A
" %:‘bd o hdUT chn fyg: (((‘)), KAUST

N

CS 380 - GPU and GPGPU Programming
Lecture 14: CUDA Memories, Pt. 1

Markus Hadwiger, KAUST |

Reading Assignment #7 (until Oct 20)

Read (required):

* Programming Massively Parallel Processors book (4th edition),
Chapter 5 (Memory architecture and data locality)

Code Example #2: Matrix Multiply

Multiply Using Several Blocks - |dea

 One thread per element of P

« Load sub-blocks of M and N into
shared memory

« Each thread reads one element of ' . 1 5

M and one of N

« Reuse each sub-block for all |
threads, i.e. for all elements of P J

« Quter loop on sub-blocks

+—r—> +—r

ol B B
bl Ll B Ll

h 4

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

Multiply Using Several Blocks - |dea

 One thread per element of P

« Load sub-blocks of M and N into
shared memory

« Each thread reads one element of | 1 "

M and one of N

« Reuse each sub-block for all
threads, i.e. for all elements of P Y J

« Quter loop on sub-blocks

+—r—> +—r

ol B B
bl Ll B Ll

h 4

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

Example: Matrix Multiplication (4)

__global void MatrixMul(float *matA, float *matB, float *matC, int w)

{
__shared float blockA[BLOCK SIZE][BLOCK SIZE];
__shared float blockB[BLOCK SIZE][BLOCK SIZE];
int bx = blockIdx.x; int tx = threadIdx.x;
int by = blockIdx.y; int ty = threadIdx.y;
int col = bx * BLOCK SIZE + tx;
int row = by * BLOCK SIZE + ty;
float out = 0.0f;
for (int m = 0; m < w / BLOCK SIZE; mt++) {
blockA[ty][tx] = matA[row * w + m * BLOCK SIZE + tx 1;
blockB[ty][tx] = matB[col + (m * BLOCK SIZE + ty) * w 1;
__syncthreads() ;
for (int k = 0; k < BLOCK SIZE; k++) {
out += blockA[ty][k] * blockB[k][tx];
}
__syncthreads() ;
} . : .
Caveat: for brevity, this code assumes matrix sizes
matC[row * w + col] = out; are a multiple of the block size (either because
} they really are, or because padding is used;
6 otherwise guard code would need to be added)

Running on a V100 (Volta) SM

Warp Selector l | Warp Selector I Warp Selector ’ ’ Warp Selector

I O] || O | EESET | TSR i comotverint n, flosts o,

OO NEEEE OCCEEEEE OCEEErEE OOEeEmE e float* output)
DONEEEE ODEEEEEE OOSEEEE OOeeemmE

@@.-.-. @-i.-. @@...-. @@...-. -_sh?r'ed__ float suppor':[THREAD%_PER_BLK+2];
OOnEEEE OOEEEEE DO EE OOSEEEE | 0t s > odadex * blockbin.x »
OoEENEE DDONEEEE OOEEEEE OOeeEeEE o
@@...-. @@...-. E”El...-. @@...-. support[threadIdx.x] = input[index];
m=l] | | Esi=F] [Ee=f] | EEEpLL] if (threadIdx.x < 2) {

} #define THREADS_PER_BLK 128

wjm] § f] § W] § J] J Riwjo] § 77 | Wi} P qq T SRR Y RERDS PER. BLK+threadTdx.]
AR T : il a0 I o i = input[index+THREADS_PER_BLK];
R R ! !
R1 R1 R __syncthreads();
R2 Warp 4 R2 Warp 5 R2 Warp 6 Warp 7

float result = @.6f; // thread-local

for (int i=@; i<3; i++)
g o 4 ::' result += support[threadIdx.x + i];
R Warp 60 R2 Warp 61 R Warp 62 B2 Warp 63

output[index] = result/ 3.f;

“Shared” memory + L1 cache storage (128 KB) S;SPEUEC‘ }
TES

A convolve thread block is executed by 4 warps
(4 warps x 32 threads/warp = 128 CUDA threads per block)

