions per request to the ideal ratio
Choose appropriate data layout (prefer SoA)
If needed, try read-only loads, staging accesses via SMEM
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GMEM Reads

Attempt to hit in L1 depends on programmer choice and compute capability

HW ability to hit in L1:
= CCl1.x noll
— CC2.xcanhitin L1
— CC3.0, 3.5: cannot hitin L1
* L1 is used to cache LMEM (register spills, etc.), buffer reads
Read instruction types
— Caching:
* Compileroption: -Xptxas -dlcm=ca
* On L1l miss goto L2, on L2 miss go to DRAM
* Transaction: 128 B line
— Non-caching:
= Compileroption: -Xptxas -dlcm=cg
» Godirectly to L2 {invalidate line in L1), on L2 miss go to DRAM
* Transaction: 1, 2, 4 segments, segment = 32 B (same as for writes)
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Caching Load

Scenario:

— Warp requests 32 aligned, consecutive 4-byte words
Addresses fall within 1 cache-line

— No replays

— Bus utilization: 100%

*» Warp needs 128 bytes
* 128 bytes move acrossthe bus on a miss

addresses from a warp

bl

32 64 96 128 1e0 192 224 256 288
Memory addresses

320

352

384

416

448
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Non-caching Load

* Scenario:

— Warp requests 32 aligned, consecutive 4-byte words
* Addresses fall within 4 segments

— No replays

— Bus utilization: 100%

*» Warp needs 128 bytes
* 128 bytes move acrossthe bus on a miss
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addresses from a warp

Ll
N I I S S S S S S S S —

32 64 96 128 180 192 224 256 288 320 352 384 416 448
Memory addresses

012, NV DIA
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Caching Load

Scenario:

— Warp requests 32 aligned, permuted 4-byte words
Addresses fall within 1 cache-line

— No replays

— Bus utilization: 100%

*» Warp needs 128 bytes
* 128 bytes move acrossthe bus on a miss

addresses from a warp

32 64 96 128 1e0 192 224 256 288
Memory addresses

320

352

384

416

448

47



> L
OO
(45 i
I
2 i
T L
o2
=0
-
e
=
- o

Cra012, NVIDIA

Non-caching Load

* Scenario:

— Warp requests 32 aligned, permuted 4-byte words
* Addresses fall within 4 segments

— No replays

— Bus utilization: 100%

*» Warp needs 128 bytes
* 128 bytes move acrossthe bus on a miss

addresses from a warp

32 64 96 128 1e0 192 224 256 288
Memory addresses

320

352

384

416

448
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Cra012, NVIDIA

Caching Load

* Scenario:
— Warp requests 32 consecutive 4-byte words, offset from perfect alignment
+ Addresses fall within 2 cache-lines

— 1 replay (2 transactions)

— Bus utilization: 50%
*» Warp needs 128 bytes
* 256 bytes move acrossthe bus on misses

addresses from a warp

0 32 64 96 128 1e0 192 224 256 288 320 352 384 416

Memory addresses

448
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Non-caching Load

Scenario:
— Warp requests 32 consecutive 4-byte words, offset from perfect alignment
Addresses fall within at most 5 segments

— 1 replay (2 transactions)

— Bus utilization: at least 80%
*» Warp needs 128 bytes
* At most 160 bytes move acrossthe bus
» Some misaligned patterns will fall within 4 segments, so 100% utilization

addresses from a warp

32 64 96 128 180 192 224 256 288 320 352 384 416 448
Memory addresses

a0



> L
DO
o=z
— L
26
—O
=
Q.
o
* >
%
. =

Caching Load

Scenario:

— All threads in a warp request the same 4-byte word
Addresses fall within a single cache-line

— No replays

— Bus utilization: 3.125%

» Warp needs 4 bytes
* 128 bytes move acrossthe bus on a miss

addresses from a warp

32 64 96 128 1e0 192 224 256 288
Memory addresses

320

352

384

416

448
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Non-caching Load

Scenario:

— All threads in a warp request the same 4-byte word
Addresses fall within a single segment

— No replays

— Bus utilization: 12.5%

» Warp needs 4 bytes
* 32 bytes move across the bus on a miss

addresses from a warp

32 64 96 128 1e0 192 224 256 288 320
Memory addresses

352

384

416

448

52
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Caching Load

* Scenario:

— Warp requests 32 scattered 4-byte words
+ Addresses fall within N cache-lines

— {N-1) replays (N transactions)

— Bus utilization: 32*4B / (N*128B)

*» Warp needs 128 bytes
» A*128 bytes move across the bus on a miss

addresses from a warp
% \ —

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448

Memory addresses

53
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Non-caching Load

Scenario:
— Warp requests 32 scattered 4-byte words
Addresses fall within N segments
— (N-1) replays (N transactions)
* Could be lower some segments can be arranged into a single transaction

— Bus utilization: 128 / (N*32) (4x higher than caching loads)
* Warp needs 128 bytes
*  N*32 bytes move across the bus on a miss

addresses from a warp

2

—3.

/T ]

2 64 96 128 1e0 192 224 256 288 320
Memory addresses

352

384 4le 448
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Caching vs Non-caching Loads

 Compute capabilities that can hit in L1 {(CC 2.x)
— Caching loads are better if you count on hits

— Non-caching loads are better if:

* Warp address pattern is scattered
* When kernel uses lots of LMEM (register spilling)

 Compute capabilities that cannot hit in L1 {(CC 1.x, 3.0, 3.5)
— Does not matter, all loads behave like non-caching

* In general, don’t rely on GPU caches like you would on CPUs:

— 100s of threads sharing the same L1
— 1000s of threads sharing the same L2
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L1 Sizing

* Fermi and Kepler GPUs split 64 KB RAM between L1 and SMEM
— Fermi GPUs {CC 2.x): 16:48, 48:16
— Kepler GPUs {CC 3.x):16:48, 48:16, 3232

* Programmer can choose the split:
— Default: 16 KB L1, 48 KB SMEM

— Run-time API functions:
* cudaDeviceSetCacheConfig(), cudaFuncSetCacheConfig()

— Kernels that require different L1:SMEM sizing cannot run concurrently
 Making the choice:

— Large L1 can help when using lots of LMEM ({spilling registers)

— Large SMEM can help if occupancy is limited by shared memory

e
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Read-Only Cache

* An alternative to L1 when accessing DRAM
— Also known as texture cache: all texture accesses use this cache
— CC 3.5 and higher also enable global memory accesses
* Should not be used if a kernel reads and writes to the same addresses
* Comparing to L1:

