
CS 380 - GPU and GPGPU Programming
Lecture 1: Introduction

Peter Rautek, KAUST

Markus Hadwiger, KAUST

Lecture Overview and Ressources

Peter Rautek, KAUST

Markus Hadwiger, KAUST

3

Lecture Overview

Goals
• Learn GPU architecture and programming; both for graphics and for compute (GPGPU)

• Shading languages (GLSL, HLSL, MSL, Cg), compute APIs (CUDA, OpenCL, DirectCompute)

Time and location
• Monday + Thursday, 10:00 – 11:30, Room 3120, Bldg. 9

Webpage: https://vccvisualization.org/CS380_GPU_and_GPGPU_Programming/

Contact:
• Markus Hadwiger: markus.hadwiger@kaust.edu.sa

• Peter Rautek (main contact assignments): peter.rautek@kaust.edu.sa

• Xingdi Zhang (programming questions): xingdi.zhang@kaust.edu.sa

Prerequisites:
C/C++ programming (!), basic computer graphics, basic linear algebra

https://vccvisualization.org/CS380_GPU_and_GPGPU_Programming/

4

Lecture Structure

Lectures
• Part 1: GPU Basics and Architecture (both: graphics, compute)

• Part 2: GPUs for Compute

• Part 3: GPUs for Graphics

Some lectures might be on research papers (both seminal and current)

Assignments
• 5 programming assignments

• Weekly reading assignments (required; also some optional)

Quizzes
• 4 quizzes, throughout the semester, 30 min each; announced at least a week in advance

• From lectures and (required) reading assignments

Semester project + final presentations, but no mid-term/final exam!

Grading: 40% programming assignments; 30% semester project; 30% quizzes

5

Resources (1) – GPU Compute – Textbooks

• Programming Massively Parallel Processors: A Hands-on Approach, 4th ed.

• CUDA by Example: An Introduction to General-Purpose GPU Programming,
Jason Sanders, Edward Kandrot

Online through KAUST Library Online through KAUST Library

4th ed.

https://learning.oreilly.com/library/view/cuda-by-example/9780132180160/
https://www-sciencedirect-com.kaust.idm.oclc.org/book/9780323912310/programming-massively-parallel-processors

6

Resources (2) – Graphics (OpenGL)
Textbooks

• OpenGL 4 Shading Language Cookbook, 2nd or 3rd ed.

• OpenGL Shading Language (orange book)

2nd ed.

3rd ed.

3rd ed.
OpenGL 3.1, GLSL 1.4
outdated in several aspects (no geometry shaders)
but the basics are still very nice

Resources (2) – Graphics (Vulkan)
Textbooks

Markus Hadwiger, KAUST 7

• Vulkan Programming Guide (2016)

• Vulkan Cookbook (2017)

Online through KAUST Library Online through KAUST Library

https://learning.oreilly.com/library/view/vulkantm-programming-guide/9780134464701/
https://learning.oreilly.com/library/view/vulkan-cookbook/9781786468154/

8

Resources (3) – Graphics – Reference

OpenGL Programming Guide (red book)
http://www.opengl-redbook.com/

Computer graphics and OpenGL

Current edition: 9th

OpenGL 4.5 (with SPIR-V)
contains extended chapters on GLSL

Available in the KAUST library
and also electronically

9

Resources (4) – Graphics – Websites/Tutorials

Learn OpenGL

Nice introduction to modern OpenGL
https://learnopengl.com/

Free book as pdf:

https://learnopengl.com/book/book_pdf.pdf

YouTube lecture series on Vulkan:

https://youtu.be/tLwbj9qys18

10

Resources (5) – Official Websites and Others

https://vccvisualization.org/CS380_GPU_and_GPGPU_Programming/

• OpenGL (4.6): www.opengl.org

www.khronos.org/files/opengl46-quick-reference-card.pdf

• CUDA (13.0): developer.nvidia.com/cuda-toolkit/

• Vulkan (1.4): www.vulkan.org

• OpenCL (3.0): www.khronos.org/opencl/

Very nice resources for techniques, algorithms and data structures:
• GPU Gems books 1-3 (available online)

• GPU Computing Gems, Vol. 1 + 2 (Emerald/Jade edition)

• Ray Tracing Gems (2019) and Ray Tracing Gems II (2021)

11

Syllabus (1)

GPU Basics and Architecture
(~September, early October)

• Introduction

• GPU architecture

• How compute/shader cores work

• GPU shading and GPU compute APIs
– General concepts and overview
– Learn syntax details on your own !

