

King Abdullah University of Science and Technology

CS 380 - GPU and GPGPU Programming Lecture 23: Prefix Sum Bank Conflicts; Programming Tensor Cores

Markus Hadwiger, KAUST

Reading Assignment #9 (until Nov 4)

Read (required):

- Programming Massively Parallel Processors book, 4th edition
 Chapter 11: Prefix Sum (Scan) an introduction to work efficiency in parallel algorithms
- Warp Shuffle Functions
 - CUDA Programming Guide, Chapter 10.22 (pdf; 7.22 online)

Read (optional):

- Guy E. Blelloch: Prefix Sums and their Applications
 - https://www.cs.cmu.edu/~guyb/papers/Ble93.pdf/
- CUDA Cooperative Groups
 - CUDA Programming Guide, Chapter 11 (pdf; 8 online)
 - https://developer.nvidia.com/blog/cooperative-groups/
- Warp Matrix Functions (==tensor core programming)
 - CUDA Programming Guide, Chapter 10.24 (pdf; 7.24 online)

Next Lectures

Lecture 24: Thu, Oct 31

Lecture 25: Mon, Nov 4

Lecture 26: Tue, Nov 5 (make-up lecture; 14:30 – 15:45)

Lecture 27: Thu, Nov 7: Vulkan tutorial #2

GPU Parallel Prefix Sum

• Basic parallel programming primitive; parallelize inherently sequential operations

Parallel Prefix Sum (Scan)

• Definition:

The all-prefix-sums operation takes a binary associative operator \oplus with identity *I*, and an array of n elements

[*a*₀, *a*₁, ..., *a*_{<u>*n*-1}]</sub></u>

and returns the ordered set

 $[I, a_0, (a_0 \oplus a_1), ..., (a_0 \oplus a_1 \oplus ... \oplus a_{n-2})].$

Exclusive scan: last input element is not included in the result

Example: if ⊕ is addition, then scan on the set

[3 1 7 0 4 1 6 3]

returns the set

(From Blelloch, 1990, "Prefix Sums and Their Applications)

Work Efficiency

Guy E. Blelloch and Bruce M. Maggs: Parallel Algorithms, 2004 (https://www.cs.cmu.edu/~guyb/papers/BM04.pdf)

In designing a parallel algorithm, it is more important to make it efficient than to make it asymptotically fast. The efficiency of an algorithm is determined by the total number of operations, or work that it performs. On a sequential machine, an algorithm's work is the same as its time. On a parallel machine, the work is simply the processor-time product. Hence, an algorithm that takes time t on a P-processor machine performs work W = Pt. In either case, the work roughly captures the actual cost to perform the computation, assuming that the cost of a parallel machine is proportional to the number of processors in the machine.

We call an algorithm work-efficient (or just efficient) if it performs the same amount of work, to within a constant factor, as the fastest known sequential algorithm.

For example, a parallel algorithm that sorts n keys in O(sqrt(n) log(n)) time using sqrt(n) processors is efficient since the work, O(n log(n)), is as good as any (comparison-based) sequential algorithm.

However, a sorting algorithm that runs in O(log(n)) time using n² processors is not efficient.

The first algorithm is better than the second - even though it is slower - because its work, or cost, is smaller. Of course, given two parallel algorithms that perform the same amount of work, the faster one is generally better.

Typical Parallel Programming Pattern

log(n) steps

I					
	,				
• iterat	ions				

Helpful fact for counting nodes of full binary trees: If there are N leaf nodes, there will be N-1 non-leaf nodes

Parallel08 – Control Flow

A First-Attempt Parallel Scan Algorithm

- Read input from device memory to shared memory. Set first element to zero and shift others right by one.
- Iterate log(n) times: Threads stride to n: Add pairs of elements stride elements apart. Double stride at each iteration. (note must double buffer shared mem arrays)
- 3. Write output to device memory.

Work Efficiency Considerations

- The first-attempt Scan executes log(n) parallel iterations
 - Total adds: n * (log(n) 1) + 1 → O(n*log(n)) work
- This scan algorithm is not very work efficient
 - Sequential scan algorithm does *n* adds
 - A factor of log(n) hurts: 20x for 10^6 elements!
- A parallel algorithm can be slow when execution resources are saturated due to low work efficiency

Typical Parallel Programming Pattern

• 2 log(n) steps

Typical Parallel Programming Pattern

• 2 log(n) steps

Parallel08 - Control Flow

O(n) Scan [Blelloch]

Build the Sum Tree

Iterate log(n) times. Each thread adds value stride / 2 elements away to its own value.