- == SM rtiti
SM core operation each clock: (sub-core == SM partition)

— Each sub-core selects one runnable warp (from the 16 warps in its partition)

— Each sub-core runs next instruction for the CUDA threads in the warp (this instruction may apply to all or a subset of the CUDA

threads in a warp depending on divergence) .
paep g g courtesy Kayvon Fatahalian Stanford (5149, Fall 2021

Limits in CUDA Programming Guide

Compute Capability
Technical Specifications 50(52|53/60|6.1/62| 70| 72|75|80|8.6|87(89|9.0

Maximum number of resident | 32 16| 128 32| 16| 128 16| 128
grids per device (Concurrent
Kernel Execution)

Maximum dimensionality of grid | 3
of thread blocks

Maximum x -dimension of a grid | 23'-1
of thread blocks [thread blocks]

Maximum y- or z-dimension of a | 65535
grid of thread blocks

Maximum dimensionality of | 3
thread block

Maximum x- or y-dimensionality | 1024
of a block

Maximum z-dimension of a block | 64

Maximum number of threads per | 1024

block

Warp size s

Maximum number of resident | 32 16| 32| 16 24 | 32

blocks per SM

Maximum number of resident | 64 32| 64 | 48 64

warps per SM

Maximum number of resident | 2048 102420481536 2048

threads per SM 8

Limits in CUDA Programming Guide

Chapter 20.2
(CUDA 13,
Oct 2, 2025

Compute Capability

Technical Specifications

|75 !s‘o [8‘6 |87 | 89 |90 [710‘0]7 nol 120

Maximum number of resident grids per de- | 128
vice (Concurrent Kernel Execution)
Maximum dimensionality of grid of thread | 3
| blocks
| Maximum x -dimension of a grid of thread | 23'-1
blocks
Maximum y- or z-dimension of a grid of | 65535
thread blocks
Maximum dimensionality of thread block 3
Maximum x- or y-dimensionality of a block | 1024
Maximum z-dimension of a block 64
Maximum number of threads per block 1024
| Warp size 32
| Maximum number of resident blocks per [16 | 32 16 24 | 32 24
SM
| Maximum number of residentwarpsperSM | 32 | 64 | 48 64 48
Maximum number of resident threads per | 1024 2048 1536 2048 1536
SM
Number of 32-bit registers per SM 64 K
Maximum number of 32-bit registers per | 64 K
thread block
Maximum number of 32-bit registers per | 255
thread
Maximum amount of shared memory per | 64 164 | 100 | 164 | 100 | 228 KB 100
| SM KB |KB |KB | KB | KB KB
Maximum amount of shared memory per | 64 163 | 99 163 | 99 | 227 KB 99
| thread block KB |KB | KB | KB | KB KB
Number of shared memory banks 32
Maximum amount of local memory per | 512 KB
thread
| Constant memory size 64 KB

Limits in CUDA Programming Guide

Chapter 20.2
(CUDA 13,
Oct 2, 2025

Compute Capability

Technical Specifications

|75 !s‘o [8‘6 |87 | 89 |90 [710‘0]7 nol 120

I Number of shared memory banks

Maximum number of resident grids per de- | 128
vice (Concurrent Kernel Execution)
Maximum dimensionality of grid of thread | 3
| blocks
| Maximum x -dimension of a grid of thread | 23'-1
blocks
Maximum y- or z-dimension of a grid of | 65535
thread blocks
Maximum dimensionality of thread block 3
Maximum x- or y-dimensionality of a block | 1024
Maximum z-dimension of a block 64
Maximum number of threads per block 1024
| Warp size 32
| Maximum number of resident blocks per [16 | 32 16 24 | 32 24
SM
| Maximum number of residentwarpsperSM | 32 | 64 | 48 64 48
Maximum number of resident threads per | 1024 2048 1536 2048 1536
SM
Number of 32-bit registers per SM 64 K
Maximum number of 32-bit registers per | 64 K
thread block
Maximum number of 32-bit registers per | 255
thread
Maximum amount of shared memory per | 64 164 | 100 | 164 | 100 | 228 KB 100
| SM KB |KB |KB | KB | KB KB
Maximum amount of shared memory per | 64 163 | 99 163 | 99 | 227 KB 99

32
Maximum amount of local memory per | 512 42)
thread
| Constant memory size 64 KB

10

What About Memory Performance?

