
CS 380 - GPU and GPGPU Programming
Lecture 24: Graphics Pipelines;

GPU Texturing, Pt. 1
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Reading Assignment #9 (until Nov 4)

Read (required):

• Programming Massively Parallel Processors book, 4th edition
Chapter 11: Prefix Sum (Scan) – an introduction to work efficiency in parallel algorithms

• Warp Shuffle Functions
– CUDA Programming Guide, Chapter 10.22 (pdf; 7.22 online)

Read (optional):

• Guy E. Blelloch: Prefix Sums and their Applications
– https://www.cs.cmu.edu/~guyb/papers/Ble93.pdf/

• CUDA Cooperative Groups
– CUDA Programming Guide, Chapter 11 (pdf; 8 online)
– https://developer.nvidia.com/blog/cooperative-groups/

• Warp Matrix Functions (==tensor core programming)
– CUDA Programming Guide, Chapter 10.24 (pdf; 7.24 online)
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Next Lectures

Lecture 25: Mon, Nov 4

Lecture 26: Tue,  Nov 5  (make-up lecture; 14:30 – 15:45)

Lecture 27: Thu,  Nov 7: Vulkan tutorial #2
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What is in a GPU?

Lots of floating point processing power

• Stream processing cores

different names:
stream processors,
CUDA cores, ...

• Was vector processing, now scalar cores!

Still lots of fixed graphics functionality

• Attribute interpolation (per-vertex -> per-fragment)

• Rasterization (turning triangles into fragments/pixels)

• Texture samping and filtering

• Depth buffering (per-pixel visibility)

• Blending/compositing (semi-transparent geometry, ...)

• Frame buffers
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Direct3D 10 Pipeline (~OpenGL 3.2)

New geometry shader stage:

• Vertex -> geometry -> pixel shaders

• Stream output after geometry shader

Courtesy David Blythe, Microsoft
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Direct3D 11 Pipeline (~OpenGL 4.x)

New tessellation stages

• Hull shader
(OpenGL: tessellation control)

• Tessellator
(OpenGL: tessellation primitive generator)

• Domain shader
(OpenGL: tessellation evaluation)

• In future versions, there might be yet more
stages, but for some time now all additions
were outside this pipeline:

– Compute shaders

– Vulkan

– Ray tracing cores
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Direct3D 12 Geometry Pipeline (Traditional)

• First version 2015 (Windows 10)

• New from March 2018: DXR (DX12 ray tracing)

• DX 12 Ultimate (March 2020; PC and Xbox Series X)
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Direct3D 12 Mesh Shader Pipeline

Reinventing the Geometry Pipeline

• Mesh and amplification shaders: new high-performance geometry pipeline based on compute shaders

(DX 12 Ultimate / feature level 12.2)

• Compute shader-style replacement of IA/VS/HS/Tess/DS/GS

See talk by Shawn Hargreaves: https://www.youtube.com/watch?v=CFXKTXtil34



Vulkan (1.3) Pipeline (Traditional)



Vulkan (1.3) Pipelines

• Mesh and task shaders: new high-performance geometry pipeline based on compute shaders

(Mesh and task shaders also available as OpenGL 4.5/4.6 extension: GL_NV_mesh_shader)

vulkan.org
github.com/KhronosGroup/Vulkan-Guide
https://www.khronos.org/blog/mesh-shading-for-vulkan



Vulkan Command Buffer Lifecycle



GPU TexturingGPU Texturing



21

GPU Texturing

Rage / id Tech 5 (id Software)
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Why Texturing?

Idea: enhance visual appearance of surfaces by 
applying fine / high-resolution details

Vienna University of Technology
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OpenGL Texture Mapping

Basis for most real-time rendering effects

Look and feel of a surface

Definition:

A regularly sampled function that is mapped onto 
every fragment of a surface

Traditionally an image, but…

Can hold arbitrary information

Textures become general data structures

Sampled and interpreted by fragment programs

Can render into textures  important!
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Types of Textures

Spatial layout

Cartesian grids: 1D, 2D, 3D, 2D_ARRAY, …

Cube maps, …

Formats (too many), e.g. OpenGL

GL_LUMINANCE16_ALPHA16

GL_RGB8, GL_RGBA8, …: integer texture formats

GL_RGB16F, GL_RGBA32F, …: float texture formats

compressed formats, high dynamic range formats, …

External (CPU) format vs. internal (GPU) format
OpenGL driver converts from external to internal

for Vulkan, see vkImageView

for Vulkan, see vkImage 
and vkImageView

use VK_IMAGE_TILING_OPTIMAL
for VkImageCreateInfo::tiling
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Texturing: General Approach

Texture space (u,v) Object space (xO,yO,zO) Image Space (xI,yI)

Parametrization Rendering
(Projection etc.)

Texels
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Perspective Projection
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Perspective Projection



Thank you.