Note that this algorithm operates in-place: no need for double buffering

Parallel08 - Control Flow

Down-Sweep Variant 1: Exclusive Scan

We now have an array of partial sums. Since this is an exclusive scan, set the last element to zero. It will propagate back to the first element.

Parallel08 – Control Flow

Build Scan From Partial Sums

Done! We now have a completed scan that we can write out to device memory.

Total steps: $2 * \log(n)$. Total work: 2 * (n-1) adds = O(n) Work Efficient!

Parallel08 – Control Flow

Down-Sweep Variant 2: Inlusive Scan

We now have an array of partial sums. Let's propagate the sums back.

Build Scan From Partial Sums

Total work: < 2 * (n-1) adds = O(n) Work Efficient!

Parallel08 – Control Flow

Bank Conflicts in Scan - Non-power-of-two -

Initial Bank Conflicts on Load

- Each thread loads two shared mem data elements
- Tempting to interleave the loads
 temp[2*thid] = g_idata[2*thid];
 temp[2*thid+1] = g_idata[2*thid+1];
- Threads:(0,1,2,...,8,9,10,...)→banks:(0,2,4,...,0,2,4,...)
- Better to load one element from each half of the array

temp[thid] = $g_idata[thid];$ temp[thid + (n/2)] = $g_idata[thid + <math>(n/2)$];

- When we build the sums, each thread reads two shared memory locations and writes one:
- Th(0,8) access bank 0

- When we build the sums, each thread reads two shared memory locations and writes one:
- Th(1,9) access bank 2, etc.

• 2nd iteration: even worse!

4-way bank conflicts; for example:
 Th(0,4,8,12) access bank 1, Th(1,5,9,13) access Bank 5, etc.

Scan Bank Conflicts (1)

• A full binary tree with 64 leaf nodes:

Scale (s)	Thre	ad a	lddre	sses	;																											
1	0	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50	52	54	56	58	60	62
2	0	4	8	12	16	20	24	28	32	36	40	44	48	52	56	60																
4	0	8	16	24	32	40	48	56																								
8	0	16	32	48																												
16	0	32																														
32	0																															
Conflicts	Ban	ks																														
2-way	0	2	4	6	8	10	12	14	0	2	4	6	8	10	12	14	0	2	4	6	8	10	12	14	0	2	4	6	8	10	12	14
4-way	0	4	8	12	0	4	8	12	0	4	8	12	0	4	8	12																
4-way	0	8	0	8	0	8	0	8																								
4-way	0	0	0	0																												
2-way	0	0																														
None	0																															

• Multiple 2-and 4-way bank conflicts

• Shared memory cost for whole tree

- 1 32-thread warp = 6 cycles per thread w/o conflicts
 - Counting 2 shared mem reads and one write (s[a] += s[b])
- 6 * (2+4+4+4+2+1) = 102 cycles
- 36 cycles if there were no bank conflicts (6 * 6)

Scan Bank Conflicts (2)

- It's much worse with bigger trees!
- A full binary tree with 128 leaf nodes
 - Only the last 6 iterations shown (root and 5 levels below)

- Cost for whole tree:
 - 12*2 + 6*(4+8+8+4+2+1) = 186 cycles
 - 48 cycles if there were no bank conflicts! 12*1 + (6*6)

- We can use padding to prevent bank conflicts
 - Just add a word of padding every 16 words:
- No more conflicts! 32 for full warps!

Now, within a 16-thread half-warp, all threads access different banks. 32-thread full warp!

(Note that only arrows with the same color happen simultaneously.)

Use Padding to Reduce Conflicts

- This is a simple modification to the last exercise
- After you compute a shared mem address like this:

Address = stride * thid;

• Add padding like this:

Address += (Address >> 4); // divide by NUM BANKS

- This removes most bank conflicts
 - Not all, in the case of deep trees

Insert padding every NUM_BANKS elements

```
const int LOG_NUM_BANKS = 4; // 16 banks
int tid = threadIdx.x;
int s = 1;
// Traversal from leaves up to root
for (d = n>>1; d > 0; d >>= 1)
{
    if (thid <= d)
    {
        int a = s*(2*tid); int b = s*(2*tid+1)
            a += (a >> LOG_NUM_BANKS); // insert pad word
            b += (b >> LOG_NUM_BANKS); // insert pad word
            shared[a] += shared[b];
    }
}
```

