
CS 380 - GPU and GPGPU Programming
Lecture 14: CUDA Memories, Pt. 1

Markus Hadwiger, KAUST

2

Reading Assignment #7 (until Oct 20)

Read (required):

• Programming Massively Parallel Processors book (4th edition),
Chapter 5 (Memory architecture and data locality)

Code Example #2: Matrix MultiplyCode Example #2: Matrix Multiply

Example: Matrix Multiplication (4)

6

__global__ void MatrixMul(float *matA, float *matB, float *matC, int w)
{

__shared__ float blockA[BLOCK_SIZE][BLOCK_SIZE];
__shared__ float blockB[BLOCK_SIZE][BLOCK_SIZE];

int bx = blockIdx.x; int tx = threadIdx.x;
int by = blockIdx.y; int ty = threadIdx.y;

int col = bx * BLOCK_SIZE + tx;
int row = by * BLOCK_SIZE + ty;

float out = 0.0f;
for (int m = 0; m < w / BLOCK_SIZE; m++) {

blockA[ty][tx] = matA[row * w + m * BLOCK_SIZE + tx];
blockB[ty][tx] = matB[col + (m * BLOCK_SIZE + ty) * w];
__syncthreads();

for (int k = 0; k < BLOCK_SIZE; k++) {
out += blockA[ty][k] * blockB[k][tx];

}
__syncthreads();

}

matC[row * w + col] = out;
}

Caveat: for brevity, this code assumes matrix sizes
are a multiple of the block size (either because
they really are, or because padding is used;
otherwise guard code would need to be added)

KAUST King Abdullah University of Science and Technology 7

Running on a V100 (Volta) SM

courtesy Kayvon Fatahalian

(sub-core == SM partition)

Limits in CUDA Programming Guide

8

Limits in CUDA Programming Guide

9

Chapter 20.2
(CUDA 13,
Oct 2, 2025

Limits in CUDA Programming Guide

10

Chapter 20.2
(CUDA 13,
Oct 2, 2025

What About Memory Performance?
(more to come later…)

What About Memory Performance?
(more to come later…)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

12

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M

row-major order !

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

13

Memory Coalescing

• When accessing global memory, peak performance utilization
occurs when all threads in a half warp (full warp on Fermi+)
access continuous memory locations.

• Requirements relaxed on >=1.2 devices; L1 cache on Fermi!

Md Nd

W
ID
T
H

WIDTH

Thread 1
Thread 2

Not coalesced coalesced

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

14

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M
T1 T2 T3 T4

Time Period 1

T1 T2 T3 T4

Time Period 2

Access
direction in
kernel code

…

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

15

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M
T1 T2 T3 T4

Time Period 1

T1 T2 T3 T4

Time Period 2

Access
direction in
kernel code

…

CUDA MemoryCUDA Memory

CUDA Memory:
Overview

CUDA Memory:
Overview

now cached in L1!
(Fermi or newer)

now cached in L2!
(Fermi or newer)

Memory and Cache Types

Global memory

• [Device] L2 cache

• [SM] L1 cache (shared mem carved out; or L1 shared with tex cache)

• [SM/TPC] Texture cache (separate, or shared with L1 cache)

• [SM] Read-only data cache (storage might be same as tex cache)

Shared memory

• [SM] Shareable only between threads in same thread block
(Hopper/CC 9.x: also thread block clusters)

Constant memory: Constant (uniform) cache

Unified memory programming: Device/host memory sharing

Markus Hadwiger, KAUST 21

CUDA Memory:
Shared Memory
CUDA Memory:
Shared Memory

Memory and Cache Types

Global memory

• [Device] L2 cache

• [SM] L1 cache (shared mem carved out; or L1 shared with tex cache)

• [SM/TPC] Texture cache (separate, or shared with L1 cache)

• [SM] Read-only data cache (storage might be same as tex cache)

Shared memory

• [SM] Shareable only between threads in same thread block
(Hopper/CC 9.x: also thread block clusters)

Constant memory: Constant (uniform) cache

Unified memory programming: Device/host memory sharing

Markus Hadwiger, KAUST 23

later: use carveout

use cudaFuncSetAttribute()

8-byte bank size is/was only available on Kepler !
(using the now deprecated cudaSharedMemConfig()
all other architectures so far use a fixed bank size of 4 bytes!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

28

Parallel Memory Architecture

• In a parallel machine, many threads access memory
– Therefore, memory is divided into banks

– Essential to achieve high bandwidth

• Each bank can service one address per cycle
– A memory can service as many simultaneous

accesses as it has banks

• Multiple simultaneous accesses to a bank
result in a bank conflict
– Conflicting accesses are serialized

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

now: 32 banks!