— Generally better for scattered reads than L1
* Caching is at 32 B granularity (L1, when caching operates at 128 B granularity)
» Does not require replay for multiple transactions (L1 does)

— Higher latency than L1 reads, also tends to increase register use

 Aggregate 48 KB per SM: 4 12-KB caches
— One 12-KB cache per scheduler
* Warps assigned to a scheduler refer to only that cache
— Caches are not coherent — data replication is possible

57



GMEM Writes

Not cached in the SM
— Invalidate the line in L1, go to L2

Access is at 32 B segment granularity
Transaction to memory: 1, 2, or 4 segments
— Only the required segments will be sent
If multiple threads in a warp write to the same address

— One of the threads will “win”
— Which one is not defined
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Some Store Pattern Examples

addresses fromawarp  one 4-segment transaction

bl 4

96 128 160 192 224 256 288 320 352 384
Memory addresses

416

448
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Some Store Pattern Examples

addresses fromawarp  three 1-segment transactions

N T~

96 128 160 192 224 256 288 320 352 384 4le
Memory addresses

448

41



> Lu
(S0 i 852
o=z
- L]
=
G2
O
-
«
o
: -f!!
%
. =

Some Store Pattern Examples

addresses fromawarp  one 2-segment transaction

bl

96 128 160 192 224 256 288 320 352 384
Memory addresses

416

448
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Some Store Pattern Examples

addresses fromawarp 2 1-segment transactions

$

X!
I [ 1 [ 1 [ [ | |

96 128 160 192 224 256 288 320 352 384
Memory addresses

416

448
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CUDA Memory:

Uniforms & Textures




Memory and Cache Types

Global memory
 [Device] L2 cache
 [SM] L1 cache (shared mem carved out; or L1 shared with tex cache)

« [SM/TPC] Texture cache (separate, or shared with L1 cache)

« [SM] Read-only data cache (storage might be same as tex cache)

Shared memory

« [SM] Shareable only between threads in same thread block
(Hopper/CC 9.x: also thread block clusters)

Constant memory: Constant (uniform) cache

Unified memory programming: Device/host memory sharing

Markus Hadwiger, KAUST 68



Constants

« |Immediate address constants

* |ndexed address constants
I$

« Constants stored in DRAM, and cached L1
on chip !
- L1 per SM
« A constant value can be broadcast to all v
threads in a Warp A
— Extremely efficient way of accessing a . v v
value that is common for all threads in a Operand Select
block! | |
R G B e A -
device constant float gpuGammal[2] ;

N — e — v

cudaMemcpyToSymbol (gpuGamma, &gamma, sizeof (float)) ;

res = gpuGamma[0] * threadIdx.x;



Memory and Cache Types

Global memory
 [Device] L2 cache
 [SM] L1 cache (shared mem carved out; or L1 shared with tex cache)

« [SM/TPC] Texture cache (separate, or shared with L1 cache)

« [SM] Read-only data cache (storage might be same as tex cache)

Shared memory

« [SM] Shareable only between threads in same thread block
(Hopper/CC 9.x: also thread block clusters)

Constant memory: Constant (uniform) cache

Unified memory programming: Device/host memory sharing

Markus Hadwiger, KAUST 70



Texture Memory

Cached, potentially exhibiting higher bandwidth if there is
locality in the texture fetches;

They are not subject to the constraints on memory access
patterns that global or constant memory reads must respect
to get good performance

The latency of addressing calculations is hidden better,
possibly improving performance for applications that perform
random accesses to the data

No penalty when accessing float4

Optional

— 8-bit and 16-bit integer input data may be optionally converted to 32-
bit floatingpoint

— Packed data may be broadcast to separate variables in a single
operation;

— values in the range [0.0, 1.0] or [-1.0, 1.0]

— texture filtering

— address modes, e.g. wrapping / texture borders
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Additional Texture Functionality

All of these are “free”
— Dedicated hardware

— Must use CUDA texture objects
» See CUDA Programming Guide for more details
» Texture objects can interoperate graphics (OpenGL, DirectX)

Out-of-bounds index handling: clamp or wrap-around
Optional interpolation
— Think: using fp indices for arrays

— Linear, bilinear, trilinear
* Interpolation weights are 9-bit

Optional format conversion
— {char, short, int, fp16} -> float

&7
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Examples of Texture Object Indexing

‘ i (2.5, 0.5)

(1.0, 1.0)

w N O

Index Wrap:

o 1 2 3 4

0
1
2 -
3

Integer indices fall between elements

Optional interpolation:
Weights are determined by coordinate distance

Index Clamp:

w M= O

0O 1 2 3 4

(5.5, 1.5)

L--J

ala]



Native Memory Layout — Data

Locality
CPU GPU
* 1D input * 2D input
* 1D output e 2D output
 Other dimensions e Other dimensions with
Wlth offsets offsets
Input Input Output

Color coded locality
red (near), blue (far)

4

_ Output

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka 22



Space-Filling Curves: Morton Order (Z Order)

Map higher-dimensional space to 1D

« Z-order: Equivalent to quadtree (octree in 3D) depth-first traversal order

0 1
0800, 0
OBRO0, 0

0 1

1,0

1,0

4
0,0
0,0

2

0— 0000|0001 | 0010|0011
Z/_ 0100|0101 0110|0111
= 1 1000[1001| 1010|1011
1Z/1’e_—r5 11001101 | 1110|1111

5 2 3 6 7 8 9 12 13 10 11 14 15
1, 0850, 0841, OO0, Of1, 1860, 1881, 1480, 1461, 1840, 1081, 150, 1
1, ORS0, O 1,080, O, 1880, 1881, 1880, 1881, 1880, 1881, 1880, 1

3 4 3) 6 7 8 9 10 11 12 13 14 15




1D Access

Access to linear Cuda memory
floatd* pos; cudaMalloc( (void**) &pos, x*sizeof (floatd)
Texture reference

— type
— access/filtering mode

texture< floatd, 1, cudaReadModeElementType> texPos;
Bind to linear array

cudaBindTexture (0, texPos, pos, x*sizeof (floatd))):;

cudaUnbindTexture (texPos) ;

Within kernel

floatd pal = texlDfetch( texPos, threadIdx.x)

Writing to a texture that is currently read by some
threads is undefined!!!