• A full binary tree with 64 leaf nodes

Leaf Nodes	Scale (s)	Thre	ead a	ddre	sses	5																										
64	1	0	2	4	6	8	10	12	14	17	19	21	23	25	27	29	31	34	36	38	40	42	44	46	48	51	53	55	57	59	61	63
	2	0	4	8	12	17	21	25	29	34	38	42	46	51	55	59	63															
	4	0	8	17	25	34	42	51	59																							
	8	0	17	34	51																											
	16	0	34												= Pa	addir	ng ins	serte	d													
	32	0																														
	Conflicts	Ban	ks																													
	None	0	2	4	6	8	10	12	14	1	3	5	7	9	11	13	15	2	4	6	8	10	12	14	0	3	5	7	9	11	13	15
	None	0	4	8	12	1	5	9	13	2	6	10	14	3	7	11	15															
	None	0	8	1	9	2	10	3	11																							
	None	0	1	2	3																											
	None	0	2																													
	None	0																														

• No more bank conflicts!

- However, there are ~8 cycles overhead for addressing
 - For each s[a] += s[b] (8 cycles/iter. * 6 iter. = 48 extra cycles)
- So just barely worth the overhead on a small tree
 - 84 cycles vs. 102 with conflicts vs. 36 optimal

• A full binary tree with 128 leaf nodes

Only the last 6 iterations shown (root and 5 levels below)

Scale (s)	Th	irea	d ac	ddres	ses																											
2	0	4	8	12	17	21	25	29	34	38	42	46	51	55	59	63	68	72	76	80	85	89	93	97	102	106	110	114	119	123	127	131
4	0	8	17	25	34	42	51	59	68	76	85	93	102	110	119	127																
8	0	17	34	51	68	85	102	119																								
16	0	34	68	102																												
32	0	68												= Pa	addin	g ins	erte	d														
64	0																															
Conflicts	Ba	ank	S																													
None	0	4	8	12	1	5	9	13	2	6	10	14	3	7	11	15	4	8	12	0	5	9	13	1	6	10	14	2	7	11	15	3
None	0	8	1	9	2	10	3	11	4	12	5	13	6	14	7	15																
None	0	1	2	3	4	5	6	7			· · · · ·																					
None	0	2	4	6																												
None	0	4																														
None	0		-																													

• No more bank conflicts!

- Significant performance win:
 - 106 cycles vs. 186 with bank conflicts vs. 48 optimal

• A full binary tree with 512 leaf nodes

– Only the last 6 iterations shown (root and 5 levels below)

Scale (s)	Th	read	addre	esses	<u> </u>																											
8	0	17	34	51	68	85	102	119	136	153	170	187	204	221	238	255	272	289	306	323	340	357	374	391	408	425	442	459	476	493	510	527
16	0	34	68	102	136	170	204	238	272	306	340	374	408	442	476	510																
32	0	68	136	204	272	340	408	476																								
64	0	136	272	408																												
128	0	272												= Pa	Idding	j inse	rted															
256	0																															
Conflicts	Ba	anks							5																							
None	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	0	1	2	3	4	5	6	- 7	8	9	10	11	12	13	14	15
2-way	0	2	4	6	8	10	12	14	0	2	4	6	8	10	12	14																
2-way	0	4	8	12	0	4	8	12																								
2-way	0	8	0	8																												
2-way	0	0																														
None	0																															

- Wait, we still have bank conflicts
 - Method is not foolproof, but still much improved
 - 304 cycles vs. 570 with bank conflicts vs. 120 optimal

• But it does not pay of to optimize for the rest. Address calculations are getting too expensive

Summary

Parallel Programming requires careful planning

- of the branching behavior
- of the memory access patterns
- of the work efficiency

Vector Reduction

- branch efficient
- bank efficient

Scan Algorithm

 based in Balanced Tree principle: bottom up, top down traversal

Programming Tensor Cores

NVIDIA Volta SM

Multiprocessor: SM (CC 7.0)

- 64 FP32 + 64 INT32 cores
- 32 FP64 cores
- 32 LD/ST units; 16 SFUs
- 8 tensor cores (FP16/FP32 mixed-precision)

4 partitions inside SM

- 16 FP32 + 16 INT32 cores each
- 8 FP64 cores each
- 8 LD/ST units; 4 SFUs each
- 2 tensor cores each
- Each has: warp scheduler, dispatch unit, register file

NVIDIA Turing SM

Multiprocessor: SM (CC 7.5)

- 64 FP32 + INT32 cores
- 2 (!) FP64 cores
- 8 Turing tensor cores (FP16/32, INT4/8 mixed-precision)
- 1 RT (ray tracing) core
- 4 partitions inside SM
 - 16 FP32 + INT32 cores each
 - 4 LD/ST units; 4 SFUs each
 - 2 Turing tensor cores each
 - Each has: warp scheduler, dispatch unit, 16K register file