(more to come later...)

Memory Layout of a Matrix in C

My, M, M,, M3,

MO,3 M1,3 M2,3 M3,3

row-major order !

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of lllinois, Urbana-Champaign

12

Memory Coalescing

* When accessing global memory, peak performance utilization
occurs when all threads 1n a half warp (full warp on Fermi+)
access continuous memory locations.

* Requirements relaxed on >=1.2 devices; L1 cache on Fermi!

Not coalesced coalesced

Thread >
Thread 2=

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 13
ECE 498AL, University of lllinois, Urbana-Champaign

Memory Layout of a Matrix in C

Access
direction in

kernel code
MO,Z M1,2 M2,2 M3,2

MO,3 M1,3 M2,3 M3,3

Time Period 1 Time Period 2

T, T, T, T,||T, T, T, T,

; MO,l 1\/Il,l M2,1 M3,1 MO,Z M1,2 M2,2 M3,2 MO,3 M1,3 M2,3 M3,3

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of lllinois, Urbana-Champaign

Memory Layout of a Matrix in C

Access
direction in

kernel code
MO,Z M1,2 M2,2 M3,2

MO,3 M1,3 M2,3 M3,3

Time Period 2
: L :
Tilne Period 1
T, T, T, T,

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of lllinois, Urbana-Champaign

15

CUDA Memory

CUDA Highlights: Scatter

CUDA provides generic DRAM memory addressing

— Gather:

— And scatter: no longer limited to write one pixel

e] i i

=== More programming flexibility

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

CUDA Highlights: On-Chip Shared Memory

« CUDA enables access to a parallel on-chip shared
memory for efficient inter-thread data sharing

Shared Shared

memory memory

===» Big memory bandwidth savings

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

CUDA Memory:

Overview

Kernel Memory Access

® Per-thread
—> N On-chip

Thread
<« QERVEGGIA Off-chip, uneached

® Per-block

Shared * On-chip, small
‘—’ Memory e Fast

® Per-device

qa GI bal '

Per5|stent across

. @2 @2 <_,

SAANVIDIA.

Memory and Cache Types

Global memory
 [Device] L2 cache
 [SM] L1 cache (shared mem carved out; or L1 shared with tex cache)

« [SM/TPC] Texture cache (separate, or shared with L1 cache)

« [SM] Read-only data cache (storage might be same as tex cache)

Shared memory

« [SM] Shareable only between threads in same thread block
(Hopper/CC 9.x: also thread block clusters)

Constant memory: Constant (uniform) cache

Unified memory programming: Device/host memory sharing

Markus Hadwiger, KAUST 21

CUDA Memory:

Shared Memory

Memory and Cache Types

Global memory
 [Device] L2 cache
 [SM] L1 cache (shared mem carved out; or L1 shared with tex cache)

« [SM/TPC] Texture cache (separate, or shared with L1 cache)

« [SM] Read-only data cache (storage might be same as tex cache)

Shared memory

« [SM] Shareable only between threads in same thread block
(Hopper/CC 9.x: also thread block clusters)

Constant memory: Constant (uniform) cache

Unified memory programming: Device/host memory sharing

Markus Hadwiger, KAUST 23

Shared Memory Allocation

e 2 modes

« Static size within kernel
shared float vec[256];

 Dynamic size when calling the kernel

/ / - T T 1T M
/7 iln maliln

int VecSize MAX THREADS * sizeof (floatd);
vecMat<<< blockGrid, threadBlock, VecSize >>>(pl, p2, ..);

5 3 - - . g "
J T dlz i o i i ds T 5 1>~ et |

{ Y] = " S - o AT AT T AT - 7 FOAT T O
declare as extern within Kernel

extern shared float wvec]|];