) ;



2D Access

« Optimized for 2D / 3D locality

texture< floatd, 2, cudaReadModeElementType> texImg;

* Requires binding to special Array memory -
special memory layout

cudaChannelFormatDesc floatTex =
cudaCreateChannelDesc<floatd>() ;

floatd* src;
cudaArray* img;
cudaMallocArray( &img, &floatTex, w, h);

cudaMemcpyToArray (img, 0, O, src, w*h*sizeof(floatd),
cudaMemcpyHostToDevice) ;

cudaBindTextureToArray( texImg, img, floatTex) ) ;

cudaUnbindTexture (texImg) ;

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka



2D Access

 Within kernel

floatd r = tex2D( texImg, x +xoff, y+yoff);

* Pros
— optimized for 2D locality (optimized memory layout / spacefilling curve)

« Cons

— |If the result of some kernel should be used as 2D texture
cudaMemcpyToArray IS required

— You cannot write to a texture which is currently read from

e CUDA “surfaces” are writeable textures!

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka



Texture performance

SMX
* Texture : 7 3
* Provides hardware accelerated filtered _—
sampling of data (1D, 2D, 3D) Tex
Read-only data cache holds fetched samples
Backed up by the L2 cache 1
Read-only
» SMX vs Fermi SM : Data Cache
4x filter ops per clock T

4x cache capacity L2




Texture Cache Unlocked

SMX
Added a new path for compute 5 7 3
Avoids the texture unit |
Allows a global address to be fetched and cached Tex
Eliminates texture setup |
* Why use it? 0L
Separate pipeline from shared/L1 Read-only
' : . Data Cache
Highest miss bandwidth
Flexible, e.g. unaligned accesses T'
Managed automatically by compiler L2
“const __ restrict” indicates eligibility




A note about caches

L1 and L2 caches

Ignore in software design

Thousands of concurrent | ¢Regi;‘ers$ |
threads — cache blocking L1 | e [Foad
difficult at best R

Registers Registers

3t 1 T 1

Read Read

SMEM SMEM
L1 7 _only | L1 . || only

* Read-only Data Cache
Shared with texture pipeline
* Useful for uncoalesced reads

* Handled by compiler when
const _ restrict__ is used, or
use _1ldg() primitive




Read-only Data Cache

Go through the read-only cache
Not coherent with writes
Thus, addresses must not be written by the same kernel

Two ways to enable:

Decorating pointer arguments as hints to compiler:
Pointer of interest: const _ restrict
* All other pointer arguments: __ restrict__
— Conveys to compiler that no aliasing will occur
Using __Idg() intrinsic
Requires no pointer decoration




Read-only Data Cache

Go through the read-only cache

Not coherent with writes

Thus, addresses must not be written by the same kernel

Two ways to enable:

Decorating pointer argumen”

Pointer of interest: const

* All other pointer argumer
— Conveys to compiler |

Using __Idg() intrinsic
* Requires no pointer deco

__global  void kernel (

int* restrict  output,
const int*  restrict  input )
{
output[idx] = input[idx];




Read-only Data Cache

Go through the read-only cache

Not coherent with writes

Thus, addresses must not be written by the same kernel

Two ways to enable:

Decorating pointer argumen”

Pointer of interest: const

* All other pointer argumer
— Conveys to compiler |

Using __Idg() intrinsic
* Requires no pointer deco

__global  wvoid kernel( int *output,
int *input )

{

output[idx] = 1ldg( &input[idx]




Blocking for L1, Read-only, L2 Caches

Short answer: DON’T

GPU caches are not intended for the same use as CPU caches
Smaller size (especially per thread), so not aimed at temporal reuse

Intended to smooth out some access patterns, help with spilled registers,
etc.

Usually not worth trying to cache-block like you would on CPU
100s to 1,000s of run-time scheduled threads competing for the cache

If it is possible to block for L1 then it’s possible block for SMEM
¢ Same size
* Same or higher bandwidth
* Guaranteed locality: hw will not evict behind your back
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Read-Only Cache Operation

Always attempts to hit
Transaction size: 32 B queries

Warp addresses are converted to queries 4 threads at
a time
— Thus a minimum of 8 queries per warp

— If data within a 32-B segment is needed by multiple threads
In a warp, segment misses at most once

Additional functionality for texture objects
— Interpolation, clamping, type conversion

58



Read-Only Cache Operation

addresses from a warp 15t Query

WL~ |
C—1T 1T 1T e 1T 1T 1T T T 1T 71 71 ]

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
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Read-Only Cache Operation

addresses from a warp 15t Query

WL~ |
[ 1T 1T ey 1 1 1T T T T T T ]

32 64 96 128 160 192 224 256 288 320 352 384 416 448

T S
[ T T T T T T T T T T T ]

32 64 96 128 160 192 224 256 288 320 352 384 416 448

B0



Read-Only Cache Operation

addresses from a warp 15t Query

N - U
C—1T 1T 1T e T T 1T T T 1T 71 71 ]

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
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Read-Only Cache Operation

addresses from a warp 15t Query

N - Y
[ T T Ty 1 1T 1T T T T T T ]

32 64 96 128 160 192 224 256 288 320 352 384 416 448

addresses from a warp 2nd angd 3 Queries

N - U
[ T T s 1 T T 17 1T 1T T ]

32 64 96 128 160 192 224 256 288 320 352 384 416 448

b2



Read-Only Cache Operation

addresses from a warp

N - Y
[ T 1T Ty T T T T T 7
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32 64 96 128 160 192 224 256 288 320 352

addresses from a warp

2" and 3 Queries

N - U
[ T T D 1 1T T 17

32 64 96 12 le0 192 224 256 288 320 352

Note this segment was already requested in the 1°* query:
cache hit, no redundant requests to L2

384

416

448
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Architectures, Memory Configurations and Types
for Different Compute Capabilities
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A,
(¢

NVIDIA Architectures (since first CUDA GPU)

Tesla[cc 1.x5: 2007-2009 Voltacc 7.0,7.21: 2017/2018
+ G80, G9x: 2007 (Geforce 8800, ...) + GV100, ...
GT200: 2008/2009 (GTX 280, ...) (Tesla V100, Titan V, Quadro GV100, ...)
Fermi[cc 2.x): 2010 (2011, 2012, 2013, ...) Turing [cc 7.5]: 2018/2019
« GF100, ... (GTX 480, ...) « TU102, TU104, TU106, TU116, TU117, ...
GF104, ... (GTX 460, ...) (Titan RTX, RTX 2070, 2080 (Ti), GTX 1650, 1660, ...)

