/‘_'\

= %fhd v hdUT chno Igy (_,), KAUST

CS 380 - GPU and GPGPU Programming
Lecture 24: Graphics Pipelines;
GPU Texturing, Pt. 1

Markus Hadwiger, KAUST

4

Reading Assignment #9 (until Nov 4)

Read (required):

« Programming Massively Parallel Processors book, 4" edition
Chapter 11: Prefix Sum (Scan) — an introduction to work efficiency in parallel algorithms

» Warp Shuffle Functions
— CUDA Programming Guide, Chapter 10.22 (pdf; 7.22 online)

Read (optional):

» Guy E. Blelloch: Prefix Sums and their Applications
- https://www.cs.cmu.edu/~guyb/papers/Ble93.pdf/

« CUDA Cooperative Groups
— CUDA Programming Guide, Chapter 11 (pdf; 8 online)

— https://developer.nvidia.com/blog/cooperative-groups/

« Warp Matrix Functions (==tensor core programming)
— CUDA Programming Guide, Chapter 10.24 (pdf; 7.24 online)

Next Lectures

Lecture 25: Mon, Nov 4
Lecture 26: Tue, Nov 5 (make-up lecture; 14:30 — 15:45)

Lecture 27: Thu, Nov 7: Vulkan tutorial #2

What is in a GPU?

Lots of floating point processing power

« Stream processing cores

different names: .

stream processors, v ,1'—“'\‘“““"||||||

CUDA cores, ... RN
Tl

» Was vector processing, now scalar cores!
Still lots of fixed graphics functionality
« Attribute interpolation (per-vertex -> per-fragment)

» Rasterization (turning triangles into fragments/pixels)

» Texture samping and filtering
» Depth buffering (per-pixel visibility)
* Blending/compositing (semi-transparent geometry, ...)

* Frame buffers

Real-time graphics primitives (entities)

Represent surface as a 3D trianqle mesh

o4

o2

Vertices Primitives
(e.g., triangles, points, lines)

Courtesy Kayvon Fatahalian, CMU

QAU 15418, Spring 2015

Real-time graphics primitives (entities)

o3
o1
o4
o 2
Vertices Primitives
(e.g., triangles, points, lines)
H]
L] LIC]
L] L0
LI L]
IO HI:I
LI
]]
L]
Fragments Pixels (in an image)

Courtesy Kayvon Fatahalian, CMU

(MU 15-418, Spring 2015

Graphics Pipeline

Scene Description Raster Image

[[

Geometry R i Fragment
Processing asterization g\ gperations

BRI

Vertices Primitives Fragments Pixels

Geometry Processing

Geometry
Processing

Per-Vertex Primitive Clipping,

prensformatigy Lighting Assembly Perspect.Divide |mumd

Multiplication with Per-Vertex Geometric Clip Space
Modelview and Local lllumination Primitives To
Projection Matrix (Blinn/Phong) (Points, Lines Screen Space
Triangles)
° ° ° ° ege
o Vertices Primitives

Rasterization

Polygon
Rasterization

Decomposition
of primitives
into fragments

o Primitives

Texture
Fetch

Interpolation of
texture coordinates
Filtering of
texture color

Texture
Application

Combination of
primary color with
texture color

Fragments

Fragment Operations

Fragment
Operations

Stencil
Test

Discard all Discard a Discard all Combination of
fragments within fragment if occluded primary color with
a certain the stencil fragments texture color
alpha range buffer is set

l\
v

Graphics Pipeline

Scene Description Pr ogr ammable P ipeline Raster Image
| Vertex Fragment fagment
Shader Shader Operations

AR

Vertices Primitives Fragments Pixels

Graphics pipeline architecture

Performs operations on vertices, triangles, fragments, and pixels

Yertex Generation

Vertex Creation
and Processing

3Dvertex stream |

Vertex Processing

Projected vertex stream

Primitive Generation

Primitive Creation

Primitive stream

21

Fragment Generation
Fragment Creation (Rasterization)
and Processing ~ Fragment stream '