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

Shared Memory

Accessible by all threads in a block JEEEEEEE AL | Registers |

EEl E

Fast compared to global memory

Low access latency
High bandwidth

Common uses:
Software managed cache
Data layout conversion

Shared Memory/L1 Sizing

Shared memory and L1 use the same 64KB

Program-configurable split:
Fermi: 48:16, 16:48
Kepler: 48:16, 16:48, 32:32

. AaNavicaCQatCarch i i
CUDA API: sudaDovigeSstCacheConfigh, cudaFuncSetCacheConfigh

Large L1 can improve performance when:
Spilling registers (more lines in the cache -> fewer evictions)

Large SMEM can improve performance when:
Occupancy is limited by SMEM

Shared Memory

Uses:
Inter-thread communication within a block
Cache data to reduce redundant global memory accesses
Use it to improve global memory access patterns

Organization:
32 banks, 4-byte (or 8-byte) banks
Successive words accessed through different banks

Parallel Memory Architecture

e In a parallel machine, many threads access memory
— Therefore, memory is divided into banks
— Essential to achieve high bandwidth

* Each bank can service one address per cycle

— A memory can service as many simultaneous
accesses as it has banks

e Multiple simultaneous accesses to a bank o
result in a bank conflict Bank 15
— Conflicting accesses are serialized now: 32 banks!
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 28

ECE 498AL, University of lllinois, Urbana-Champaign

Memory Banks
all architectures
since Fermi:
32 banks
4 bytes / bank
(only on Kepler:
optionally
configurable to
8 bytes / bank)

bank size:

Shared Memory

Uses:
Inter-thread communication within a block
Cache data to reduce redundant global memory accesses
Use it to improve global memory access patterns

Performance:
smem accesses are issued per warp
Throughput is 4 (or 8) bytes per bank per clock per multiprocessor

serialization: if N threads of 32 access different words in the same bank,
N accesses are executed serially

multicast: N threads access the same word in one fetch

¢ Could be different bytes within the same word

Shared Memory Organization

Organized in 32 independent banks

Optimal access: no two words from
same bank

Separate banks per thread
Banks can multicast

Multiple words from same bank serialize

Bank Addressing Examples

e No Bank Conflicts e No Bank Conflicts
— Linear addressing — Random 1:1 Permutation
stride ==

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Thread 15 Thread 15

Bank 15

Bank 15

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 now: 32 banks! 3,

ECE 498AL, University of lllinois, Urbana-Champaign

Bank Addressing Examples

e 2-way Bank Conflicts

— Linear addressing
stride ==

Thread O
Thread 1 ‘
Thread 2 ~

Thread 3 "‘

Thread 4

/"4

Thread 9
Thread 10
Thread 11

e &8-way Bank Conflicts

— Linear addressing
stride ==

Thread O

Thread 1
Thread 2
Thread 3

Thread 4 "
Thread 5 \
Thread 6 [

Thread 7

x8

Thread 15

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of lllinois, Urbana-Champaign

now: 32 banks! ;3

How addresses map to banks on G80

* Each bank has a bandwidth of 32 bits per clock cycle

* Successive 32-bit words are assigned to successive
banks

* (80 has 16 banks now: 32 banks!
— So bank = address % 16 now: % 32
— Same as the size of a half-warp now: full warps

* No bank conflicts between different half-warps, only within a
single half-warp

Fermi and newer have 32 banks,
considers full warps instead of half warps!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 34
ECE 498AL, University of lllinois, Urbana-Champaign

Shared Memory Bank Conflicts

« Shared memory is as fast as registers if there are no bank
conflicts

« The fast case:
— If all threads of a half-warp access different banks, there is no bank conflict
— If all threads of a half-warp access the identical address, there is no bank

conflict (broadcast)
+ The slow case:

— Bank Conflict: multiple threads in the same half-warp access the same
bank

— Must serialize the accesses
— Cost = max # of simultaneous accesses to a single bank

full warps instead of half warps on Fermi and newer!