GF110, ... (GTX 580, ...)
Ampere [CC 8.0, 8.6, 8.7, 8.8]: 2020

Kepler [CC 3.x: 2012 (2013, 2014, 2016, ...) * GA100, GA102, GA104, GA106, ...; [Nintendo Switch 2]

+ GK104, ... (GTX 680, ...) (A100, RTX 3070, 3080, 3090 (Ti), RTX A6000, ...)
GK110, ... (GTX 780, GTX Titan, ...)

Hopper [cc 9.0], Ada Lovelace [cC 8.9]: 2022/23

- GH100, AD102/103/104/106/107, ...
. GM107, ... (GTX 750Ti, ...); [Nintendo Switch] (H100, H200, GH200, L20, L40, L40S, L2, L4,
GM204, ... (GTX 980, Titan X, ...) RTX 4080 (12/16 GB), RTX 4090, RTX 6000 (Ada), ...)

Maxwell [cc 5.x]: 2015

Pascal [cc 6.x]: 2016 (2017, 2018, 2021, 2022, ...) Blackwell [cC 10.0, 10.1(-11.0), 10.3, 12.0, 12.1]: 2024/2025

+ GP100 (Tesla P100, ...) + GB100, GB200, GB202/203/205/206/207, G10, ...
o (RTX 5080/5090, HGX B200/B300, GB200/GB300 NVL72,
+ GP10x: x=2,4,6,7,8, ...

(GTX 1060, 1070, 1080, Titan X Pascal, Titan Xp, ...) RTX 4000/5000/6000 PRO Blackwell, B40, ...)

_ see https://en.wikipedia.org/wiki/List _of Nvidia_graphics_processing units
Markus Hadwiger, KAUST and https://en.wikipedia.org/wiki/CUDA 94



Viewpart Tranaform

Wiarp Scheduler _ Worp Bcheduisr || Warp Sehetuler Wiarp Soheduier

Dipeich Unit  Dispatch Bt Dispaich Unit  Dispstch Unil  OiEpatch Uit Dispacchilni Oipacch Unit Dispatch Uni
2 4 ks S £ 2 s +

Register File (65,536 x 32-bit)
4 & 2 . . £ B 4 &

Multiprocessor: SMX (CC 3.0) =
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32 SFUS Enm. SFU [Cora Care Cote

Core SFU Care
16 texture units G e sel [0 R
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scheduler exploit ILP GoR o sPu EBNE EOR
(instruction-level parallelism) Gor womt sru [Berd are

Cora SFU

Can dual-issue ALU instructions!
(“superscalar’)
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Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch
3 3+ 4 E s E S .. £ . B

G K1 1 O S M X Register File (65.536 x 32-bit)

e B 2 3 B s
Gm-ﬂ_m - SFU Core Core Core

£
Core
m-c:m re Co SFU |[Core [Core [Cort we Core
Core

Multiprocessor: SMX (CC 3.5) §° _ s 'sru G0 (GO

192 CUDA cores ' ¢ Core Co SFu
(192 =06 32) : ' ' ore SFU

64 DP units s
32 LD/ST units
32 SFUs

16 texture units

LDIST

New read-only
data cache (48KB)




Compute Capab. 3.x (Kepler, Part 1)

K.3.1. Architecture

An SM has a read-only constant cache that is shared by all functional units and speeds up
reads from the constant memory space, which resides in device memory.

There is an L1 cache for each SM and an L2 cache shared by all SMs. The L1 cache is used
to cache accesses to local memory, including temporary register spills. The L2 cache is used
to cache accesses to local and global memory. The cache behavior (e.g., whether reads are
cached in both L1 and L2 or in L2 only) can be partially configured on a per-access basis
using modifiers to the load or store instruction. Some devices of compute capability 3.5 and
devices of compute capability 3.7 allow opt-in to caching of global memory in both L1 and L2
via compiler options.

The same on-chip memory is used for both L1 and shared memory: It can be configured
as 48 KB of shared memory and 16 KB of L1 cache or as 16 KB of shared memory
and 48 KB of L1 cache or as 32 KB of shared memory and 32 KB of L1 cache, using

cudaFuncSetCacheConfig () /CuFuncSetCacheConfig -



Compute Capab. 3.x (Kepler, Part 2)

Note: Devices of compute capability 3.7 add an additional 64 KB of shared memory to each
of the above configurations, yielding 112 KB, 96 KB, and 80 KB shared memory per SM,
respectively. However, the maximum shared memory per thread block remains 48 KB.

Applications may query the L2 cache size by checking the 12cacheSize device property (see
Device Enumeration). The maximum L2 cache size is 1.5 MB.

Each SM has a read-only data cache of 48 KB to speed up reads from device memory. It
accesses this cache either directly (for devices of compute capability 3.5 or 3.7), or via a
texture unit that implements the various addressing modes and data filtering mentioned in

Texture and Surface Memory. When accessed via the texture unit, the read-only data cache is
also referred to as texture cache.




Compute Capab. 3.x (Kepler, Part 3)

K.3.2. Global Memory

Global memory accesses for devices of compute capability 3.x are cached in L2 and for devices
of compute capability 3.5 or 3.7, may also be cached in the read-only data cache described in
the previous section; they are normally not cached in L1. Some devices of compute capability
3.5 and devices of compute capability 3.7 allow opt-in to caching of global memory accesses in
L1 via the -Xptxas -dlcm=ca option to nvcec.

A cache line is 128 bytes and maps to a 128 byte aligned segment in device memory. Memory
accesses that are cached in both L1 and L2 are serviced with 128-byte memory transactions,
whereas memory accesses that are cached in L2 only are serviced with 32-byte memory
transactions. Caching in LZ only can therefore reduce over-fetch, for example, in the case of
scattered memory accesses.

If the size of the words accessed by each thread is more than 4 bytes, a memory request by a
warp is first split into separate 128-byte memory requests that are issued independently:

» Two memory requests, one for each half-warp, if the size is 8 bytes,

» Four memory requests, one for each quarter-warp, if the size is 16 bytes.



Compute Capab. 3.x (Kepler, Part 4)

Each memory request is then broken down into cache line requests that are issued
Independently. A cache line request is serviced at the throughput of L1 or L2 cache in case of a
cache hit, or at the throughput of device memory, otherwise.

Note that threads can access any words in any order, including the same words.

If a non-atomic instruction executed by a warp writes to the same location in global memory
for more than one of the threads of the warp, only one thread performs a write and which
thread does it is undefined.

