
CS 380 - GPU and GPGPU Programming
Lecture 24: Graphics Pipelines;

GPU Texturing, Pt. 1

Markus Hadwiger, KAUST

2

Reading Assignment #9 (until Nov 4)

Read (required):

• Programming Massively Parallel Processors book, 4th edition
Chapter 11: Prefix Sum (Scan) – an introduction to work efficiency in parallel algorithms

• Warp Shuffle Functions
– CUDA Programming Guide, Chapter 10.22 (pdf; 7.22 online)

Read (optional):

• Guy E. Blelloch: Prefix Sums and their Applications
– https://www.cs.cmu.edu/~guyb/papers/Ble93.pdf/

• CUDA Cooperative Groups
– CUDA Programming Guide, Chapter 11 (pdf; 8 online)
– https://developer.nvidia.com/blog/cooperative-groups/

• Warp Matrix Functions (==tensor core programming)
– CUDA Programming Guide, Chapter 10.24 (pdf; 7.24 online)

3

Next Lectures

Lecture 25: Mon, Nov 4

Lecture 26: Tue, Nov 5 (make-up lecture; 14:30 – 15:45)

Lecture 27: Thu, Nov 7: Vulkan tutorial #2

4

What is in a GPU?

Lots of floating point processing power

• Stream processing cores

different names:
stream processors,
CUDA cores, ...

• Was vector processing, now scalar cores!

Still lots of fixed graphics functionality

• Attribute interpolation (per-vertex -> per-fragment)

• Rasterization (turning triangles into fragments/pixels)

• Texture samping and filtering

• Depth buffering (per-pixel visibility)

• Blending/compositing (semi-transparent geometry, ...)

• Frame buffers

Markus Hadwiger, KAUST 5Courtesy Kayvon Fatahalian, CMU

Markus Hadwiger, KAUST 6Courtesy Kayvon Fatahalian, CMU

Pixels

Graphics Pipeline

Vertices Primitives Fragments

Geometry
Processing

Fragment
Operations

Scene Description Raster Image

Rasterization

Geometry Processing

Per-Vertex
Lighting

Clipping,
Perspect.Divide

Primitive
Assembly

Transformation

Multiplication with
Modelview and

Projection Matrix

Per-Vertex
Local Illumination

(Blinn/Phong)

Geometric
Primitives

(Points, Lines
Triangles)

Primitives

Clip Space
To

Screen Space

Vertices

Geometry
Processing

Rasterization
Fragment

Operations

Geometry
Processing

Rasterization
Fragment

Operations
Fragment

Operations

Texture
Fetch

Texture
Application

Polygon
Rasterization

PrimitiveVertices

Decomposition
of primitives

into fragments

Interpolation of
texture coordinates

Filtering of
texture color

Primitives Fragments

Rasterization

Combination of
primary color with

texture color

Combination of
primary color with

texture color

Fragment Operations

Stencil
Test

Alpha
Blending

Depth
Test

Alpha
Test

Discard all
fragments within

a certain
alpha range

Discard a
fragment if
the stencil
buffer is set

Discard all
occluded
fragments

Geometry
Processing

Rasterization
Fragment

Operations

Pixels

Graphics Pipeline

Vertices Primitives Fragments

Geometry
Processing

Fragment
Operations

Scene Description Raster Image

Rasterization
Vertex
Shader

Fragment
Shader

Programmable Pipeline

Markus Hadwiger, KAUST 12Courtesy Kayvon Fatahalian, CMU

13

Direct3D 10 Pipeline (~OpenGL 3.2)

New geometry shader stage:

• Vertex -> geometry -> pixel shaders

• Stream output after geometry shader

Courtesy David Blythe, Microsoft

14

Direct3D 11 Pipeline (~OpenGL 4.x)

New tessellation stages

• Hull shader
(OpenGL: tessellation control)

• Tessellator
(OpenGL: tessellation primitive generator)

• Domain shader
(OpenGL: tessellation evaluation)

• In future versions, there might be yet more
stages, but for some time now all additions
were outside this pipeline:

– Compute shaders

– Vulkan

– Ray tracing cores

15

Direct3D 12 Geometry Pipeline (Traditional)

• First version 2015 (Windows 10)

• New from March 2018: DXR (DX12 ray tracing)

• DX 12 Ultimate (March 2020; PC and Xbox Series X)

16

Direct3D 12 Mesh Shader Pipeline

Reinventing the Geometry Pipeline

• Mesh and amplification shaders: new high-performance geometry pipeline based on compute shaders

(DX 12 Ultimate / feature level 12.2)

• Compute shader-style replacement of IA/VS/HS/Tess/DS/GS

See talk by Shawn Hargreaves: https://www.youtube.com/watch?v=CFXKTXtil34

Vulkan (1.3) Pipeline (Traditional)

Vulkan (1.3) Pipelines

• Mesh and task shaders: new high-performance geometry pipeline based on compute shaders

(Mesh and task shaders also available as OpenGL 4.5/4.6 extension: GL_NV_mesh_shader)

vulkan.org
github.com/KhronosGroup/Vulkan-Guide
https://www.khronos.org/blog/mesh-shading-for-vulkan

Vulkan Command Buffer Lifecycle

GPU TexturingGPU Texturing

21

GPU Texturing

Rage / id Tech 5 (id Software)

22

Why Texturing?

Idea: enhance visual appearance of surfaces by
applying fine / high-resolution details

Vienna University of Technology

Vienna University of Technology 23

OpenGL Texture Mapping

Basis for most real-time rendering effects

Look and feel of a surface

Definition:

A regularly sampled function that is mapped onto
every fragment of a surface

Traditionally an image, but…

Can hold arbitrary information

Textures become general data structures

Sampled and interpreted by fragment programs

Can render into textures  important!

Vienna University of Technology 24

Types of Textures

Spatial layout

Cartesian grids: 1D, 2D, 3D, 2D_ARRAY, …

Cube maps, …

Formats (too many), e.g. OpenGL

GL_LUMINANCE16_ALPHA16

GL_RGB8, GL_RGBA8, …: integer texture formats

GL_RGB16F, GL_RGBA32F, …: float texture formats

compressed formats, high dynamic range formats, …

External (CPU) format vs. internal (GPU) format
OpenGL driver converts from external to internal

for Vulkan, see vkImageView

for Vulkan, see vkImage
and vkImageView

use VK_IMAGE_TILING_OPTIMAL
for VkImageCreateInfo::tiling

Eduard Gröller, Stefan Jeschke 25

Texturing: General Approach

Texture space (u,v) Object space (xO,yO,zO) Image Space (xI,yI)

Parametrization Rendering
(Projection etc.)

Texels

26

Perspective Projection

27

Perspective Projection

Thank you.