– CUDA book
– GLSL book
– Vulkan tutorial
– online resources, ...

NVIDIA Architectures (since first CUDA GPU)

Tesla [CC 1.x]: 2007-2009
• G80, G9x: 2007 (Geforce 8800, ...)

GT200: 2008/2009 (GTX 280, ...)

Fermi [CC 2.x]: 2010 (2011, 2012, 2013, …)

• GF100, ... (GTX 480, ...)
GF104, ... (GTX 460, ...)
GF110, ... (GTX 580, ...)

Kepler [CC 3.x]: 2012 (2013, 2014, 2016, …)

• GK104, ... (GTX 680, ...)
GK110, ... (GTX 780, GTX Titan, ...)

Maxwell [CC 5.x]: 2015
• GM107, ... (GTX 750Ti, ...)

GM204, ... (GTX 980, Titan X, ...)

Pascal [CC 6.x]: 2016 (2017, 2018, 2021, 2022, …)

• GP100 (Tesla P100, ...)

• GP10x: x=2,4,6,7,8, ...
(GTX 1060, 1070, 1080, Titan X Pascal, Titan Xp, ...)

Markus Hadwiger, KAUST 12

Volta [CC 7.0, 7.2]: 2017/2018
• GV100, ...

(Tesla V100, Titan V, Quadro GV100, ...)

Turing [CC 7.5]: 2018/2019
• TU102, TU104, TU106, TU116, TU117, ...

(Titan RTX, RTX 2070, 2080 (Ti), GTX 1650, 1660, ...)

Ampere [CC 8.0, 8.6, 8.7]: 2020
• GA100, GA102, GA104, GA106, ...

(A100, RTX 3070, 3080, 3090 (Ti), RTX A6000, ...)

Hopper [CC 9.0], Ada Lovelace [CC 8.9]: 2022/23
• GH100, AD102, AD103, AD104, ...

(H100, L40, RTX 4080 (12/16 GB), 4090, RTX 6000, ...)

Blackwell [CC 10.0]: 2024
• GB200/GB202, ...

(RTX 5080/5090, GB200 NVL72, HGX B100/200, ...?)

see https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
and https://en.wikipedia.org/wiki/CUDA

https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
https://en.wikipedia.org/wiki/CUDA

13

Syllabus (2)

GPU Computing (~October)
• GPGPU, important parallel programming concepts

• CUDA memory access

• Reduction, scan

• Linear algebra on GPUs

• Deep learning on GPUs

• Combining graphics and compute
– Display the results of computations
– Interactive systems (fluid flow, ...)

14

Syllabus (3)

GPU Graphics (~November)
• GPU (virtual) texturing, filtering

• GPU (texture) memory management

• Modern game engine technologies

Semester project presentations

GPGPU Examples

Peter Rautek, KAUST

Markus Hadwiger, KAUST

16

Example: Fluid Simulation and Rendering

• Compute advection of fluid
– (Incompressible) Navier-Stokes solvers
– Lattice Boltzmann Method (LBM)

• Discretized domain; stored in 2D/3D textures
– Velocity, pressure
– Dye, smoke density,

vorticity, …

• Updates in multi-passes

• Render current frame

Courtesy Mark Harris

17

18

Example: Volumetric Special Effects

• NVIDIA Demos
– Smoke, water
– Collision detection with

voxelized solid (Gargoyle)

• Ray-casting
– Smoke: direct volume rendering
– Water: level set / isosurface

Courtesy Keenan Crane

19

20

21

Example: Particle Simulation and Rendering

• NVIDIA Particle Demo

22

23

Example: Ray Tracing

Ray tracing in hardware (ray tracing cores: ray/triangle isect, BVH)
• Microsoft DXR (DX12 Ultimate API), Vulkan, NVIDIA OptiX

• NVIDIA Turing: “World‘s First Ray Tracing GPU“ Quadro RTX, Geforce RTX

• AMD RDNA 2 (also in PS5, Xbox Series X), upcoming Intel Arc (Alchemist, 2022)

Unreal Engine 4 (2018, youtube), Nvidia RTX (2021, youtube), Unreal Engine 5 (2025, youtube)

https://www.youtube.com/watch?v=J3ue35ago3Y
https://www.youtube.com/watch?v=vnpUykzHpv8
https://www.youtube.com/watch?v=jZhjqMMV1B4