Data that is read-only for the entire lifetime of the kernel can also be cached in the read-only
data cache described in the previous section by reading it using the  1dg () function (see

Read-Only Data Cache Load Function). When the compiler detects that the read-only condition
s satisfied for some data, it willuse  1dg() to read it. The compiler might not always be able
to detect that the read-only condition is satisfied for some data. Marking pointers used for
loading such data with both the const and  restrict  qualifiers increases the likelihood
that the compiler will detect the read-only condition.

Figure 21 shows some examples of global memory accesses and corresponding memory
transactions.



Maxwell (GM) Architecture

Multiprocessor: SMM (CC 5.x)
» 128 CUDA cores
* 4 DP units; 32 LD/ST units; 32 SFUs

» 8 texture units

4 partitions inside SMM
« 32 CUDA cores each
8 LD/ST units; 8 SFUs each

» Each has its own register file,
warp scheduler, two dispatch units
(but cannot dual-issue ALU insts.!)

Shared memory and L1 cache now
separate!

* L1 cache shares with texture cache

» Shared memory is its own space

PolyMorph Engine 3.0

Tessellator

|

I Viewport Transform

[ Attribute Setup

| |

Stream Output

Warp Scheduler

Dispatch Unit Dispatch Uni

+ +
Register File (16,384 x 32-bit)
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Compute Capab. 5.x (Maxwell, Part 1)

20.4. Compute Capability 5.x

20.4.1. Architecture

An SM consists of:
» 128 CUDA cores for arithmetic operations (see CUDA C++ Best Practices Guide for throughputs

of arithmetic operations),
» 32 special function units for single-precision floating-point transcendental functions,

» 4 warp schedulers.

When an SM is given warps to execute, it first distributes them among the four schedulers. Then, at
every instruction issue time, each scheduler issues one instruction for one of its assigned warps that

is ready to execute, if any.
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Compute Capab. 5.x (Maxwell, Part 2)

An SM has:

» a read-only constant cache that is shared by all functional units and speeds up reads from the
constant memory space, which resides in device memory,

» a unified L1/texture cache of 24 KB used to cache reads from global memory,

» 64 KB of shared memory for devices of compute capability 5.0 or 96 KB of shared memory for
devices of compute capability 5.2.

The unified L1/texture cache is also used by the texture unit that implements the various addressing
modes and data filtering mentioned in Texture and Surface Memory.

There is also an L2 cache shared by all SMs that is used to cache accesses to local or global mem-
ory, including temporary register spills. Applications may query the L2 cache size by checking the
12CacheSize device property (see Device Enumeration).

The cache behavior (e.g., whether reads are cached in both the unified L1/texture cache and L2 or in
L2 only) can be partially configured on a per-access basis using modifiers to the load instruction.
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Compute Capab. 5.x (Maxwell, Part 3)

20.4.2. Global Memory

Global memory accesses are always cached in L2.

Data that is read-only for the entire lifetime of the kernel can also be cached in the unified L1/texture
cache described in the previous section by reading it using the __1dg( ) function (see Read-Only Data
Cache Load Function). When the compiler detects that the read-only condition is satisfied for some
data, it will use __1dg() to read it. The compiler might not always be able to detect that the read-
only condition is satisfied for some data. Marking pointers used for loading such data with both the
const and __restrict__ qualifiers increases the likelihood that the compiler will detect the read-
only condition.

Data that is not read-only for the entire lifetime of the kernel cannot be cached in the unified
L1/texture cache for devices of compute capability 5.0. For devices of compute capability 5.2, it is,
by default, not cached in the unified L 1/texture cache, but caching may be enabled using the following
mechanisms:

» Perform the read using inline assembly with the appropriate modifier as described in the PTX
reference manual;

» Compile with the -Xptxas -dlcm=ca compilation flag, in which case all reads are cached, except
reads that are performed using inline assembly with a modifier that disables caching;

» Compile with the -Xptxas -fscm=ca compilation flag, in which case all reads are cached, in-
cluding reads that are performed using inline assembly regardless of the modifier used.

When caching is enabled using one of the three mechanisms listed above, devices of compute capa-
bility 5.2 will cache global memory reads in the unified L1/texture cache for all kernel launches except
for the kernel launches for which thread blocks consume too much of the SM'’s register file. These

exceptions are reported by the profiler.
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Compute Capab. 5.x (Maxwell, Part 4)

20.4.3. Shared Memory

Shared memory has 32 banks that are organized such that successive 32-bit words map to successive
banks. Each bank has a bandwidth of 32 bits per clock cycle.

A shared memory request for a warp does not generate a bank conflict between two threads that
access any address within the same 32-bit word (even though the two addresses fall in the same bank).
In that case, for read accesses, the word is broadcast to the requesting threads and for write accesses,
each address is written by only one of the threads (which thread performs the write is undefined).

Figure 39 shows some examples of strided access.

Figure 40 shows some examples of memory read accesses that involve the broadcast mechanism.
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NVIDIA Pascal GP100 SM
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Compute Capab. 6.x (Pascal, Part 1)

20.5. Compute Capability 6.x

20.5.1. Architecture

An SM consists of:
» 64 (compute capability 6.0) or 128 (6.1 and 6.2) CUDA cores for arithmetic operations,

» 16 (6.0) or 32 (6.1 and 6.2) special function units for single-precision floating-point transcenden-
tal functions,

» 2 (6.0) or 4 (6.1 and 6.2) warp schedulers.

When an SM is given warps to execute, it first distributes them among its schedulers. Then, at every
instruction issue time, each scheduler issues one instruction for one of its assigned warps that is ready

to execute, if any.
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Compute Capab. 6.x (Pascal, Part 2)

An SM has:

» a read-only constant cache that is shared by all functional units and speeds up reads from the
constant memory space, which resides in device memory,

» aunified L1/texture cache for reads from global memory of size 24 KB (6.0 and 6.2) or 48 KB (6.1),
» ashared memory of size 64 KB (6.0 and 6.2) or 96 KB (6.1).

The unified L1/texture cache is also used by the texture unit that implements the various addressing
modes and data filtering mentioned in Texture and Surface Memory.

There is also an L2 cache shared by all SMs that is used to cache accesses to local or global mem-
ory, including temporary register spills. Applications may query the L2 cache size by checking the
12CacheSize device property (see Device Enumeration).

The cache behavior (for example, whether reads are cached in both the unified L 1/texture cache and L2
or in L2 only) can be partially configured on a per-access basis using modifiers to the load instruction.
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Compute Capab. 6.x (Pascal, Part 3)

20.5.2. Global Memory

Global memory behaves the same way as in devices of compute capability 5.x (See Global Memory).