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

Linear Addressing

« Given:

__shared float shared[256];
float foo =
shared[baseIndex + s * threadlIdx.x];

« This is only bank-conflict-free if s
shares no common factors with the

number of banks
— 16 on G80, so s must be odd

now: 32 but same rule: s must be odd!

Thread O
Thread 1
Thread 2
Thread 3
Thread 4

Thread 5
Thread 6
Thread 7

Thread 15 Bank 15

Thread O
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Thread 15 Bank 15

Parallel08 — Memory Access

Hendrik Lensch and Robert Strzodka

Data Types and Bank Conflicts

« This has no conflicts if type of shared is 32-bits:

foo = shared[baseIndex + threadIdx.x]
Thread O
Thread 1
Thread 2

« But not if the data type is smaller —_—
— 4-way bank conflicts: —_

Thread 6
shared char shared|[]; Thread 7

foo = shared[baselIndex + threadIdx.x];

| —

not true on Fermi+, because of multi-cast!

Thread O
Thread 1

— 2-way bank conflicts: Thread 2

Thread 3

shared short shared]]; Thread 4

foo = shared[baseIndex + threadlIdx.x]:; 3222

Thread 7
not true on Fermi+, because of multi-cast! S A
Thread 15 S

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

Structs and Bank Conflicts

« Struct assignments compile into as many memory accesses as there are
struct members:

Thread O

Thread 1 .
struct vector { float x, v, z; }; e
t t T Thread 3
struct myType { Thread 4
float £f; Thread 5
int e¢; Thread 6
. Thread 7
}: . .
__shared struct vector vectors[64]; . .
__shared struct myType myTypes[64]; —’ Bank 15
« This has no bank conflicts for vector; struct size is 3 words /\

— 3 accesses per thread, contiguous banks (no common factor with 16)

struct vector v = vectors[baselIndex + threadldx.x];

« This has 2-way bank conflicts for myType;
(each bank will be accessed by 2 threads simultaneously)
struct myType m = myTypes[baselndex + threadIdx.x];

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

Broadcast on Shared Memory

« Each thread loads the same
element — no bank conlict

Thread 0
x = shared|[0]; Thread 1

Thread 2

* Will be resolved implicitly Thread 3

Thread 4
Thread 5
Thread 6

Thread 7

multi-cast on Fermi and newer!

Bank 15

Thread 15

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

Common Array Bank Conflict Patterns
1D

» Each thread loads 2 elements into shared
mem:

— 2-way-interleaved loads result in

2-way bank conflicts:
Thread O

Thread 1

int tid = threadIdx.x; E—
rea

shared[2*tid] = global[2*tid]; Thread 3

shared[2*tid+1] = global[2*tid+1]; Thread 4

« This makes sense for traditional CPU

threads, locality in cache line usage and Thread 8

reduced sharing traffic. Thread 9
— Not in shared memory usage where there is UIrEEESile g
no cache line effects but banking effects Thread 11

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

A Better Array Access Pattern

« Each thread loads one element in
every consecutive group of

blockDim elements. Thread 0

Thread 1
shared[tid] = globall[tid]; Hiie] 2
shared[tid + blockDim.x] = -

global[tid + blockDim.x];

Thread 4

Thread 5

Thread 6

Thread 7

Thread 15 Bank 15

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

A,
(¢

NVIDIA Architectures (since first CUDA GPU)

Tesla[cc 1.x5: 2007-2009 Voltacc 7.0,7.21: 2017/2018
+ G80, G9x: 2007 (Geforce 8800, ...) + GV100, ...
GT200: 2008/2009 (GTX 280, ...) (Tesla V100, Titan V, Quadro GV100, ...)
Fermi[cc 2.x): 2010 (2011, 2012, 2013, ...) Turing [cc 7.5]: 2018/2019
« GF100, ... (GTX 480, ...) « TU102, TU104, TU106, TU116, TU117, ...
GF104, ... (GTX 460, ...) (Titan RTX, RTX 2070, 2080 (Ti), GTX 1650, 1660, ...)