NVIDIA GA100 SM

Multiprocessor: SM (CC 8.0)

- 64 FP32 + 64 INT32 cores
- 32 FP64 cores
- 4 3rd gen tensor cores
- 1 2nd gen RT (ray tracing) core

4 partitions inside SM

- 16 FP32 + 16 INT32 cores
- 8 FP64 cores
- 8 LD/ST units; 4 SFUs each
- 1 3rd gen tensor core each
- Each has: warp scheduler, dispatch unit, 16K register file

NVIDIA GA10x SM

Multiprocessor: SM (CC 8.6)

- 128 (64+64) FP32 + 64 INT32 cores
- 2 (!) FP64 cores
- 4 3rd gen tensor cores
- 1 2nd gen RT (ray tracing) core

4 partitions inside SM

- 32 (16+16) FP32 + 16 INT32 cores
- 4 LD/ST units; 4 SFUs each
- 1 3rd gen tensor core each
- Each has: warp scheduler, dispatch unit, 16K register file

NVIDIA GH100 SM

Multiprocessor: SM (CC 9.0)

- 128 FP32 + 64 INT32 cores
- 64 FP64 cores
- 4x 4th gen tensor cores
- ++ thread block clusters, DPX insts., FP8, TMA

4 partitions inside SM

- 32 FP32 + 16 INT32 cores
- 16 FP64 cores
- 8x LD/ST units; 4 SFUs each
- 1x 4th gen tensor core each
- Each has: warp scheduler, dispatch unit, 16K register file

NVIDIA AD102 SM

Multiprocessor: SM (CC 8.9)

- 128 (64+64) FP32 + 64 INT32 cores
- 2 (!) FP64 cores
- 4x 4th gen tensor cores
- 1x 3rd gen RT (ray tracing) core
- ++ thread block clusters, FP8, ... (?)

4 partitions inside SM

- 32 (16+16) FP32 + 16 INT32 cores
- 4x LD/ST units; 4 SFUs each
- 1x 4th gen tensor core each
- Each has: warp scheduler, dispatch unit, 16K register file

Tensor Cores

Mixed-precision, fast matrix-matrix multiply and accumulate (mma)

From this, build larger shapes (sizes), higher dimensionalities, ...

API currently only allows using larger shapes (16x16, ...) in warps (wmma)

Tensor Cores

Fused matrix multiply and accumulate

- Input matrices can be (at most) half-precision (FP16); (Ampere has more!)
- Accumulate can be FP16 or FP32; (Ampere has more!)

Ampere Tensor Cores: Mixed Precision

New in Ampere: TF32, BF16, FP64 **FP32 FP32** matrix matrix Precision Range sigi exponent mantissa Format to TF32 e8 m23 and multiply **FP32** m10 e8 **TF32** FP32 accumulate e5 m10 **FP16** s e8 m7 FP32 **BF16** s 11111 Matrix

plus FP64 (new in Ampere; GA100 only)

plus INT4/INT8/binary data types (experimental; introduced in Turing)

Ampere Tensor Cores: Sparsity Support

Tensor Cores: More Mixed Precision Options

New in Hopper: FP8

Allocate 1 bit to either range or precision

Support for multiple accumulator and output types

multiply

accumulate into

FP32 or FP16

bias/act/...

convert

FP32|FP16|BF16|FP8

matrix

FP8

matrix

TC

SM

FP8

matrix

plus other data types from before (INT4/INT8/binary, ...)

Tensor Cores: Hopper vs. Ampere

(preliminary)

	A100	A100 Sparse	H100 SXM5 ¹	H100 SXM5 ¹ Sparse	H100 SXM5 ¹ Speedup vs A100
FP8 Tensor Core	NA	NA	2000 TFLOPS	4000 TFLOPS	6.4x vs A100 FP16
FP16	78 TFLOPS	NA	120 TFLOPS	NA	1.5x
FP16 Tensor Core	312 TFLOPS	624 TFLOPS	1000 TFLOPS	2000 TFLOPS	3.2x
BF16 Tensor Core	312 TFLOPS	624 TFLOPS	1000 TFLOPS	2000 TFLOPS	3.2x
FP32	19.5 TFLOPS	NA	60 TFLOPS	NA	3.1x
TF32 Tensor Core	156 TFLOPS	312 TFLOPS	500 TFLOPS	1000 TFLOPS	3.2x
FP64	9.7 TFLOPS	NA	30 TFLOPS	NA	3.1x
FP64 Tensor Core	19.5 TFLOPS	NA	60 TFLOPS	NA	3.1x
INT8 Tensor Core	624 TOPS	1248 TOPS	2000 TFLOPS	4000 TFLOPS	3.2x