20.5.3. Shared Memory

Shared memory behaves the same way as in devices of compute capability 5.x (See Shared Memory).
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NVIDIA Volta SM

Multiprocessor: SM (CC 7.0)
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NVIDIA Turing SM
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Compute Capab. 7.x (Volta/Turing, Part 1)

20.6. Compute Capability 7.x

20.6.1. Architecture

An SM consists of:
» 64 FP32 cores for single-precision arithmetic operations,
» 32 FP64 cores for double-precision arithmetic operations,”
» 64 INT32 cores for integer math,
» 8 mixed-precision Tensor Cores for deep learning matrix arithmetic
» 16 special function units for single-precision floating-point transcendental functions,
» 4 warp schedulers.

An SM statically distributes its warps among its schedulers. Then, at every instruction issue time, each
scheduler issues one instruction for one of its assigned warps that is ready to execute, if any.

28 2 FP64 cores for double-precision arithmetic operations for devices of compute capabilities 7.5

Markus Hadwiger, KAUST 113



Compute Capab. 7.x (Volta/Turing, Part 2)

An SM has:

» aread-only constant cache that is shared by all functional units and speeds up reads from the
constant memory space, which resides in device memory,

» a unified data cache and shared memory with a total size of 128 KB (Volta) or 96 KB (Turing).

Shared memory is partitioned out of unified data cache, and can be configured to various sizes (See
Shared Memory.) The remaining data cache serves as an L1 cache and is also used by the texture unit

that implements the various addressing and data filtering modes mentioned in Texture and Surface
Memory.

Markus Hadwiger, KAUST 114



AR
<

Compute Capab. 7.x (Volta/Turing, Part 3)

20.6.3. Global Memory

Global memory behaves the same way as in devices of compute capability 5.x (See Global Memory).
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Compute Capab. 7.x (Volta/Turing, Part 4)

20.6.4. Shared Memory

The amount of the unified data cache reserved for shared memory is configurable on a per kernel
basis. For the Volta architecture (compute capability 7.0), the unified data cache has a size of 128 KB,
and the shared memory capacity can be set to 0, 8, 16, 32, 64 or 96 KB. For the Turing architecture
(compute capability 7.5), the unified data cache has a size of 96 KB, and the shared memory capacity
can be set to either 32 KB or 64 KB. Unlike Kepler, the driver automatically configures the shared
memory capacity for each kernel to avoid shared memory occupancy bottlenecks while also allowing
concurrent execution with already launched kernels where possible. In most cases, the driver’s default
behavior should provide optimal performance.

Because the driver is not always aware of the full workload, it is sometimes useful for applications
to provide additional hints regarding the desired shared memory configuration. For example, a kernel
with little or no shared memory use may request a larger carveout in order to encourage concurrent
execution with later kernels that require more shared memory. The new cudaFuncSetAttribute()
API allows applications to set a preferred shared memory capacity, or carveout, as a percentage of
the maximum supported shared memory capacity (96 KB for Volta, and 64 KB for Turing).

cudaFuncSetAttribute() relaxes enforcement of the preferred shared capacity compared to the
legacy cudaFuncSetCacheConfig() APlintroduced with Kepler. The legacy APl treated shared mem-
ory capacities as hard requirements for kernel launch. As a result, interleaving kernels with different
shared memory configurations would needlessly serialize launches behind shared memory reconfigu-
rations. With the new API, the carveout is treated as a hint. The driver may choose a different config-
uration if required to execute the function or to avoid thrashing.
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Compute Capab. 7.x (Volta/Turing, Part 5)

// Device code
__global__ void MyKernel(...)

{
__shared__ float buffer[BLOCK_DIM];

b

// Host code

int carveout = 50; // prefer shared memory capacity 50% of maximum
// Named Carveout Values:

// carveout = cudaSharedmemCarveoutDefault; // (=1)

// carveout = cudaSharedmemCarveoutMaxL1; // (9)
// carveout = cudaSharedmemCarveoutMaxShared; // (168)
cudaFuncSetAttribute(MyKernel, cudaFuncAttributePreferredSharedMemoryCarveout,

—.carveout);
MyKernel <<<gridDim, BLOCK_DIM>>>(...);

]

In addition to an integer percentage, several convenience enums are provided as listed in the code
comments above. Where a chosen integer percentage does not map exactly to a supported capacity
(SM 7.0 devices support shared capacities of O, 8, 16, 32, 64, or 96 KB), the next larger capacity is used.
For instance, in the example above, 50% of the 96 KB maximum is 48 KB, which is not a supported
shared memory capacity. Thus, the preference is rounded up to 64 KB.
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Compute Capab. 7.x (Volta/Turing, Part 6)

Compute capability 7.x devices allow a single thread block to address the full capacity of shared mem-
ory: 96 KB on Volta, 64 KB on Turing. Kernels relying on shared memory allocations over 48 KB per
block are architecture-specific, as such they must use dynamic shared memory (rather than statically
sized arrays) and require an explicit opt-in using cudaFuncSetAttribute() as follows.

// Device code
__global__ void MyKernel(...)
{

extern __shared__ float buffer[];

}

// Host code

int maxbytes = 98304; // 96 KB

cudaFuncSetAttribute(MyKernel, cudaFuncAttributeMaxDynamicSharedMemorySize, maxbytes);
MyKernel <<<gridDim, blockDim, maxbytes>>>(...);

Otherwise, shared memory behaves the same way as for devices of compute capability 5.x (See Shared
Memory).
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NVIDIA GA100 SM
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NVIDIA GA10x SM

Multiprocessor: SM (CC 8.6)
» 128 (64+64) FP32 + 64 INT32 cores
« 2 () FP64 cores

« 4 31 gen tensor cores

« 1 2"d gen RT (ray tracing) core
4 partitions inside SM
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* 4 LD/ST units; 4 SFUs each

« 1 3" gen tensor core each

« Each has: warp scheduler,
dispatch unit, 16K register file
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NVIDIA AD102 SM

Multiprocessor: SM (CC 8.9)
» 128 (64+64) FP32 + 64 INT32 cores
« 2 (1) FP64 cores (not in diagram)
* 4x 4th gen tensor cores

« 1x 3@ gen RT (ray tracing) core

* ++ thread block clusters, FP8, ... (?)