GF110, ... (GTX 580, ...)
Ampere [CC 8.0, 8.6, 8.7, 8.8]: 2020

Kepler [CC 3.x: 2012 (2013, 2014, 2016, ...) * GA100, GA102, GA104, GA106, ...; [Nintendo Switch 2]

+ GK104, ... (GTX 680, ...) (A100, RTX 3070, 3080, 3090 (Ti), RTX A6000, ...)
GK110, ... (GTX 780, GTX Titan, ...)

Hopper [cc 9.0], Ada Lovelace [cC 8.9]: 2022/23

- GH100, AD102/103/104/106/107, ...
. GM107, ... (GTX 750Ti, ...); [Nintendo Switch] (H100, H200, GH200, L20, L40, L40S, L2, L4,
GM204, ... (GTX 980, Titan X, ...) RTX 4080 (12/16 GB), RTX 4090, RTX 6000 (Ada), ...)

Maxwell [cc 5.x]: 2015

Pascal [cc 6.x]: 2016 (2017, 2018, 2021, 2022, ...) Blackwell [cC 10.0, 10.1(-11.0), 10.3, 12.0, 12.1]: 2024/2025

+ GP100 (Tesla P100, ...) + GB100, GB200, GB202/203/205/206/207, G10, ...
o (RTX 5080/5090, HGX B200/B300, GB200/GB300 NVL72,
+ GP10x: x=2,4,6,7,8, ...

(GTX 1060, 1070, 1080, Titan X Pascal, Titan Xp, ...) RTX 4000/5000/6000 PRO Blackwell, B40, ...)

_ see https://en.wikipedia.org/wiki/List _of Nvidia_graphics_processing units
Markus Hadwiger, KAUST and https://en.wikipedia.org/wiki/CUDA 42

Compute Capab. 5.x (Maxwell)

K.4.3. Shared Memory

Shared memory has 32 banks that are organized such that successive 32-bit words map to
successive banks. Each bank has a bandwidth of 32 bits per clock cycle.

A shared memory request for a warp does not generate a bank conflict between two threads
that access any address within the same 32-bit word (even though the two addresses fall

in the same bank]. In that case, for read accesses, the word is broadcast to the requesting
threads and for write accesses, each address is written by only one of the threads (which
thread performs the write is undefined).

Figure 22 shows some examples of strided access.

Figure 23 shows some examples of memory read accesses that involve the broadcast
mechanism.

Markus Hadwiger, KAUST 43

Compute Capab. 6.x (Pascal)

K.9.3. Shared Memory

Shared memory behaves the same way as in devices of compute capability 5.x (See Shared
Memory).

Markus Hadwiger, KAUST 44

Compute Capab. 7.x (Volta/Turing) [1]

K.6.4. Shared Memory

Similar to the Kepler architecture, the amount of the unified data cache reserved for shared
memory is configurable on a per kernel basis. For the Volta architecture (compute capability
7.0), the unified data cache has a size of 128 KB, and the shared memory capacity can be set
to 0, 8, 16, 32, 64 or 96 KB. For the Turing architecture (compute capability 7.5), the unified
data cache has a size of 96 KB, and the shared memory capacity can be set to either 32 KB
or 64 KB. Unlike Kepler, the driver automatically configures the shared memory capacity for
each kernel to avoid shared memory occupancy bottlenecks while also allowing concurrent
execution with already launched kernels where possible. In most cases, the driver’'s default
behavior should provide optimal performance.

Markus Hadwiger, KAUST 45

Compute Capab. 7.x (Volta/Turing) [2]

20.6.4. Shared Memory

The amount of the unified data cache reserved for shared memory is configurable on a per kernel
basis. For the Volta architecture (compute capability 7.0), the unified data cache has a size of 128 KB,
and the shared memory capacity can be set to 0, 8, 16, 32, 64 or 96 KB. For the Turing architecture
(compute capability 7.5), the unified data cache has a size of 96 KB, and the shared memory capacity
can be set to either 32 KB or 64 KB. Unlike Kepler, the driver automatically configures the shared
memory capacity for each kernel to avoid shared memory occupancy bottlenecks while also allowing
concurrent execution with already launched kernels where possible. In most cases, the driver’s default
behavior should provide optimal performance.