24

Example: Level-Set Computations

• Implicit surface represented by distance field

• The level-set PDE is solved to update the distance field

• Basic framework with a variety of applications

25

26

Example: Diffusion Filtering

De-noising
• Original

• Linear isotropic

• Non-linear isotropic

• Non-linear anisotropic

27

Example: Linear Algebra Operators

Vector and matrix representation and operators
• Early approach based on graphics primitives

• Now CUDA makes this much easier (+ lots of libraries)

• Linear systems solvers

Courtesy Krüger and Westermann

28

Example: Machine Learning / Deep Learning

Perfect fit for massively parallel computation
• NVIDIA Volta Architecture: Tensor Cores (mixed-prec. 4x4 matrix mult plus add)

• NVIDIA Turing and Ampere architectures: Improved tensor cores, ...

Frameworks
• TensorFlow,

PyTorch,
Caffe,
...

29

Example: GPU Data Structures

Glift: Generic, Efficient, Random-Access GPU Data Structures
• “STL“ for GPUs

• Virtual memory management

Courtesy Lefohn et al.

Programming Assignments - Organization

Peter Rautek, KAUST

Markus Hadwiger, KAUST

31

Programming Assignments: Basics

5 assignments
Framework based on C/C++ and several GPU APIs
(CUDA, Vulkan, OpenGL, OpenCL)

Organization
1. Explanation in readme, and during lecture (and Q&A sessions if required)

2. Get framework online (github+git)

3. Submit solution and report online (github+git) by submission deadline

4. Personal presentation and assessment after submission

32

Programming Assignments: People

Teaching Assistants:

• Peter Rautek (peter.rautek@kaust.edu.sa)
programming assignments, assignment presentations

• Xingdi Zhang (xingdi.zhang@kaust.edu.sa)
programming questions, general help

1. Google, Stackoverflow, ChatGPT, …

2. Ask your fellow students
Discussions and explanations are encouraged
(but: copying code is not allowed!)

3. Contact us:
Peter: peter.rautek@kaust.edu.sa
Xingdi: xingdi.zhang@kaust.edu.sa

Need Help?

mailto:peter.rautek@kaust.edu.sa
mailto::xingdi.zhang@kaust.edu.sa

GPU programming comes in different flavors:
• Compute: CUDA, OpenCL, HIP;

compute API parts of Vulkan, OpenGL, etc.
• Graphics: Vulkan, OpenGL, DirectX

In this course we will:
• Learn to use compute APIs like CUDA and OpenCL

and graphics APIs like Vulkan and OpenGL
• Wrap our heads around parallelism
• Learn the differences and commonalities of graphics

and compute programming

Format:
• 5 Pre-specified programming assignments
• 1 Capstone (semester) project that you can define

yourself

Playing with the GPU

Programming Assignments: Where to Start

• Source code is hosted on github.com

• Go to the github repo (Peter will send you info)

• Get a git client http://git-scm.com/downloads and clone your own repo

• Follow the readme text-file

• Do your changes in the source code for assignment 1,
commit, and push (to your own repo)

• Contact Peter Rautek if you have problems or questions
(peter.rautek@kaust.edu.sa)

Markus Hadwiger, KAUST 35

http://git-scm.com/downloads
http://git-scm.com/downloads
http://git-scm.com/downloads

C++ Programming and Graphics API Tutorial

Optional and on-demand:

 Short tutorials and tutor sessions
(attendance optional, but recommended)

 To make it easier to get started with C++, Vulkan/OpenGL

 If you have questions/problems when you come to the tutorial,
that’s even better!

Markus Hadwiger, KAUST 36

Programming Assignment 1

Set up your development environment
• Visual Studio (either 2019 or 2022)

(https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=Community&rel=16)

• CUDA 13.0 (https://developer.nvidia.com/cuda-downloads)

• git (https://git-scm.com/downloads)

• Fork the CS 380 repository
(https://bitbucket.org/rautek/cs380-2024/src/main)

• Follow the readme and start coding

Query your graphics card for its capabilities (CUDA and OpenGL)

https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=Community&rel=16
https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=Community&rel=16
https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=Community&rel=16
https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=Community&rel=16
https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=Community&rel=16
https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=Community&rel=16
https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=Community&rel=16
https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=Community&rel=16
https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=Community&rel=16
https://bitbucket.org/rautek/cs380-2024/src/main
https://bitbucket.org/rautek/cs380-2024/src/main
https://bitbucket.org/rautek/cs380-2024/src/main

Programming Assignment 1 – Setup

• Programming

• Query hardware capabilities
(Vulkan, OpenGL, and CUDA)

• Instructions in readme.txt file

• Submission (via github)

• Program

• Short report (1-2 pages, pdf),
including short explanation of program,
problems and solutions, how to run it,
screenshots, etc.