Fragment Processing

Colored fragment stream
Pixel Processing

Pixel Operations

Courtesy Kayvon Fatahalian, CMU

e 3

°4 |nput: vertices in 3D space + connectivity

e2

Vertex processing stage computes were vertices
appear on screen given a camera position

Group vertices into triangles positioned on screen

Fragment generation creates one fragment for each
pixel covered by the triangle

Fragment processing colors the fragments based
on the surface characteristics at this pixel

Qutput image pixels contain color of the

i

closest fragment at each pixel

QAU 15418, Spring 2015

Direct3D 10 Pipeline (~OpenGL 3.2)

New geometry shader stage:

fixed
* Vertex -> geometry -> pixel shaders
programmable
« Stream output after geometry shader
. memory
Constant Constant Constant
Vertex Geometry _ Se‘tup P‘i‘x‘el - Output

H_.

Courtesy David Blythe, Microsoft 13

Direct3D 11 Pipeline (~OpenGL 4.x)

Memory Resources
(Buffer, Texture,
Constant Buffer)

New tessellation stages

Stage

* Hull shader
(OpenGL.: tessellation control)

Viertex Shader
Stage

IL

Hull Shader
Stage

 Tessellator
(OpenGL.: tessellation primitive generator)

Tessallator
Stage

* Domain shader
(OpenGL.: tessellation evaluation)

Geomeiry Shader
Stage

)

* In future versions, there might be yet more
stages, but for some time now all additions

were outside this pipeline:
Rasterizer

— Compute shaders e
— Vulkan

— Ray tracing cores
Cutput-Merger
Stage = 14

E Stream Output
Slage

L

Y

First version 2015 (Windows 10)
New from March 2018: DXR (DX12 ray tracing)

DX 12 Ultimate (March 2020; PC and Xbox Series X)

Descriptor tables

Descriptor tables

Root signature data

Static samplers

15

Direct3D 12 Mesh Shader Pipeline

Reinventing the Geometry Pipeline

» Mesh and amplification shaders: new high-performance geometry pipeline based on compute shaders
(DX 12 Ultimate / feature level 12.2)

« Compute shader-style replacement of IA/VS/HS/Tess/DS/GS

Legacy D3D12 graphics pipeline

Mesh shader pipeline
Amplification \V[Yg

See talk by Shawn Hargreaves: https://www.youtube.com/watch?v=CFXKTXtil34

16

Vulkan (1.3) Pipeline (Traditional)

Draw

¥

Input Assembler

v

Vertex Shader

-~

Indirect Buffer

uh<an.

=

Index Buffer

A A

v

Tessellation Control Shader

¥

Tessellation Primitive Generator

K 2

Tessellation Evaluation Shader

N

Vertex Buffer

P R M R N N R N R S R M N

Descriptor Sets

Push Constants

Uniform Buffer

>

A

Ld
h 4

Geometry Shader

-~

Uniform Texel Buffers

Sampled Images

A4

Dispatch

h 4

x
L
v

Vertex Post-Processing

¥

Rasterization

¥

Early Per-Fragment Tests

Storage Buffers

|
I
|
i
1
|
I
T
I
L]
I
s
I
L
I

Storage Texel Buffers

Storage Images

¥

Fragment Shader

F

A A

L 2

Late Post-Fragment Tests

Depth/Stencil Attachments

Input Attachments

¥

Blending

A

A

h 4

Color Attachments

v

Compute Shader

Some Vulkan commands specify geometric objects
to be drawn or computational work to be performed,
while others specify state controlling how objects
are handled by the various pipeline stages, or control
data transfer between memory organized as images
and buffers. Commands are effectively sent through
a processing pipeline, either a graphics pipeline or a
compute pipeline.