Because the driver is not always aware of the full workload, it is sometimes useful for applications
to provide additional hints regarding the desired shared memory configuration. For example, a kernel
with little or no shared memory use may request a larger carveout in order to encourage concurrent
execution with later kernels that require more shared memory. The new cudaFuncSetAttribute()
API allows applications to set a preferred shared memory capacity, or carveout, as a percentage of
the maximum supported shared memory capacity (96 KB for Volta, and 64 KB for Turing).

cudaFuncSetAttribute() relaxes enforcement of the preferred shared capacity compared to the
legacy cudaFuncSetCacheConfig() APlintroduced with Kepler. The legacy APl treated shared mem-
ory capacities as hard requirements for kernel launch. As a result, interleaving kernels with different
shared memory configurations would needlessly serialize launches behind shared memory reconfigu-
rations. With the new API, the carveout is treated as a hint. The driver may choose a different config-
uration if required to execute the function or to avoid thrashing.

Markus Hadwiger, KAUST 46

Compute Capab. 7.x (Volta/Turing) [3]

// Device code
__global__ void MyKernel(...)

{
__shared__ float buffer[BLOCK_DIM];

b

// Host code

int carveout = 50; // prefer shared memory capacity 50% of maximum
// Named Carveout Values:

// carveout = cudaSharedmemCarveoutDefault; // (=1)

// carveout = cudaSharedmemCarveoutMaxL1; // (9)
// carveout = cudaSharedmemCarveoutMaxShared; // (168)
cudaFuncSetAttribute(MyKernel, cudaFuncAttributePreferredSharedMemoryCarveout,

—.carveout);
MyKernel <<<gridDim, BLOCK_DIM>>>(...);

]

In addition to an integer percentage, several convenience enums are provided as listed in the code
comments above. Where a chosen integer percentage does not map exactly to a supported capacity
(SM 7.0 devices support shared capacities of O, 8, 16, 32, 64, or 96 KB), the next larger capacity is used.
For instance, in the example above, 50% of the 96 KB maximum is 48 KB, which is not a supported
shared memory capacity. Thus, the preference is rounded up to 64 KB.

Markus Hadwiger, KAUST 47

Compute Capab. 7.x (Volta/Turing) [4]

Compute capability 7.x devices allow a single thread block to address the full capacity of shared mem-
ory: 96 KB on Volta, 64 KB on Turing. Kernels relying on shared memory allocations over 48 KB per
block are architecture-specific, as such they must use dynamic shared memory (rather than statically
sized arrays) and require an explicit opt-in using cudaFuncSetAttribute() as follows.

// Device code
__global__ void MyKernel(...)
{

extern __shared__ float buffer[];

}

// Host code

int maxbytes = 98304; // 96 KB

cudaFuncSetAttribute(MyKernel, cudaFuncAttributeMaxDynamicSharedMemorySize, maxbytes);
MyKernel <<<gridDim, blockDim, maxbytes>>>(...);

Otherwise, shared memory behaves the same way as for devices of compute capability 5.x (See Shared
Memory).

Markus Hadwiger, KAUST 48

Compute Capab. 8.x (Ampere/Ada) [1]

20.7.3. Shared Memory

Similar to the Volta architecture, the amount of the unified data cache reserved for shared memory is
configurable on a per kernel basis. For the NVIDIA Ampere GPU Architecture, the unified data cache
has a size of 192 KB for devices of compute capability 8.0 and 8.7 and 128 KB for devices of compute
capabilities 8.6 and 8.9. The shared memory capacity canbe setto 0, 8, 16, 32,64, 100, 132 or 164 KB
for devices of compute capability 8.0and 8.7,and to 0, 8, 16, 32, 64 or 100 KB for devices of compute
capabilities 8.6 and 8.9.