Markus Hadwiger, KAUST

Tensor Memory Accelerator (TMA)

Asynchronous transfers

Tensor Core APIs

Low-level options

- CUDA C WMMA (warp-level matrix multiply and accumulate)
- PTX wmma and mma (needed for some features) instructions
- SASS hmma instructions (not documented)

Intermediate-level options (template wrappers for low-level)

• NVIDIA CUTLASS (template abstractions for hi-perf matrix-multiplies)

High-level options

- NVIDIA cuBLAS
- NVIDIA cuDNN
- Integration into TensorFlow, ...

CUTLASS 3.6.0 (October 2024) https://github.com/NVIDIA/cutlass

CUTLASS

CUDA C++ Templates as an Optimal Abstraction Layer for Tensor Cores

- Latency-tolerant pipeline from Global Memory
- Conflict-free Shared Memory stores
- Conflict-free Shared Memory loads

CUTLASS: OPTIMAL ABSTRACTION FOR TENSOR CORES

CUTLASS: OPTIMAL ABSTRACTION FOR TENSOR CORES

Warp Level Matrix Multiply Accumulate (WMMA)

```
CUDA C Programming Guide (11.8), Appendix B.24
```

namespace nvcuda::wmma (and nvcuda::wmma::experimental)

```
template<typename Use, int m, int n, int k, typename T, typename Layout=void>
    class fragment;
void load_matrix_sync(fragment<...> &a, const T* mptr, unsigned ldm);
void load_matrix_sync(fragment<...> &a, const T* mptr, unsigned ldm, layout_t
    layout);
void store_matrix_sync(T* mptr, const fragment<...> &a, unsigned ldm, layout_t
    layout);
void fill_fragment(fragment<...> &a, const T& v);
void mma_sync(fragment<...> &d, const fragment<...> &a, const fragment<...> &b, const fragment<...> &c, bool satf=false);
```

Concept of a matrix *fragment* (section of a matrix split across threads in a warp) Dimensions m, n, k: m x k matrix_a; k X n matrix_b; m X n accumulator

Data types (T)

wmma API splits this into fragments

Matrix A	Matrix B	Accumulator	Matrix Size (m-n-k)
half	half	float	16x16x16
half	half	float	32x8x16
half	half	float	8x32x16
half	half	half	16x16x16
half	half	half	32x8x16
half	half	half	8x32x16
unsigned char	unsigned char	int	16x16x16
unsigned char	unsigned char	int	32x8x16
unsigned char	unsigned char	int	8x32x16
signed char	signed char	int	16x16x16
signed char	signed char	int	32x8x16
signed char	signed char	int	8x32x16

Volta/Turing/Ampere/Hopper/Ada:

Data types (T)

wmma API splits this into fragments Alternate Floating Point support:

Ampere/Hopper/Ada only:

Matrix A	Matrix B	Accumulator	Matrix Size (m-n-k)
nv_bfloat16	nv_bfloat16	float	16x16x16
nv_bfloat16	nv_bfloat16	float	32x8x16
nv_bfloat16	nv_bfloat16	float	8x32x16
precision::tf32	precision::tf32	float	16x16x8

Double Precision Support:

Ampere/Hopper only:

Matrix A	Matrix B	Accumulator	Matrix Size (m-n-k)
double	double	double	8x8x4

Experimental support for sub-byte operations:

Turing/Ampere/Ada:

Matrix A	Matrix B	Accumulator	Matrix Size (m-n-k)
precision::u4	precision::u4	int	8x8x32
precision::s4	precision::s4	int	8x8x32
precision::b1	precision::b1	int	8x8x128

Warp Level Matrix Multiply Accumulate (WMMA)

CUDA C Programming Guide (12.6), Chapter 10.24 (online: 7.24)

```
#include <mma.h>
using namespace nvcuda;
 global void wmma ker(half *a, half *b, float *c) {
  // Declare the fragments
   wmma::fragment<wmma::matrix a, 16, 16, 16, half, wmma::col major> a frag;
   wmma::fragment<wmma::matrix b, 16, 16, 16, half, wmma::row major> b frag;
   wmma::fragment<wmma::accumulator, 16, 16, 16, float> c frag;
   // Initialize the output to zero
   wmma::fill fragment(c frag, 0.0f);
   // Load the inputs
   wmma::load matrix sync(a frag, a, 16);
   wmma::load matrix sync(b frag, b, 16);
   // Perform the matrix multiplication
   wmma::mma sync(c frag, a frag, b frag, c frag);
   // Store the output
   wmma::store matrix sync(c, c frag, 16, wmma::mem row major);
```


