
CS 380 - GPU and GPGPU Programming
Lecture 14: CUDA Memories, Pt. 1

Markus Hadwiger, KAUST



2

Reading Assignment #7 (until Oct 20)

Read (required):

• Programming Massively Parallel Processors book (4th edition),
Chapter 5 (Memory architecture and data locality)



Code Example #2: Matrix MultiplyCode Example #2: Matrix Multiply







Example: Matrix Multiplication (4)
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__global__ void MatrixMul( float *matA, float *matB, float *matC, int w )
{

__shared__ float blockA[ BLOCK_SIZE ][ BLOCK_SIZE ];
__shared__ float blockB[ BLOCK_SIZE ][ BLOCK_SIZE ];

int bx = blockIdx.x; int tx = threadIdx.x;
int by = blockIdx.y; int ty = threadIdx.y;

int col = bx * BLOCK_SIZE + tx;
int row = by * BLOCK_SIZE + ty;

float out = 0.0f;
for ( int m = 0; m < w / BLOCK_SIZE; m++ ) {

blockA[ ty ][ tx ] = matA[ row * w +   m * BLOCK_SIZE + tx       ];
blockB[ ty ][ tx ] = matB[ col     + ( m * BLOCK_SIZE + ty ) * w ];
__syncthreads();

for ( int k = 0; k < BLOCK_SIZE; k++ ) {
out += blockA[ ty ][ k ] * blockB[ k ][ tx ];

}
__syncthreads();

}

matC[ row * w + col ] = out;
}

Caveat: for brevity, this code assumes matrix sizes 
are a multiple of the block size (either because 
they really are, or because padding is used; 
otherwise guard code would need to be added) 
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Running on a V100 (Volta) SM

courtesy Kayvon Fatahalian

(sub-core == SM partition)



Limits in CUDA Programming Guide
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Limits in CUDA Programming Guide
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Chapter 20.2
(CUDA 13,
Oct 2, 2025



Limits in CUDA Programming Guide
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Chapter 20.2
(CUDA 13,
Oct 2, 2025



What About Memory Performance?
(more to come later…)

What About Memory Performance?
(more to come later…)
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Memory Layout of a Matrix in C
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row-major order !
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Memory Coalescing

• When accessing global memory, peak performance utilization 
occurs when all threads in a half warp (full warp on Fermi+) 
access continuous memory locations.

• Requirements relaxed on >=1.2 devices; L1 cache on Fermi!
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Thread 1
Thread 2

Not coalesced coalesced
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CUDA MemoryCUDA Memory







CUDA Memory:
Overview

CUDA Memory:
Overview



now cached in L1!
(Fermi or newer)

now cached in L2!
(Fermi or newer)



Memory and Cache Types

Global memory

• [Device] L2 cache

• [SM] L1 cache (shared mem carved out;  or L1 shared with tex cache)

• [SM/TPC] Texture cache (separate, or shared with L1 cache)

• [SM] Read-only data cache (storage might be same as tex cache)

Shared memory

• [SM] Shareable only between threads in same thread block
(Hopper/CC 9.x: also thread block clusters)

Constant memory: Constant (uniform) cache

Unified memory programming: Device/host memory sharing
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CUDA Memory:
Shared Memory
CUDA Memory:
Shared Memory



Memory and Cache Types

Global memory

• [Device] L2 cache

• [SM] L1 cache (shared mem carved out;  or L1 shared with tex cache)

• [SM/TPC] Texture cache (separate, or shared with L1 cache)

• [SM] Read-only data cache (storage might be same as tex cache)

Shared memory

• [SM] Shareable only between threads in same thread block
(Hopper/CC 9.x: also thread block clusters)

Constant memory: Constant (uniform) cache

Unified memory programming: Device/host memory sharing
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later: use carveout

use cudaFuncSetAttribute()



8-byte bank size is/was only available on Kepler !
(using the now deprecated cudaSharedMemConfig()
all other architectures so far use a fixed bank size of 4 bytes!
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Parallel Memory Architecture

• In a parallel machine, many threads access memory
– Therefore, memory is divided into banks

– Essential to achieve high bandwidth

• Each bank can service one address per cycle
– A memory can service as many simultaneous 

accesses as it has banks

• Multiple simultaneous accesses to a bank
result in a bank conflict 
– Conflicting accesses are serialized

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

now: 32 banks!



