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Reading Assignment #4 (until Sep 29)

Read (required):

• Get an overview of NVIDIA Ampere (GA102 and A100) GPU white papers:
https://www.nvidia.com/content/PDF/

nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/
nvidia-ampere-architecture-whitepaper.pdf

• Get an overview of NVIDIA Hopper (H100) Tensor Core GPU white paper:
https://resources.nvidia.com/en-us-hopper-architecture/nvidia-h100-tensor-c

• Get an overview of NVIDIA Blackwell (GB202) GPU white papers:

https://images.nvidia.com/aem-dam/Solutions/geforce/blackwell/
nvidia-rtx-blackwell-gpu-architecture.pdf

https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-
literature/NVIDIA-RTX-Blackwell-PRO-GPU-Architecture-v1.0.pdf

Read (optional):

• Look at the “Tuning Guides“ for different architectures in the CUDA SDK

• PTX Instruction Set Architecture (9.0): https://docs.nvidia.com/cuda/parallel-thread-execution/
Read Chapters 1 – 3; get an overview of Chapter 9;
browse through the other chapters to get a feeling for what PTX looks like

• CUDA SASS ISA (13.0), Chap. 6: https://docs.nvidia.com/cuda/pdf/CUDA_Binary_Utilities.pdf
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SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/ 

CPU-“style” cores

ALU
(Execute)

Fetch/
Decode

Execution
Context

Out-of-order control logic

Fancy branch predictor

Memory pre-fetcher

Data cache
(A big one)
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Idea #1: Slim down

ALU
(Execute)

Fetch/
Decode

Execution
Context

Idea #1: 

Remove components that
help a single instruction
stream run fast (i.e., that 
reduce latency of a single 
instruction stream)
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Goal: Increase (peak) throughput
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Sixteen cores   (sixteen fragments in parallel)

ALU ALU

ALUALU

ALU ALU

ALUALU

ALU ALU

ALUALU

ALU ALU

ALUALU

16 cores = 16 simultaneous instruction streams
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→ 16x peak throughput!
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SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/ 

Idea #2: Add ALUs

Idea #2:

Amortize cost/complexity of
managing an instruction
stream across many ALUs

SIMD processing

(or SIMT, SPMD)
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Fetch/
Decode

Ctx Ctx Ctx Ctx

Ctx Ctx Ctx Ctx

Shared Ctx Data 

ALU 1 ALU 2 ALU 3 ALU 4

ALU 5 ALU 6 ALU 7 ALU 8
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128 fragments in parallel 

= 16 simultaneous instruction streams
16 cores = 128 ALUs
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→ 128x peak throughput!
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But what about branches?

ALU 1 ALU 2 . . . ALU 8. . . 
Time 

(clocks)

2 ... 1 ... 8

if (x > 0) {

} else {

}

<unconditional 
shader code>

<resume unconditional 
shader code>

y = pow(x, exp);

y *= Ks;

refl = y + Ka;  

x = 0; 

refl = Ka;  
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But what about branches?

ALU 1 ALU 2 . . . ALU 8. . . 
Time 

(clocks)

2 ... 1 ... 8

if (x > 0) {

} else {

}

<unconditional 
shader code>

<resume unconditional 
shader code>

y = pow(x, exp);

y *= Ks;

refl = y + Ka;  

x = 0; 

refl = Ka;  

TT TT TT FF FFFF FF FF

Not all ALUs do useful work! 
Worst case: 1/8 throughput
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SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/ 

But we have  LOTS of independent fragments.

Idea #3:
Interleave processing of many fragments on a single core to avoid 

stalls caused by high latency operations.
(including instruction pipeline hazards)

Increases the latency of a single group of fragments,
but keeps the throughput as close to peak as possible!
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Idea #3: Interleave execution of groups



SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/ 

Hiding shader stalls
Time 

(clocks)

Stall

Runnable

2 3 4

Frag 1 … 8 Frag  9… 16 Frag 17 … 24 Frag 25 … 32

Done!

Stall

Runnable

Done!

Stall

Runnable

Done!