4 partitions inside SM

» 32 (16+16) FP32 + 16 INT32 cores
* 4x LD/ST units; 4 SFUs each
« 1x 4t gen tensor core each

« Each has: warp scheduler,
dispatch unit, 16K register file
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Compute Capab. 8.x (Ampere/Ada, Part 1)

20.7. Compute Capability 8.x
20.7.1. Architecture

A Streaming Multiprocessor (SM) consists of:

B

>

>

64 FP32 cores for single-precision arithmetic operations in devices of compute capability 8.0 and
128 FP32 cores in devices of compute capability 8.6, 8.7 and 8.9,

32 FP64 cores for double-precision arithmetic operations in devices of compute capability 8.0
and 2 FP64 cores in devices of compute capability 8.6, 8.7 and 8.9

64 INT32 cores for integer math,

4 mixed-precision Third-Generation Tensor Cores supporting half-precision (fp16),
__nv_bfloat16, tf32, sub-byte and double precision (fp64) matrix arithmetic for compute
capabilities 8.0, 8.6 and 8.7 (see Warp Matrix Functions for details),

4 mixed-precision Fourth-Generation Tensor Cores supporting fp8, fp16, __nv_bfloat16,
1132, sub-byte and fp64 for compute capability 8.9 (see Warp Matrix Functions for details),

16 special function units for single-precision floating-point transcendental functions,

4 warp schedulers.

An SM statically distributes its warps among its schedulers. Then, at every instruction issue time, each
scheduler issues one instruction for one of its assigned warps that is ready to execute, if any.



Compute Capab. 8.x (Ampere/Ada, Part 2)

An SM has:

» aread-only constant cache that is shared by all functional units and speeds up reads from the
constant memory space, which resides in device memory,

» a unified data cache and shared memory with a total size of 192 KB for devices of compute ca-
pability 8.0 and 8.7 (1.5x Volta’s 128 KB capacity) and 128 KB for devices of compute capabilities
8.6 and 8.9.

Shared memory is partitioned out of the unified data cache, and can be configured to various sizes (see
Shared Memory). The remaining data cache serves as an L1 cache and is also used by the texture unit
that implements the various addressing and data filtering modes mentioned in Texture and Surface
Memory.
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Compute Capab. 8.x (Ampere/Ada, Part 3)

20.7.2. Global Memory

Global memory behaves the same way as for devices of compute capability 5.x (See Global Memory).
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Compute Capab. 8.x (Ampere/Ada, Part 3)

20.7.3. Shared Memory

Similar to the Volta architecture, the amount of the unified data cache reserved for shared memory is
configurable on a per kernel basis. For the NVIDIA Ampere GPU Architecture, the unified data cache
has a size of 192 KB for devices of compute capability 8.0 and 8.7 and 128 KB for devices of compute
capabilities 8.6 and 8.9. The shared memory capacity canbe setto 0, 8, 16, 32,64, 100, 132 or 164 KB
for devices of compute capability 8.0and 8.7,and to 0, 8, 16, 32, 64 or 100 KB for devices of compute
capabilities 8.6 and 8.9.

An application can set the carveout, i.e, the preferred shared memory capacity, with the cudaFunc-
SetAttribute().

cudaFuncSetAttribute(kernel_name, cudaFuncAttributePreferredSharedMemoryCarveout,
—.carveout) ;
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Compute Capab. 8.x (Ampere/Ada, Part 4)

The API can specify the carveout either as an integer percentage of the maximum supported shared
memory capacity of 164 KB for devices of compute capability 8.0 and 8.7 and 100 KB for devices
of compute capabilities 8.6 and 8.9 respectively, or as one of the following values: {cudaShared-
memCarveoutDefault, cudaSharedmemCarveoutMaxL1, or cudaSharedmemCarveoutMaxShared.
When using a percentage, the carveout is rounded up to the nearest supported shared memory capac-
ity. For example, for devices of compute capability 8.0, 50% will map to a 100 KB carveout instead of
an 82 KB one. Setting the cudaFuncAttributePreferredSharedMemoryCarveout is considered a
hint by the driver; the driver may choose a different configuration, if needed.

Devices of compute capability 8.0 and 8.7 allow a single thread block to address up to 163 KB of shared
memory, while devices of compute capabilities 8.6 and 8.9 allow up to 99 KB of shared memory. Ker-
nels relying on shared memory allocations over 48 KB per block are architecture-specific, and must
use dynamic shared memory rather than statically sized shared memory arrays. These kernels require
an explicit opt-in by using cudaFuncSetAttribute( ) to set the cudaFuncAttributeMaxDynamic-
SharedMemorySize; see Shared Memory for the NVIDIA Volta GPU Architecture.

Note that the maximum amount of shared memory per thread block is smaller than the maximum

shared memory partition available per SM. The 1 KB of shared memory not made available to a thread
block is reserved for system use.
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Compute Capab. 9.x (Hopper, Part 1)

20.8. Compute Capability 9.0
20.8.1. Architecture

A Streaming Multiprocessor (SM) consists of:

B

B
>
>

B

>

128 FP32 cores for single-precision arithmetic operations,
64 FP64 cores for double-precision arithmetic operations,
64 INT32 cores for integer math,

4 mixed-precision fourth-generation Tensor Cores supporting the new FP8 input type in either
E4M3 or E5M2 for exponent (E) and mantissa (M), half-precision (fp16), __nv_bfloat16, tf32,
INT8 and double precision (fp64) matrix arithmetic (see Warp Matrix Functions for details) with
sparsity support,

16 special function units for single-precision floating-point transcendental functions,

4 warp schedulers.

An SM statically distributes its warps among its schedulers. Then, at every instruction issue time, each
scheduler issues one instruction for one of its assigned warps that is ready to execute, if any.
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Compute Capab. 9.x (Hopper, Part 2)

An SM has:

» aread-only constant cache that is shared by all functional units and speeds up reads from the
constant memory space, which resides in device memory,

» a unified data cache and shared memory with a total size of 256 KB for devices of compute
capability 9.0 (1.33x NVIDIA Ampere GPU Architecture’s 192 KB capacity).

Shared memory is partitioned out of the unified data cache, and can be configured to various sizes (see
Shared Memory). The remaining data cache serves as an L1 cache and is also used by the texture unit
that implements the various addressing and data filtering modes mentioned in Texture and Surface
Memory.
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Compute Capab. 9.x (Hopper, Part 3)

20.8.2. Global Memory

Global memory behaves the same way as for devices of compute capability 5.x (See Global Memory).
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Compute Capab. 9.x (Hopper, Part 4)

20.8.3. Shared Memory

Similar to the NVIDIA Ampere GPU architecture, the amount of the unified data cache reserved for
shared memory is configurable on a per kernel basis. For the NVIDIA H100 Tensor Core GPU architec-
ture, the unified data cache has a size of 256 KB for devices of compute capability 9.0. The shared
memory capacity can be set to 0, 8, 16, 32, 64, 100, 132, 164, 196 or 228 KB.