Memory Banks

all architectures
since Fermi:

32 banks

bank size:
4 bytes / bank

(only on Kepler:
optionally
configurable to
8 bytes / bank)

29

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

32

Bank Addressing Examples

• No Bank Conflicts
– Linear addressing

stride == 1

• No Bank Conflicts
– Random 1:1 Permutation

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

now: 32 banks!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

33

Bank Addressing Examples

• 2-way Bank Conflicts
– Linear addressing

stride == 2

• 8-way Bank Conflicts
– Linear addressing

stride == 8

Thread 11
Thread 10
Thread 9
Thread 8

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2
Bank 1
Bank 0

x8

x8

now: 32 banks!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

34

How addresses map to banks on G80

• Each bank has a bandwidth of 32 bits per clock cycle

• Successive 32-bit words are assigned to successive
banks

• G80 has 16 banks
– So bank = address % 16

– Same as the size of a half-warp
• No bank conflicts between different half-warps, only within a

single half-warp

Fermi and newer have 32 banks,
considers full warps instead of half warps!

now: 32 banks!

now: % 32

now: full warps

full warps instead of half warps on Fermi and newer!

now: 32 but same rule: s must be odd!

not true on Fermi+, because of multi-cast!

not true on Fermi+, because of multi-cast!

multi-cast on Fermi and newer!

NVIDIA Architectures (since first CUDA GPU)

Tesla [CC 1.x]: 2007-2009

• G80, G9x: 2007 (Geforce 8800, ...)
GT200: 2008/2009 (GTX 280, ...)

Fermi [CC 2.x]: 2010 (2011, 2012, 2013, …)

• GF100, ... (GTX 480, ...)
GF104, ... (GTX 460, ...)
GF110, ... (GTX 580, ...)

Kepler [CC 3.x]: 2012 (2013, 2014, 2016, …)

• GK104, ... (GTX 680, ...)
GK110, ... (GTX 780, GTX Titan, ...)

Maxwell [CC 5.x]: 2015

• GM107, ... (GTX 750Ti, ...); [Nintendo Switch]
GM204, ... (GTX 980, Titan X, ...)

Pascal [CC 6.x]: 2016 (2017, 2018, 2021, 2022, …)

• GP100 (Tesla P100, ...)

• GP10x: x=2,4,6,7,8, ...
(GTX 1060, 1070, 1080, Titan X Pascal, Titan Xp, ...)

Markus Hadwiger, KAUST 42

Volta [CC 7.0, 7.2]: 2017/2018

• GV100, ...
(Tesla V100, Titan V, Quadro GV100, ...)

Turing [CC 7.5]: 2018/2019

• TU102, TU104, TU106, TU116, TU117, ...
(Titan RTX, RTX 2070, 2080 (Ti), GTX 1650, 1660, ...)

Ampere [CC 8.0, 8.6, 8.7, 8.8]: 2020

• GA100, GA102, GA104, GA106, ...; [Nintendo Switch 2]
(A100, RTX 3070, 3080, 3090 (Ti), RTX A6000, ...)

Hopper [CC 9.0], Ada Lovelace [CC 8.9]: 2022/23

• GH100, AD102/103/104/106/107, ...
(H100, H200, GH200, L20, L40, L40S, L2, L4,
RTX 4080 (12/16 GB), RTX 4090, RTX 6000 (Ada), ...)

Blackwell [CC 10.0, 10.1(→11.0), 10.3, 12.0, 12.1]: 2024/2025

• GB100, GB200, GB202/203/205/206/207, G10, ...
(RTX 5080/5090, HGX B200/B300, GB200/GB300 NVL72,
RTX 4000/5000/6000 PRO Blackwell, B40, ...)

see https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
and https://en.wikipedia.org/wiki/CUDA

Compute Capab. 5.x (Maxwell)

Markus Hadwiger, KAUST 43

Compute Capab. 6.x (Pascal)

Markus Hadwiger, KAUST 44

Compute Capab. 7.x (Volta/Turing) [1]

Markus Hadwiger, KAUST 45

Compute Capab. 7.x (Volta/Turing) [2]

Markus Hadwiger, KAUST 46

Compute Capab. 7.x (Volta/Turing) [3]

Markus Hadwiger, KAUST 47

Compute Capab. 7.x (Volta/Turing) [4]

Markus Hadwiger, KAUST 48

Compute Capab. 8.x (Ampere/Ada) [1]

Markus Hadwiger, KAUST 49

Compute Capab. 8.x (Ampere/Ada) [2]

Markus Hadwiger, KAUST 50

Compute Capab. 9.x (Hopper)

Markus Hadwiger, KAUST 51

Compute Capab. 10.x / 12.x (Blackwell)

Markus Hadwiger, KAUST 52

Thank you.