Stall

Runnable

Done!

1

Increase run time (latency) of one group
to maximize throughput of many groups

Start

Start

Start
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Throughput! (4 groups of threads)
Time 

(clocks)

Stall

Runnable

2 3 4

Frag 1 … 8 Frag  9… 16 Frag 17 … 24 Frag 25 … 32

Done!

Stall

Runnable

Done!

Stall

Runnable

Done!

Stall

Runnable

Done!

1

Increase run time (latency) of one group
to maximize throughput of many groups

Start

Start

Start
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throughput: 
8/clk

throughput: 
8/clk

total 
throughput: 

(8*8*4)/32 / clk
= 8 / clk
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Done!

Throughput! (2 groups of threads)
Time 

(clocks)

2

Frag 1 … 8 Frag  9… 16

Done!

Stall

Runnable

1

Increase run time (latency) of one group
to maximize throughput of many groups

Start
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throughput: 
8/clk

Stall

Runnable

total 
throughput: 

(8*8*2)/24 / clk
= 5.33 / clk

throughput: 
0/clk

throughput: 
8/clk



Concepts: Types of Parallelism

Instruction level parallelism (ILP)

• In single instruction stream: Can consecutive instructions/operations
be executed in parallel? (Because they don’t have a dependency)

• Exploit ILP: Execute independent instructions (1) via pipelined execution (instr. pipe),
or even (2) in multiple parallel instruction pipelines (superscalar processors)

• On GPUs: also important, but much less than TLP (compare, e.g., Kepler with current GPUs)

Thread level parallelism (TLP)

• Exploit that by definition operations in different threads are independent
(if no explicit communication/synchronization is used, which should be minimized)

• Exploit TLP: Execute operations/instructions from multiple threads in parallel
(which also needs multiple parallel instruction pipelines)

• On GPUs: main type of parallelism

more types:
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• Bit-level parallelism (processor word size: 64 bits instead of 32, etc.)
• Data parallelism (SIMD/vector instructions), task parallelism, …



Concepts: Latency Hiding

Not about latency of single operation or group of operations:
It’s about avoiding that the throughput goes below peak

Hide latency that does occur for one instruction (group) by
executing a different instruction (group) as soon as current one stalls:

→ Total throughput does not go down

In GPUs, hide latencies via:

• TLP: pull independent, not-stalling instruction from other thread group

• ILP: pull independent instruction from down the inst. stream in same thread group

• Depending on GPU: TLP often sufficient, but sometimes also need ILP

• However: If in one cycle TLP doesn’t work, ILP can jump in or vice versa

Markus Hadwiger, KAUST 21



Interlude: Instruction Pipelining

Most common way to exploit instruction-level parallelism (ILP)

Problem: hazards (different solutions: bubbles, forwarding, …)

Markus Hadwiger, KAUST 22

wikipedia
https://en.wikipedia.org/wiki/Instruction_pipelining
https://en.wikipedia.org/wiki/Classic_RISC_pipeline



Concepts: SM Occupancy in CUDA (TLP!)

We need to hide latencies from

• Instruction pipelining hazards (RAW – read after write, etc.)
(also: branches; behind branch, fetch instructions from different instruction stream)

• Memory access latency

First type of latency: Definitely need to hide! (it is always there)

Second type of latency: only need to hide if it does occur (of course not unusual)

Occupancy: How close are we to maximum latency hiding ability?
(how many threads are resident vs. how many could be)

See run time occupancy API, or Nsight Compute: https://docs.nvidia.com/
nsight-compute/NsightCompute/index.html#occupancy-calculator

Markus Hadwiger, KAUST 23
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Storing contexts

Fetch/
Decode

ALU ALU ALU ALU 

ALU ALU ALU ALU 

Pool of context storage

64 KB
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Twenty small contexts (few regs/thread)

Fetch/
Decode

ALU ALU ALU ALU 

ALU ALU ALU ALU 

1 2 3 4 5

6 7 8 9 10

11 1512 13 14

16 2017 18 19

(maximal latency hiding ability)
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Twelve medium contexts (more regs/th.)