[IFixed Function Stage
[Ishader Stage
[:lStorage Images

Vulkan (1.3) Pipelines \[u]i(an®

« Mesh and task shaders: new high-performance geometry pipeline based on compute shaders

(Mesh and task shaders also available as OpenGL 4.5/4.6 extension: GL_NV_mesh_shader)

TESS. TESS.
contrRoL W TesseLLsmon [EVALUATION GEHADE:"’ RASTER Sﬂﬁéﬂ
SHADER SHADER
h}
|

Pipelined memory, keeping interstage data on chip

TRADITIOMAL PIPELINE

VERTEX VERTEX:
ATTRIBUTE SHADER
FETCH

TASK/MESH PIPELINE

M.E'.H F'IIEL

Pipelined memory

Dptmnal E:-::pansmn

vulkan.org
github.com/KhronosGroup/Vulkan-Guide
https://www.khronos.org/blog/mesh-shading-for-vulkan

Vulkan Command Buffer Lifecycle

Allocate
. —)(Initial
Reset _ -~ ' R Reset
”’ \ \
”
’ | X
’ | N
/] N\
/ o
/ / N
/ \
. / ; ’ \ -~
[Invalid](— -————f - ————— ——— -‘[Recording
Invalidate = g \ N
k S \
\ iy \
\ N \
\ - ~ \
Completion with ~ “ Y End
One Time Submit ~_ WV
S Completion 5%
| Pendin J/j Executable]
L < -
Submission

uh<an.

Initial state

The state when a command buffer is first
allocated. The command buffer may be reset
back to this state from any of the executable,
recording, or invalid states. Command buffers
in the initial state can only be moved to
recording, or freed.

Recording state
vkBeginCommandBuffer changes the

state from initial to recording. Once in the
recording state, vkCmd* commands can be
used to record to the command buffer.

Executable state
vkEndCommandBuffer moves a command
buffer state from recording to executable.
Executable command buffers can be
submitted, reset, or recorded to another
command buffer.

Pending state

Queue submission changes the state from
executable to pending, in which applications
must not attempt to modify the command
buffer in any way. The state reverts back

to executable when current executions
complete, or to invalid.

Invalid state

Some operations will transition the command
buffer into the invalid state, in which it can
only be reset or freed.

GPU Texturing

GPU Texturing >~

Rage / id Tech 5 (id Software)

21

Why Texturing?

» ldea: enhance visual appearance of surfaces by
applying fine / high-resolution details

Vienna University of Technology

OpenGL Texture Mapping

Basis for most real-time rendering effects
= Look and feel of a surface
m Definition:

m A reqularly sampled function that is mapped onto
every fragment of a surface

= Traditionally an image, but...
= Can hold arbitrary information
m Textures become general data structures
m Sampled and interpreted by fragment programs
m Can render into textures - important!

#

Vienna University of Technology 23

Types of Textures

m Spatial layout
m Cartesian grids: 1D, 2D
m Cube maps, ...

= Formats (too many), e.g. OpenGL

, 3D, 2D_ARRAY, ...

for Vulkan, see vkImageView

= GL LUMINANCE16_ALPHA16
GL _RGB8, GL _RGBAS, ...: integer texture formats

H
» GL RGB16F, GL RGB
m compressed formats, hi

A32F, ...: float texture formats
gh dynamic range formats, ...

m External (CPU) format vs. internal (GPU) format

m OpenGL driver converts from external to internal

for Vulkan, see vkimage
and vkImageView

use VK_IMAGE_TILING OPTIMAL
for VkImageCreateInfo::tiling

Vienna University of Technology

24

Texturing: General Approach

yTeers

Texture space (u,v) Object space (xy,Y0,20) Image Space (x,y)

Eduard Groller, Stefan Jeschke 25

Texture Mapping

2D (3D) Texture Space

|Texture Transformation
2D Object Parameters

Parameterization
3D Object Space

Model Transformation
3D World Space

[Viewing Transformation
3D Camera Space

Projection

2D Image Space

) 4

Kurt Akeley, Pat Hanrahan

Linear Perspective

-

L

"“"-\-L_‘_ ---_____.-
---J T

Incorrect Perspective

(1,0)

Linear Interpolation, Bad

Perspective Interpolation, Good

Kurt Akeley, Pat Hanrahan

