
CS 380 - GPU and GPGPU Programming
Lecture 11: GPU Compute APIs, Pt. 1

Markus Hadwiger, KAUST

2

Reading Assignment #6 (until Oct 13)

Read (required):

• Programming Massively Parallel Processors book (4th edition),
Chapter 3 (Multidimensional grids and data)

Read (optional):

• Programming Massively Parallel Processors book (4th edition),
Chapter 20 (An introduction to CUDA streams)

• Programming Massively Parallel Processors book (4th edition),
Chapter 21 (CUDA dynamic parallelism)

GPU Compute APIsGPU Compute APIs

NVIDIA CUDA

• Old acronym: “Compute Unified Device Architecture”

• Extensions to C(++) programming language

• __host__, __global__, and __device__ functions

• Heavily multi-threaded

• Synchronize threads with __syncthreads(), ...

• Atomic functions
(before compute capability 2.0 only integer, from 2.0 on also float)

• Compile .cu files with NVCC

• Uses general C compiler (Visual C, gcc, ...)

• Link with CUDA run-time (cudart.lib) and cuda core (cuda.lib)

4

KAUST King Abdullah University of Science and Technology 5

Teaser: Typical CUDA Kernel (SM Perspective)

courtesy Kayvon Fatahalian

(sub-core == SM partition)

CUDA Multi-Threading

CUDA model groups threads
into thread blocks; blocks into grid

Execution on actual
hardware:

• Thread blocks assigned to SM
(up to 8, 16, or 32 blocks per SM;
depending on compute capability)

• 32 threads grouped into a
warp (on all compute capabilities)

6

Threads in Block, Blocks in Grid

• Identify work of thread via
– threadIdx

– blockIdx

7

…
float x =
input[threadIdx];
float y = func(x);
output[threadIdx] = y;
…

threadIdx

Thread Block 0

…
…
float x =
input[threadIdx];
float y = func(x);
output[threadIdx] = y;
…

Thread Block 1

…
float x =
input[threadIdx];
float y = func(x);
output[threadIdx] = y;
…

Thread Block N - 1
76543210 76543210 76543210

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE 498AL, University of Illinois, Urbana-Champaign
blockIdx == 0 blockIdx == 1

CUDA Memory Model and Usage

•cudaMalloc(), cudaFree()

•cudaMallocArray(),
cudaMalloc2DArray(),
cudaMalloc3DArray()

•cudaMemcpy()

•cudaMemcpyArray()

• Host host
Host device
Device device

• Asynchronous transfers
possible (DMA)

8

Grid

Global
Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Register
s

Thread (1, 0)

Register
s

Block (1, 0)

Shared Memory

Thread (0, 0)

Register
s

Thread (1, 0)

Register
s

Host

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE 498AL, University of Illinois, Urbana-Champaign

* brand new on Hopper: thread block clusters

*

now cached in L1!
(Fermi or newer)

now cached in L2!
(Fermi or newer)

* cached on Fermi or newer!

* YES

* YES

PTX (Memory) State Spaces

PTX ISA 9.0 (Chapter 5)

Thank you.