Fetch/
Decode

ALU ALU ALU ALU 

ALU ALU ALU ALU 

1 2 3 4

5 6 7 8

9 10 11 12
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Four large contexts (many regs/thread)

Fetch/
Decode

ALU ALU ALU ALU 

ALU ALU ALU ALU 

43

1 2

(low latency hiding ability)
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Complete GPU

16 cores

8 mul-add [mad] ALUs per core
(8*16 = 128 total)

16 simultaneous
instruction streams

64 (4*16) concurrent (but
interleaved) instruction streams

512 (8*4*16) concurrent
fragments (resident threads)

= 256 GFLOPs   (@ 1GHz)
(128 * 2 [mad] * 1G)
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Complete GPU

16 cores

8 mul-add [mad] ALUs per core
(8*16 = 128 total)

16 simultaneous
instruction streams

64 (4*16) concurrent (but
interleaved) instruction streams

512 (8*4*16) concurrent
fragments (resident threads)

= 256 GFLOPs   (@ 1GHz)
(128 * 2 [mad] * 1G)
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Beware: this is either for a kernel that happens to have the 
occupancy shown here (4 groups of threads per core),
or: the diagram could show maximum occupancy
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“Enthusiast” GPU (Some time ago :)

32 cores, 16 ALUs per core (512 total) = 1 TFLOP  (@ 1 GHz)
31



GPUs are here!
(usually)

Where We‘ve Arrived...
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GPU Architecture:
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NVIDIA Architectures (since first CUDA GPU)

Tesla [CC 1.x]: 2007-2009

• G80, G9x: 2007 (Geforce 8800, ...)
GT200: 2008/2009 (GTX 280, ...)

Fermi [CC 2.x]: 2010 (2011, 2012, 2013, …)

• GF100, ... (GTX 480, ...)
GF104, ... (GTX 460, ...)
GF110, ... (GTX 580, ...)

Kepler [CC 3.x]: 2012 (2013, 2014, 2016, …)

• GK104, ... (GTX 680, ...)
GK110, ... (GTX 780, GTX Titan, ...)

Maxwell [CC 5.x]: 2015

• GM107, ... (GTX 750Ti, ...); [Nintendo Switch]
GM204, ... (GTX 980, Titan X, ...)

Pascal [CC 6.x]: 2016 (2017, 2018, 2021, 2022, …)

• GP100 (Tesla P100, ...)

• GP10x: x=2,4,6,7,8, ...
(GTX 1060, 1070, 1080, Titan X Pascal, Titan Xp, ...)
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Volta [CC 7.0, 7.2]: 2017/2018

• GV100, ...
(Tesla V100, Titan V, Quadro GV100, ...)

Turing [CC 7.5]: 2018/2019

• TU102, TU104, TU106, TU116, TU117, ...
(Titan RTX, RTX 2070, 2080 (Ti), GTX 1650, 1660, ...)

Ampere [CC 8.0, 8.6, 8.7, 8.8]: 2020

• GA100, GA102, GA104, GA106, ...; [Nintendo Switch 2]
(A100, RTX 3070, 3080, 3090 (Ti), RTX A6000, ...)

Hopper [CC 9.0], Ada Lovelace [CC 8.9]: 2022/23

• GH100, AD102, AD103, AD104, AD106, AD107, ...
(H100, L40, RTX 4080 (12/16 GB), RTX 4090,
RTX 6000 (Ada), ...)

