B ey ((( ))), KAUST

CS 380 - GPU and GPGPU Programming
Lecture 11: GPU Compute APIs, Pt. 1

Markus Hadwiger, KAUST |




Reading Assignment #6 (until Oct 13)

Read (required):

* Programming Massively Parallel Processors book (4th edition),
Chapter 3 (Multidimensional grids and data)

Read (optional):

* Programming Massively Parallel Processors book (4th edition),
Chapter 20 (An introduction to CUDA streams)

* Programming Massively Parallel Processors book (4th edition),
Chapter 21 (CUDA dynamic parallelism)



GPU Compute APlIs




NVIDIA CUDA

 Old acronym: “Compute Unified Device Architecture”

« Extensions to C(++) programming language

« host , global ,and_ device functions

* Heavily multi-threaded

* Synchronize threads with __syncthreads(), ...

» Atomic functions
(before compute capability 2.0 only integer, from 2.0 on also float)

» Compile .cu files with NVCC

» Uses general C compiler (Visual C, gcc, ...)
* Link with CUDA run-time (cudart.1lib) and cuda core (cuda.lib)



Teaser: Typical CUDA Kernel (SM Perspective) ¢=

Warp Selector 1 | Warp Selector I Warp Selector ’ ’ Warp Selector

EEES cES GBS CE

OONENEE OOEENEE OOEEEEE OOeEEeEEE
ODONENEEE OOEENEE OOEENEE OO eEeEEE
CENENEE OOEEEEE OCeEeEEEE DT .
OONNEEEE OOEEEEE DOEEEEE OO eEEEEE
(53155 I 515 5 N I [ I I I
CONEEEE OOEEEEE OOEEEEE OO eEeEEn
CONEEEE OOEeEEE OOEEEEE OO eEEE

mifmlf [ ] 1 | Wil [ J 1 | Reimi V77 | Eei=f i y0 |

RIIIIIIIIIIIIIIIiI qIIIIIIIIIIIIIIIIIiI 1IIIIIIIIIIIIIIIIIi| ;IIIIIIIIIIIIIIIii

R R R R

R R RS "

R1 R1 R1

IIZ Warp 4 RZ Warp 5 R2 Warp 6 Warp 7

RO RO RO RO

:; Warp 60 g Warp 61 :; Warp 62 :; Warp 63
“Shared” memory + L1 cache storage (128 KB)

528 bytes

A convolve thread block is executed by 4 warps
(4 warps x 32 threads/warp = 128 CUDA threads per block)

SM core operation each clock:
— Each sub-core selects one runnable warp (from the 16 warps in its partition)

#define THREADS_PER_BLK 128

__global__ void convolve(int N, float* input,

{

float* output)

__shared__ float support[THREADS_PER_BLK+2];
int index = blockIdx.x * blockDim.x +
threadIdx.x;

support[threadIdx.x] = input[index];
if (threadIdx.x < 2} {
support[ THREADS_PER_BLK+threadIdx.x]
= input[index+THREADS_PER_BLK];
}

__syncthreads();
float result = @.6f; // thread-local
for (int i=@; i<3; i++)

result += support[threadIdx.x + i];

output[index] = result/ 3.f;

(sub-core == SM partition)

— Each sub-core runs next instruction for the CUDA threads in the warp (this instruction may apply to all or a subset of the CUDA

threads in a warp depending on divergence)

courtesy Kayvon Fatahalian

Stanford €5149, Fall 2021



CUDA Multi-Threading

CUDA model groups threads
into thread blocks; blocks into grid

Execution on actual
hardware:

» Thread blocks assigned to SM
(up to 8, 16, or 32 blocks per SM;
depending on compute capability)

« 32 threads grouped into a
warp (on all compute capabilities)

Grid

Block (0, 0)

Block (1, 0)

il

Block (2, 0)

ggggggg

Block (0, j.)"

Block (1, 1)

“Blﬂﬂk (2: 1)

Block (1, 1)




Threads in Block, Blocks in Grid

* |dentify work of thread via

— threadIdx
— blockIdx
Thread Block 0 Thread Block 1 Thread Block N - 1
threadIdx o 11 2| 3| 4| 5| 6| 7 o] 11 2| 3| 4| 5| 6| 7 0|l 1] 2| 3| 4| 5| 6] 7

float x = float x =

float x =
input[threadIdx] ; input[threadIdx] ;

input[threadIdx] ;

float y = func(x); float y = func(x);

float y = func(x);
output[threadlIdx] = y; output[threadIdx] = y;

output[threadldx] = y;

blockIdx == blocklIdx == 1 © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign



CUDA Memory Model and Usage

e cudaMalloc (), cudaFree ()

« cudaMallocArray (),
cudaMalloc2DArray() ,
cudaMalloc3DArray ()

