
CS 380 - GPU and GPGPU Programming
Lecture 12: GPU Compute APIs, Pt. 2

Markus Hadwiger, KAUST

2

Reading Assignment #6 (until Oct 13)

Read (required):

• Programming Massively Parallel Processors book (4th edition),
Chapter 3 (Multidimensional grids and data)

Read (optional):

• Programming Massively Parallel Processors book (4th edition),
Chapter 20 (An introduction to CUDA streams)

• Programming Massively Parallel Processors book (4th edition),
Chapter 21 (CUDA dynamic parallelism)

GPU Compute APIsGPU Compute APIs

CUDA Multi-Threading

CUDA model groups threads
into thread blocks; blocks into grid

Execution on actual
hardware:

• Thread blocks assigned to SM
(up to 8, 16, or 32 blocks per SM;
depending on compute capability)

• 32 threads grouped into a
warp (on all compute capabilities)

4

Threads in Block, Blocks in Grid

• Identify work of thread via
– threadIdx

– blockIdx

5

…
float x =
input[threadIdx];
float y = func(x);
output[threadIdx] = y;
…

threadIdx

Thread Block 0

…
…
float x =
input[threadIdx];
float y = func(x);
output[threadIdx] = y;
…

Thread Block 1

…
float x =
input[threadIdx];
float y = func(x);
output[threadIdx] = y;
…

Thread Block N - 1
76543210 76543210 76543210

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE 498AL, University of Illinois, Urbana-Champaign
blockIdx == 0 blockIdx == 1

CUDA Memory Model and Usage

•cudaMalloc(), cudaFree()

•cudaMallocArray(),
cudaMalloc2DArray(),
cudaMalloc3DArray()

•cudaMemcpy()

•cudaMemcpyArray()

• Host host
Host device
Device device

• Asynchronous transfers
possible (DMA)

6

Grid

Global
Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Register
s

Thread (1, 0)

Register
s

Block (1, 0)

Shared Memory

Thread (0, 0)

Register
s

Thread (1, 0)

Register
s

Host

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE 498AL, University of Illinois, Urbana-Champaign

* brand new on Hopper: thread block clusters

*

now cached in L1!
(Fermi or newer)

now cached in L2!
(Fermi or newer)

* cached on Fermi or newer!

* YES

* YES

PTX (Memory) State Spaces

PTX ISA 9.0 (Chapter 5)

Unified memory space can be enabled on Fermi / CUDA 4.x and newer

recursion supported on __device__ functions from
cc. 2.x (i.e., basically on all current GPUs)

except: (*) and (**)

(**) also: mapped pinned (page-locked) memory (“zero-copy memory”) :
allocate memory with cudaMallocHost(); beware of low performance!!

(*) “unified memory programming” introduced with CUDA 6 (cc. 3.x +):
allocate memory with cudaMallocManaged(); uses automatic migration

Note: UVA (“unified virtual addressing”; cc. 2.x +) is something different!!
just pertains to unified pointers (see cudaPointerGetAttributes(), …)

()

Plus newer sync functions, e.g., from compute capability 2.x on:
__syncthreads_count(), __syncthreads_and/or(),
__threadfence_block(), __threadfence_system(), …

Now: Must use versions with _sync suffix, because of
Independent Thread Scheduling (compute capability 7.x and newer)!

now also _syncwarp()

or newer

New in CC 9.0: Thread Block Clusters

New thread hierarchy level!

Markus Hadwiger, KAUST 44

all blocks of a cluster are on the same GPC !all threads of a block are on the same SM !

Code Example #1: 1D ConvolutionCode Example #1: 1D Convolution

KAUST King Abdullah University of Science and Technology 46

Example #1: 1D Convolution

courtesy Kayvon Fatahalian

1D Convolution with 3-tap averaging kernel
(every thread is averaging three inputs)

KAUST King Abdullah University of Science and Technology 47

Running on a GP104 (Pascal) SM

courtesy Kayvon Fatahalian

(but no ALU dual-issue!)

KAUST King Abdullah University of Science and Technology 48

Running on a V100 (Volta) SM

courtesy Kayvon Fatahalian

(sub-core == SM partition)

KAUST King Abdullah University of Science and Technology 50

Code on Same SM Arch. But Different #SMs

courtesy Kayvon Fatahalian

(could now be up to 192 SMs, etc., …)

Thank you.