• Personal assessment

• Meeting with Peter

• Max. 15 minutes, present program + source code

39

Programming Assignments: Grading

• Submission complete, code working for all the required features

• Documentation complete (report, but also source code comments)

• Personal presentation

• Optional features, coding style, clean solution

• Every day of late submission reduces points by 10%

• No direct copies from the internet or friends!
You have to understand what you program:
your explanations during the presentations will be part of the grade!

40

Programming Assignments: Schedule (tentative)

Assignment #1:
• Querying the GPU (Graphics and Compute APIs) due Sep 7

Assignment #2:
• GPU Compute – Data Parallel Processing due Sep 21

Assignment #3:
• GPU Compute – Porting Sequential to Parallel Code due Oct 5

Assignment #4:
• Graphics – Rasterization Pipeline due Oct 26

Assignment #5:
• Graphics – Compute Shaders (SPH Simulation) due Nov 16

41

Semester / Capstone Project

• Choosing your own topic encouraged!
(we will also suggest some topics)
• Pick something that you think is really cool!

• Can be completely graphics or completely computation, or both combined

• Can be built on CS 380 frameworks, NVIDIA OpenGL SDK, CUDA SDK, ...

• Write short (1-2 pages) project proposal by early Oct (announced later)
• Talk to us before you start writing!
(content and complexity should fit the lecture)

• Submit semester project with report (deadline: Dec 14)

• Present semester project, event in final exams week: Dec 15 (tentative!)

42

Reading Assignment #1 (until Sep 4)

Read (required):
• Programming Mass. Parallel Proc. book, 4th ed., Chapter 1 (Introduction)

• Programming Mass. Parallel Proc. book, 2nd ed., Chapter 2 (History of GPU Computing)

• OpenGL Shading Language (orange) book, Chapter 1 (Review of OpenGL Basics)

Read (optional):
• OpenGL Shading Language 4.6 (current: Aug 14, 2023) specification: Chapter 2
https://www.khronos.org/registry/OpenGL/specs/gl/GLSLangSpec.4.60.pdf

• Download OpenGL 4.6 (current: May 5, 2022) specification
https://www.khronos.org/registry/OpenGL/specs/gl/glspec46.core.pdf

Thank you.

	CS 380 - GPU and GPGPU Programming�Lecture 1: Introduction
	Lecture Overview and Ressources�
	Lecture Overview
	Lecture Structure
	Resources (1) – GPU Compute – Textbooks
	Resources (2) – Graphics (OpenGL) Textbooks
	Resources (2) – Graphics (Vulkan) �Textbooks
	Resources (3) – Graphics – Reference
	Resources (4) – Graphics – Websites/Tutorials
	Resources (5) – Official Websites and Others
	Syllabus (1)
	NVIDIA Architectures (since first CUDA GPU)
	Syllabus (2)
	Syllabus (3)
	GPGPU Examples�
	Example: Fluid Simulation and Rendering
	Slide Number 17
	Example: Volumetric Special Effects
	Slide Number 19
	Slide Number 20
	Example: Particle Simulation and Rendering
	Slide Number 22
	Example: Ray Tracing
	Example: Level-Set Computations
	Slide Number 25
	Example: Diffusion Filtering
	Example: Linear Algebra Operators
	Example: Machine Learning / Deep Learning
	Example: GPU Data Structures
	Programming Assignments - Organization�
	Programming Assignments: Basics
	Programming Assignments: People
	Need Help?
	Playing with the GPU
	Programming Assignments: Where to Start
	C++ Programming and Graphics API Tutorial
	Programming Assignment 1
	Programming Assignment 1 – Setup
	Programming Assignments: Grading
	Programming Assignments: Schedule (tentative)
	Semester / Capstone Project
	Reading Assignment #1 (until Sep 4)
	Thank you.