PTX ISA 8.5, Section 9.7.13 (90 pages)

Instruction	Sparsity	Multiplicand Data-type	Shape	PTX ISA version
wmma	Dense	Floating-pointf16	.m16n16k16, .m8n32k16,and .m32n8k16	PTX ISA version 6.0
wmma	Dense	Alternate floating-point formatbf16	.m16n16k16, .m8n32k16,and .m32n8k16	PTX ISA version 7.0
wmma	Dense	Alternate floating-point formattf32	.m16n16k8	PTX ISA version 7.0
wmma	Dense	Integeru8/.s8	.m16n16k16, .m8n32k16,and .m32n8k16	PTX ISA version 6.3
wmma	Dense	Sub-byte integer - .u4/.s4	.m8n8k32	PTX ISA version 6.3 (preview feature)
wmma	Dense	Single-bitb1	.m8n8k128	PTX ISA version 6.3 (preview feature)

PTX ISA 8.5

Instruction	Sparsity	Multiplicand Data-type	Shape	PTX ISA version
mma	Dense	Floating-pointf64	.m8n8k4	PTX ISA version 7.0
mma	Dense	Floating-pointf16	.m8n8k4	PTX ISA version 6.4
			.ml6n8k8	PTX ISA version 6.5
			.ml6n8k16	PTX ISA version 7.0
mma	Dense	Alternate floating-point formatbf16	.m16n8k8 and .m16n8k16	PTX ISA version 7.0
mma	Dense	Alternate floating-point formattf32	.m16n8k4 and .m16n8k8	PTX ISA version 7.0
mma	Dense	Integeru8/.s8	.m8n8k16	PTX ISA version 6.5
			.m16n8k16 and .m16n8k32	PTX ISA version 7.0
mma	Dense	Sub-byte integer -	.m8n8k32	PTX ISA version 6.5
		.u4/.s4	.m16n8k32 and .m16n8k64	PTX ISA version 7.0
mma	Dense	Single-bitb1	.m8n8k128, .m16n8k128, and .m16n8k256	PTX ISA version 7.0
mma	Sparse	Floating-pointf16	.m16n8k16 and .m16n8k32	PTX ISA version 7.1
mma	Sparse	Alternate floating-point formatbf16	.m16n8k16 and .m16n8k32	PTX ISA version 7.1
mma	Sparse	Alternate floating-point formattf32	.m16n8k8 and .m16n8k16	PTX ISA version 7.1
mma	Sparse	Integeru8/.s8	.m16n8k32 and .m16n8k64	PTX ISA version 7.1
mma	Sparse	Sub-byte integer - .u4/.s4	.m16n8k64 and .m16n8k128	PTX ISA version 7.1

Load and store: wmma

wmma.load

Collectively load a matrix from memory for WMMA

Syntax

Floating point format .f16 loads:

wmma.load.a.sync.aligned.layout.shape{.ss}.atype r, [p] {, stride}; wmma.load.b.sync.aligned.layout.shape{.ss}.btype r, [p] {, stride}; wmma.load.c.sync.aligned.layout.shape{.ss}.ctype r, [p] {, stride};

```
.layout = {.row, .col};
.shape = {.ml6n16k16, .m8n32k16, .m32n8k16};
.ss = {.global, .shared};
.atype = {.f16, .s8, .u8};
.btype = {.f16, .s8, .u8};
.ctype = {.f16, .f32, .s32};
```

Alternate floating point format .bf16 loads:

```
wmma.load.a.sync.aligned.layout.shape{.ss}.atype r, [p] {, stride}
wmma.load.b.sync.aligned.layout.shape{.ss}.btype r, [p] {, stride}
wmma.load.c.sync.aligned.layout.shape{.ss}.ctype r, [p] {, stride}
.layout = {.row, .col};
.shape = {.ml6n16k16, .m8n32k16, .m32n8k16};
.ss = {.global, .shared};
.atype = {.bf16 };
.btype = {.bf16 };
.ctype = {.f32 };
```

Alternate floating point format .tf32 loads:

```
wmma.load.a.sync.aligned.layout.shape{.ss}.atype r, [p] {, stride}
wmma.load.b.sync.aligned.layout.shape{.ss}.btype r, [p] {, stride}
wmma.load.c.sync.aligned.layout.shape{.ss}.ctype r, [p] {, stride}
.layout = {.row, .col};
.shape = {.m16n16k8 };
.ss = {.global, .shared};
.atype = {.tf32 };
.btype = {.tf32 };
.ctype = {.f32 };
```