Memory Banks

all architectures
since Fermi:

32 banks

bank size:
4 bytes / bank

(only on Kepler:
optionally
configurable to
8 bytes / bank)
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Bank Addressing Examples

• No Bank Conflicts
– Linear addressing 

stride == 1

• No Bank Conflicts
– Random 1:1 Permutation

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

now: 32 banks!
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Bank Addressing Examples

• 2-way Bank Conflicts
– Linear addressing 

stride == 2

• 8-way Bank Conflicts
– Linear addressing 

stride == 8

Thread 11
Thread 10
Thread 9
Thread 8

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2
Bank 1
Bank 0

x8

x8

now: 32 banks!
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How addresses map to banks on G80

• Each bank has a bandwidth of 32 bits per clock cycle

• Successive 32-bit words are assigned to successive 
banks

• G80 has 16 banks
– So bank = address % 16

– Same as the size of a half-warp
• No bank conflicts between different half-warps, only within a 

single half-warp

Fermi and newer have 32 banks,
considers full warps instead of half warps!

now: 32 banks!

now: % 32

now: full warps



full warps instead of half warps on Fermi and newer!



now: 32 but same rule: s must be odd!



not true on Fermi+, because of multi-cast!

not true on Fermi+, because of multi-cast!





multi-cast on Fermi and newer!







NVIDIA Architectures (since first CUDA GPU)

Tesla [CC 1.x]: 2007-2009

• G80, G9x: 2007 (Geforce 8800, ...)
GT200: 2008/2009 (GTX 280, ...)

Fermi [CC 2.x]: 2010 (2011, 2012, 2013, …)

• GF100, ... (GTX 480, ...)
GF104, ... (GTX 460, ...)
GF110, ... (GTX 580, ...)

Kepler [CC 3.x]: 2012 (2013, 2014, 2016, …)

• GK104, ... (GTX 680, ...)
GK110, ... (GTX 780, GTX Titan, ...)

Maxwell [CC 5.x]: 2015

• GM107, ... (GTX 750Ti, ...); [Nintendo Switch]
GM204, ... (GTX 980, Titan X, ...)

Pascal [CC 6.x]: 2016 (2017, 2018, 2021, 2022, …)

• GP100 (Tesla P100, ...)

• GP10x: x=2,4,6,7,8, ...
(GTX 1060, 1070, 1080, Titan X Pascal, Titan Xp, ...)
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Volta [CC 7.0, 7.2]: 2017/2018

• GV100, ...
(Tesla V100, Titan V, Quadro GV100, ...)

Turing [CC 7.5]: 2018/2019

• TU102, TU104, TU106, TU116, TU117, ...
(Titan RTX, RTX 2070, 2080 (Ti), GTX 1650, 1660, ...)

Ampere [CC 8.0, 8.6, 8.7, 8.8]: 2020

• GA100, GA102, GA104, GA106, ...; [Nintendo Switch 2]
(A100, RTX 3070, 3080, 3090 (Ti), RTX A6000, ...)

Hopper [CC 9.0], Ada Lovelace [CC 8.9]: 2022/23

• GH100, AD102/103/104/106/107, ...
(H100, H200, GH200, L20, L40, L40S, L2, L4,
RTX 4080 (12/16 GB), RTX 4090, RTX 6000 (Ada), ...)

Blackwell [CC 10.0, 10.1(→11.0), 10.3, 12.0, 12.1]: 2024/2025

• GB100, GB200, GB202/203/205/206/207, G10, ...
(RTX 5080/5090, HGX B200/B300, GB200/GB300 NVL72,
RTX 4000/5000/6000 PRO Blackwell, B40, ...)

see https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
and https://en.wikipedia.org/wiki/CUDA



Compute Capab. 5.x (Maxwell)
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Compute Capab. 6.x (Pascal)
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Compute Capab. 7.x (Volta/Turing) [1]

Markus Hadwiger, KAUST 45



Compute Capab. 7.x (Volta/Turing) [2]
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Compute Capab. 7.x (Volta/Turing) [3]
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Compute Capab. 7.x (Volta/Turing) [4]
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Compute Capab. 8.x (Ampere/Ada) [1]
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Compute Capab. 8.x (Ampere/Ada) [2]

Markus Hadwiger, KAUST 50



Compute Capab. 9.x (Hopper)
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Compute Capab. 10.x / 12.x (Blackwell)
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Thank you.