As with the NVIDIA Ampere GPU architecture, an application can configure its preferred shared memory
capacity, i.e., the carveout. Devices of compute capability 9.0 allow a single thread block to address
up to 227 KB of shared memory. Kernels relying on shared memory allocations over 48 KB per block
are architecture-specific, and must use dynamic shared memory rather than statically sized shared
memory arrays. These kernels require an explicit opt-in by using cudaFuncSetAttribute() to set
the cudaFuncAttributeMaxDynamicSharedMemorySize; see Shared Memory for the NVIDIA Volta
GPU Architecture.

Note that the maximum amount of shared memory per thread block is smaller than the maximum
shared memory partition available per SM. The 1 KB of shared memory not made available to a thread
block is reserved for system use.
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Compute Capab. 10.x (Blackwell, Part 1)

20.9. Compute Capability 10.0
20.9.1. Architecture

A Streaming Multiprocessor (SM) consists of:

B

=3
>

b

>

>

128 FP32 cores for single-precision arithmetic operations,

64 FP64 cores for double-precision arithmetic operations,
64 INT32 cores for integer math,

4 mixed-precision fifth-generation Tensor Cores supporting FP8 input type in either E4AM3 or ESM2
for exponent (E) and mantissa (M), half-precision (fp16), __nv_bfloat16, tf32, INT8 and double
precision (fp64) matrix arithmetic (see Warp Matrix Functions for details) with sparsity support,

16 special function units for single-precision floating-point transcendental functions,

4 warp schedulers.

An SM statically distributes its warps among its schedulers. Then, at every instruction issue time, each
scheduler issues one instruction for one of its assigned warps that is ready to execute, if any.
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Compute Capab. 10.x (Blackwell, Part 2)

An SM has:

» aread-only constant cache that is shared by all functional units and speeds up reads from the
constant memory space, which resides in device memory,

» a unified data cache and shared memory with a total size of 256 KB for devices of compute
capability 10.0

Shared memory is partitioned out of the unified data cache, and can be configured to various sizes (see
Shared Memory). The remaining data cache serves as an L1 cache and is also used by the texture unit
that implements the various addressing and data filtering modes mentioned in Texture and Surface
Memory.

Markus Hadwiger, KAUST 135



Compute Capab. 10.x (Blackwell, Part 3)

20.9.2. Global Memory

Global memory behaves the same way as for devices of compute capability 5.x (See Global Memory).
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Compute Capab. 10.x (Blackwell, Part 4)

20.9.3. Shared Memory

The amount of the unified data cache reserved for shared memory is configurable on a per kernel basis
and is identical to compute capability 9.0. The unified data cache has a size of 256 KB for devices of
compute capability 10.0. The shared memory capacity can be set to 0, 8, 16, 32, 64, 100, 132, 164,
196 or 228 KB.

As with the NVIDIA Ampere GPU architecture, an application can configure its preferred shared mem-
ory capacity, i.e., the carveout. Devices of compute capability 10.0 allow a single thread block to
address up to 227 KB of shared memory. Kernels relying on shared memory allocations over 48 KB
per block are architecture-specific, and must use dynamic shared memory rather than statically sized
shared memory arrays. These kernels require an explicit opt-in by using cudaFuncSetAttribute()
to set the cudaFuncAttributeMaxDynamicSharedMemorySize; see Shared Memory for the Volta
architecture.

Note that the maximum amount of shared memory per thread block is smaller than the maximum
shared memory partition available per SM. The 1 KB of shared memory not made available to a thread
block is reserved for system use.
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Compute Capab. 12.x (Blackwell, Part 5)

20.10. Compute Capability 12.0
20.10.1. Architecture

A Streaming Multiprocessor (SM) consists of:
» 128 FP32 cores for single-precision arithmetic operations,
» 2 FP64 cores for double-precision arithmetic operations,
» 64 INT32 cores for integer math,

» Mixed-precision fifth-generation Tensor Core(s) supporting FP8 input type in either E4M3 or E5M2
for exponent (E) and mantissa (M), half-precision (fp16), __nv_bfloat16, tf32, INT8 and double
precision (fp64) matrix arithmetic (see Warp Matrix Functions for details) with sparsity support,

» 16 special function units for single-precision floating-point transcendental functions,

» 4 warp schedulers.

An SM statically distributes its warps among its schedulers. Then, at every instruction issue time, each
scheduler issues one instruction for one of its assigned warps that is ready to execute, if any.
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Compute Capab. 12.x (Blackwell, Part 6)

An SM has:

» a read-only constant cache that is shared by all functional units and speeds up reads from the
constant memory space, which resides in device memory,

» a unified data cache and shared memory with a total size of 100 KB for devices of compute
capability 12.0

Shared memory is partitioned out of the unified data cache, and can be configured to various sizes (see
Shared Memory). The remaining data cache serves as an L1 cache and is also used by the texture unit
that implements the various addressing and data filtering modes mentioned in Texture and Surface
Memory.
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Compute Capab. 12.x (Blackwell, Part 7)

20.10.2. Global Memory

Global memory behaves the same way as for devices of compute capability 5.x (See Global Memory).
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Compute Capab. 12.x (Blackwell, Part 8)

20.10.3. Shared Memory

The amount of the unified data cache reserved for shared memory is configurable on a per kernel basis
and is identical to compute capability 9.0. The unified data cache has a size of 100 KB for devices of
compute capability 12.0. The shared memory capacity can be set to 0, 8, 16, 32, 64, or 100 KB.

As with the NVIDIA Ampere GPU architecture, an application can configure its preferred shared mem-
ory capacity, i.e., the carveout. Devices of compute capability 12.0 allow a single thread block to
address up to 99 KB of shared memory. Kernels relying on shared memory allocations over 48 KB
per block are architecture-specific, and must use dynamic shared memory rather than statically sized
shared memory arrays. These kernels require an explicit opt-in by using cudaFuncSetAttribute()
to set the cudaFuncAttributeMaxDynamicSharedMemorySize; see Shared Memory for the Volta
architecture.

Note that the maximum amount of shared memory per thread block is smaller than the maximum
shared memory partition available per SM. The 1 KB of shared memory not made available to a thread
block is reserved for system use.
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