Load and store: wmma

wmma.load

Collectively load a matrix from memory for WMMA

Syntax

Double precision Floating point . f64 loads:

```
wmma.load.a.sync.aligned.layout.shape{.ss}.atype r, [p] {, stride}
wmma.load.b.sync.aligned.layout.shape{.ss}.btype r, [p] {, stride}
wmma.load.c.sync.aligned.layout.shape{.ss}.ctype r, [p] {, stride}
.layout = {.row, .col};
.shape = {.m8n8k4 };
.ss = {.global, .shared};
.atype = {.f64 };
.btype = {.f64 };
.ctype = {.f64 };
```

Sub-byte loads:

```
wmma.load.a.sync.aligned.row.shape{.ss}.atype r, [p] {, stride}
wmma.load.b.sync.aligned.col.shape{.ss}.btype r, [p] {, stride}
wmma.load.c.sync.aligned.layout.shape{.ss}.ctype r, [p] {, stride}
.layout = {.row, .col};
.shape = {.m8n8k32};
.ss = {.global, .shared};
.atype = {.s4, .u4};
.btype = {.s4, .u4};
.ctype = {.s32};
```

Single-bit loads:

```
wmma.load.a.sync.aligned.row.shape{.ss}.atype r, [p] {, stride}
wmma.load.b.sync.aligned.col.shape{.ss}.btype r, [p] {, stride}
wmma.load.c.sync.aligned.layout.shape{.ss}.ctype r, [p] {, stride}
.layout = {.row, .col};
.shape = {.m8n8k128};
.ss = {.global, .shared};
.atype = {.b1};
.btype = {.b1};
.ctype = {.s32};
```


wmma example

.global .align 32 .f16 A[256], B[256]; .global .align 32 .f32 C[256], D[256]; .req .b32 a<8> b<8> c<8> d<8>; wmma.load.a.sync.aligned.m16n16k16.global.row.f16 {a0, a1, a2, a3, a4, a5, a6, a7}, [A]; wmma.load.b.sync.aligned.m16n16k16.global.col.f16 {b0, b1, b2, b3, b4, b5, b6, b7}, [B]; wmma.load.c.sync.aligned.m16n16k16.global.row.f32 {c0, c1, c2, c3, c4, c5, c6, c7}, [C]; wmma.mma.sync.aligned.m16n16k16.row.col.f32.f32 {d0, d1, d2, d3, d4, d5, d6, d7}, {a0, a1, a2, a3, a4, a5, a6, a7}, {b0, b1, b2, b3, b4, b5, b6, b7}, {c0, c1, c2, c3, c4, c5, c6, c7}; wmma.store.d.sync.aligned.m16n16k16.global.col.f32 [D], {d0, d1, d2, d3, d4, d5, d6, d7};

mma: fixed assigments of matrix fragments to registers in each thread of warp

9.7.13.4.2. Matrix Fragments for mma.m8n8k4 with .f64 floating point type

A warp executing mma.m8n8k4 with .f64 floating point type will compute an MMA operation of shape .m8n8k4.

Elements of the matrix are distributed across the threads in a warp so each thread of the warp holds a fragment of the matrix.

Multiplicand A:

.atype	Fragment	Elements (low to high)
.f64	A vector expression containing a single .f64 register, containing single .f64 element from the matrix A.	а0

%laneid:{fragments}

mma: fixed assigments of matrix fragments to registers in each thread of warp

9.7.13.4.1. Matrix Fragments for mma.m8n8k4 with .f16 floating point type

A warp executing mma.m8n8k4 with .f16 floating point type will compute 4 MMA operations of shape .m8n8k4.

Elements of 4 matrices need to be distributed across the threads in a warp. The following table shows distribution of matrices for MMA operations.