Blackwell [CC 10.0, 10.1(11.0), 10.3, 12.0, 12.1]: 2024/2025

• GB100/102, GB200, GB202/203/205/206/207, ...
(RTX 5080/5090, GB100/GB200 NVL72, HGX B100/B200,
RTX 4000/5000/6000 PRO Blackwell, ...)

see https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
and https://en.wikipedia.org/wiki/CUDA



Concepts: Latency Hiding (Latency Tolerance)

Main goal: Avoid that instruction throughput goes below peak

ILP: Hide instruction pipeline latency of one instruction by
pipelined execution of independent instruction from same thread

TLP: Hide any latency occurring for one thread (group/warp/wavefront)
by executing a different thread (group/warp/wavefront)
as soon as current thread (group/warp/wavefront) stalls:

→ Total throughput does not go down
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(*depending on actual microarchitecture)

– TLP: pull independent, not-stalling instruction from other thread group

– ILP: pull independent instruction from same thread group (instruction stream)

– Depending on GPU: TLP often sufficient, but sometimes also need ILP

– However: If in one cycle TLP doesn’t work, ILP can jump in or vice versa*

GPUs



ILP vs. TLP on GPUs

Main observations

• Each time unit (usually one clock cycle), a new instruction without 
dependencies should be dispatched to functional units (ALUs, SFUs, …)

• Instruction is a group of threads that is executing the same instruction:
CUDA warp (32 threads), wavefront (32 or 64 threads), …

• Where can this instruction come from?
• TLP: from another runnable warp (i.e., different instruction stream)

• ILP: from the same warp (i.e., the same instruction stream)

How many instructions/warps per time unit (clock cycle)?

• “Scalar” pipeline (CPI=1.0): TLP sufficient (if enough warps); can exploit ILP
(next instruction either from different warp, or from same warp)

• “Superscalar” (CPI<1.0) pipeline: dispatch more than one instruction per 
cycle, (#dispatchers > #warp schedulers): need ILP!

Markus Hadwiger, KAUST 36
(CPI = clocks per instruction)
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Example: “Scalar” GF100

Main concept here:

There is one instruction dispatcher
(dispatch unit / fetch/decode unit)

per warp scheduler
(warp selector)

Details later...
Ignore less important subtleties...
GF100 has two warp schedulers, not one,
and each 32-thread instruction is executed
over two clock cycles, not one, etc.

Caveat on NVIDIA diagrams: if two dispatchers per warp scheduler
are shown, it still doesn‘t mean that the ALU pipeline is “superscalar”
(often, the second dispatcher dispatches to a non-ALU pipeline)
... need to look at CUDA programming guide info, also given

in our tables in row “# ALU dispatch / warp sched.”



KAUST   King Abdullah University of Science and Technology 38

Example: “Superscalar” ALUs in SM Architecture



Instruction throughput numbers in older (<13) CUDA C Programming Guide (Chapter 8.4)

Instruction Throughput



Instruction throughput numbers in older (<13) CUDA C Programming Guide (Chapter 8.4)

Instruction Throughput
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list continues…



Instruction throughput numbers in CUDA 13 C Best Practices Guide (Chapter 12.1, Table 5)

Instruction Throughput

Turing Ampere Ada Hopper Blackwell



ALU Instruction Latencies and Instructs. / SM
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10.x/12.x 
(Blackwell)

8.9/9.0 
(Ada, 

Hopper)

8.0/8.6 
(Ampere)

7.x
(Volta, 
Turing)

6.1/6.2 
(Pascal)

6.0 
(Pascal)

5.x 
(Maxwell)

3.x 
(Kepler)

2.1 
(Fermi)

2.0 
(Fermi)

CC

4444424422
# warp sched. 

/ SM

111111122 (over
2 clocks)

1 (over 
2 clocks)

# ALU 
dispatch

/ warp sched.

4L4L4L4L4L2L4L8L2LL
SM busy with
# warps + inst

4444669112222
inst. pipe 

latency (L)

16161616241236
44

+ ILP
22

+ ILP
22

SM busy with
# warps

see NVIDIA CUDA C Programming Guides (different versions)
performance guidelines/multiprocessor level; compute capabilities



see NVIDIA CUDA C Programming Guides (different versions)
performance guidelines/multiprocessor level; compute capabilities

ALU Instruction Latencies and Instructs. / SM
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22

+ ILP
22

SM busy with
# warps

IF no other stalls occur!
(i.e., except inst. pipe hazards)



see NVIDIA CUDA C Programming Guides (different versions)
performance guidelines/multiprocessor level; compute capabilities
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“superscalar”
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Thank you.