An application can set the carveout, i.e, the preferred shared memory capacity, with the cudaFunc-
SetAttribute().

cudaFuncSetAttribute(kernel_name, cudaFuncAttributePreferredSharedMemoryCarveout,
—.carveout) ;

Markus Hadwiger, KAUST 49

Compute Capab. 8.x (Ampere/Ada) [2]

The API can specify the carveout either as an integer percentage of the maximum supported shared
memory capacity of 164 KB for devices of compute capability 8.0 and 8.7 and 100 KB for devices
of compute capabilities 8.6 and 8.9 respectively, or as one of the following values: {cudaShared-
memCarveoutDefault, cudaSharedmemCarveoutMaxL1, or cudaSharedmemCarveoutMaxShared.
When using a percentage, the carveout is rounded up to the nearest supported shared memory capac-
ity. For example, for devices of compute capability 8.0, 50% will map to a 100 KB carveout instead of
an 82 KB one. Setting the cudaFuncAttributePreferredSharedMemoryCarveout is considered a
hint by the driver; the driver may choose a different configuration, if needed.

Devices of compute capability 8.0 and 8.7 allow a single thread block to address up to 163 KB of shared
memory, while devices of compute capabilities 8.6 and 8.9 allow up to 99 KB of shared memory. Ker-
nels relying on shared memory allocations over 48 KB per block are architecture-specific, and must
use dynamic shared memory rather than statically sized shared memory arrays. These kernels require
an explicit opt-in by using cudaFuncSetAttribute() to set the cudaFuncAttributeMaxDynamic-
SharedMemorySize; see Shared Memory for the NVIDIA Volta GPU Architecture.

Note that the maximum amount of shared memory per thread block is smaller than the maximum

shared memory partition available per SM. The 1 KB of shared memory not made available to a thread
block is reserved for system use.

Markus Hadwiger, KAUST 50

Compute Capab. 9.x (Hopper)

20.8.3. Shared Memory

Similar to the NVIDIA Ampere GPU architecture, the amount of the unified data cache reserved for
shared memory is configurable on a per kernel basis. For the NVIDIA H100 Tensor Core GPU architec-
ture, the unified data cache has a size of 256 KB for devices of compute capability 9.0. The shared
memory capacity can be set to 0, 8, 16, 32, 64, 100, 132, 164, 196 or 228 KB.

As with the NVIDIA Ampere GPU architecture, an application can configure its preferred shared memory
capacity, i.e., the carveout. Devices of compute capability 9.0 allow a single thread block to address
up to 227 KB of shared memory. Kernels relying on shared memory allocations over 48 KB per block
are architecture-specific, and must use dynamic shared memory rather than statically sized shared
memory arrays. These kernels require an explicit opt-in by using cudaFuncSetAttribute() to set
the cudaFuncAttributeMaxDynamicSharedMemorySize; see Shared Memory for the NVIDIA Volta
GPU Architecture.

Note that the maximum amount of shared memory per thread block is smaller than the maximum
shared memory partition available per SM. The 1 KB of shared memory not made available to a thread
block is reserved for system use.

Markus Hadwiger, KAUST 51

Compute Capab. 10.x / 12.x (Blackwell)

20.9.3. Shared Memory

The amount of the unified data cache reserved for shared memory is configurable on a per kernel basis
and is identical to compute capability 9.0. The unified data cache has a size of 256 KB for devices of
compute capability 10.0. The shared memory capacity can be set to 0, 8, 16, 32, 64, 100, 132, 164,
196 or 228 KB.

As with the NVIDIA Ampere GPU architecture, an application can configure its preferred shared mem-
ory capacity, i.e., the carveout. Devices of compute capability 10.0 allow a single thread block to
address up to 227 KB of shared memory. Kernels relying on shared memory allocations over 48 KB
per block are architecture-specific, and must use dynamic shared memory rather than statically sized
shared memory arrays. These kernels require an explicit opt-in by using cudaFuncSetAttribute()
to set the cudaFuncAttributeMaxDynamicSharedMemorySize; see Shared Memory for the Volta
architecture.

Note that the maximum amount of shared memory per thread block is smaller than the maximum
shared memory partition available per SM. The 1 KB of shared memory not made available to a thread
block is reserved for system use.

Markus Hadwiger, KAUST 52