* cudaMemcpy ()

 cudaMemcpyArray ()

 Host ¢ host
Host < device
Device < device

» Asynchronous transfers
possible (DMA)

Host

Grid

Block (0, 0) Block (1, 0)

e o

Thread (0, 0) Thread (1, 0)/| | Thread (0, 0) Thread (1, 0)

A

\

1

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign



CUDA Kernels and Threads

® Parallel portions of an application are executed on
‘. the device as kernels
® One kernel is executed at a time
® Many threads execute each kernel

® Differences between CUDA and CPU threads

® CUDA threads are extremely lightweight
® Very little creation overhead
® Instant switching

® CUDA uses 1000s of threads to achieve efficiency
® Multi-core CPUs can use only a few

Definitions
Device = GPU
Host = CPU
Kernel = function that runs on the device

<SANVIDIA.




Arrays of Parallel Threads

® A CUDA kernel is executed by an array of threads
® All threads run the same code

® Each thread has an ID that it uses to compute memory
addresses and make control decisions

threadID

float x = input[threadID];
float y = func(x);
output|[threadID] = y;

<SANVIDIA.




Thread Batching

® Kernel launches a grid of thread blocks
® Threads within a block cooperate via shared memory
® Threads within a block can synchronize
® Threads in different blocks cannot cooperate

® Allows programs to transparently scale to
different GPUs

Thread Block N-1

SAANVIDIA.




Transparent Scalability

® Hardware is free to schedule thread blocks on any
processor

® A kernel scales across parallel multiprocessors

Kernel grid

Block 0 Block 1 l
Block 2 Block 3

Block 4 Block 5

Block 0 Block 1 Block 2 Block 3
Block 0| \Block Block 6 = Block 7

Block 2 Block 3 Block 4 Block 5 Block 6 Block 7

Block 4 Block 5

Block 6 Block 7

© 2008 NVIDIA Corporation. @DZ nNVIDIA.




Execution Model

Software Hardware

Thread

Thread Processor

R

Thread
Block

Device

Threads are executed by thread
processors

Thread blocks are executed on
multiprocessors

Thread blocks do not migrate

Several concurrent thread blocks can
reside on one multiprocessor - limited
by multiprocessor resources (shared
memory and register file)

A kernel is launched as a grid of
thread blocks

Only one kernel can execute on a
device at one time

© 2008 NVIDIA Corporation.

<SANVIDIA.




CUDA Programming Model

e Kernel

— GPU program that runs on a thread grid

e Thread hierarchy
— Grid : a set of blocks
— Block : a set of warps
— Warp : a SIMD group of 32 threads
— Grid size * block size = total # of threads

Kernel

2

Grid

Block 1

Block 2

warp

warp

warp warp

Block n

warp

warp




CUDA Memory Structure

e Memory hierarchy

—PC memory : off-card
—GPU global : off-chip / on-card
—GPU shared/register/cache : on-chip

e The host can read/write global memory
e Each thread communicates using shared memory

Graphics card
GPU Core

GPU Shared
m Memory |ALUs
(On-Chip)

PC Memory GI;:AU GlObal
10000 emory

(DRAM) (DRAM)




Kernel Memory Access

® Per-thread
—> N On-chip

Thread
<« QERVEGGIA  Off-chip, uneached

® Per-block

Shared * On-chip, small
‘—’ Memory e Fast

® Per-device

qa GI bal '

Per5|stent across

. @2 @2 <_,

SAANVIDIA.




Memory Architecture <X
NVIDIA.

Memory Location |Cached |Access |Scope Lifetime

Register | On-chip N/A R/W One thread Thread

Local Off-chip R/W One thread Thread

Shared On-chip R/W All threads in a block | Block

Global Off-chip All threads + host Application

Constant | Off-chip All threads + host Application

Texture Off-chip All threads + host Application

® NVIDIA Corporation 2009




PTX (Memory) State Spaces

PTX ISA 9.0 (Chapter 5)

Name Addressable Initializable Access Sharing
.reg No No R/W per-thread
.sreg | No No RO per-CTA
.const Yes Yes' RO per-grid
.global Yes Yes' R/W Context
.local Yes No R/W per-thread
.paranm [as input to | Yes’ No RO per-grid
kernel]

.param [used in Restricted” No R/W per-thread
functions)

.shared Yes No R/W per—cluster5
.tex No* Yes, via driver RO Context
Notes:

"Variables in .const and .global state spaces are initialized to zero by default.
? Accessible only via the 1d.param instruction. Address may be taken via mov instruction.

% Accessible via 1d.param and st.param instructions. Device function input and return parameters
may have their address taken via mov; the parameter is then located on the stack frame and its
address is in the .local state space.

* Accessible only via the tex instruction.

> Visible to the owning CTA and other active CTAs in the cluster.