MMA Computation	Threads participating in MMA computation
MMA computation 1	Threads with <code>%laneid 0-3</code> (low group) and 16-19 (high group)
MMA computation 2	Threads with <code>%laneid 4-7</code> (low group) and 20-23 (high group)
MMA computation 3	Threads with <code>%laneid 8-11</code> (low group) and 24-27 (high group)
MMA computation 4	Threads with <code>%laneid 12-15</code> (low group) and 28-31 (high group)

Row Major:

Row\Co

Row\Col	0	1	2	3
0		T0 : { a	0, a1, a2, a3	}
		,		
3		T3: { a0, a1, a2, a3 }		
4		T16:{a	0, a1, a2, a3	}
-				
7		T19:{a	0, a1, a2, a3	}

0	T8:{ a0, a1, a2, a3}	
-	Ļ	
3	T11: { a0, a1, a2, a3 }	
4	T24: { a0, a1, a2, a3 }	
-	Ļ	
7	T27: { a0, a1, a2, a3 }	

MMA computation 3

Multiplicand A:

.atype	Fragment	Elements (low to high)
.f16	A vector expression containing two .f16x2 registers, with each register containing two .f16 elements from the matrix A.	a0, a1, a2, a3

MMA computation 2

low/Col	0	1	2	3
0		T4:{ a0,	a1, a2, a3}	
		Ļ		
3		T7: { a0, a	1, a2, a3 }	
4		T20: { a0,	a1, a2, a3 }	
-		Ļ		
7		T23: { a0,	a1, a2, a3 }	

MMA computation 4

Row\Col	0	1	2	3	
0	T12:{ a0, a1, a2, a3}				
			Ļ		
3		T15:{a0), a1, a2, a3	}	
4		T28: { a0), a1, a2, a3	}	
			1		
7		T31:{a0), a1, a2, a3	}	

%laneid:{fragments}

mma: fixed assignments of matrix fragments to registers in each thread of warp

9.7.13.4.1. Matrix Fragments for mma.m8n8k4 with .f16 floating point type

A warp executing mma.m8n8k4 with .f16 floating point type will compute 4 MMA operations of shape .m8n8k4.

Elements of 4 matrices need to be distributed across the threads in a warp. The following table shows distribution of matrices for MMA operations.

MMA Computation	Threads participating in MMA computation
MMA computation 1	Threads with <code>%laneid</code> O-3 (low group) and 16-19 (high group)
MMA computation 2	Threads with <code>%laneid 4-7</code> (low group) and 20-23 (high group)
MMA computation 3	Threads with <code>%laneid 8-11</code> (low group) and 24-27 (high group)
MMA computation 4	Threads with <code>%laneid 12-15</code> (low group) and 28-31 (high group)

.ctype is .f16

Accumulators C (or D):

.ctype / .dtype	Fragment	Elements (low to high)	
.f16	A vector expression containing four .f16x2 registers, with each register containing two .f16 elements from the matrix C (or D).	c0, c1, c2, c3, c4, c5, c6, c7	
.f32	A vector expression of eight .f32 registers.		

.ctype is .f32

MMA computation 1								
R\C	0	1	2	3	4	5	6	7
0	T0:{0	c0, c1 }	T2:{0	c0, c1 }	T0:{0	c4, c5 }	T2:{0	:4, c5 }
1	T1:{	c0, c1 }	T3:{c	0, c1}	T1:{0	c4, c5 }	T3:{c	4 , c5 }
2	T0:{0	c2, c3 }	T2:{0	c2, c3 }	T0:{	c6, c7 }	T2:{0	6, c7 }
3	T1:{0	c2, c3 }	T3:{0	2, c3 }	T1:{0	c6, c7 }	T3:{c	6, c7 }
4	T16:{	:{c0,c1} T18:{		c0, c1 }	c1 } T16 : { c4, c5 }		T18:{c4,c5}	
5	T17:{	c0, c1 }	T19:{	c0, c1}	T17:{	c4, c5 }	T19:{	c4, c5}
6	T16:{	c2, c3 }	T18:{	c2, c3 }	T16:{	c6, c7 }	T18:{	c6, c7 }
7	T17:{	c2, c3 }	T19:{	c2, c3 }	T17:{	c6, c7 }	T19:{	c6, c7 }

Sparse matrices: mma.sp

9.7.13.5. Matrix multiply-accumulate operation using mma.sp instruction with sparse matrix A

This section describes warp-level mma.sp instruction with sparse matrix A. This variant of the mma operation can be used when A is a structured sparse matrix with 50% zeros in each row distributed in a shape-specific granularity. For an MxNxK sparse mma.sp operation, the MxK matrix A is packed into MxK/2 elements. For each K-wide row of matrix A, 50% elements are zeros and the remaining K/2 non-zero elements are packed in the operand representing matrix A. The mapping of these K/2 elements to the corresponding K-wide row is provided explicitly as metadata.

Load and store: mma Idmatrix

Warp-wide load matrix instruction

```
// Load a single 8x8 matrix using 64-bit addressing
.reg .b64 addr;
.reg .b32 d;
ldmatrix.sync.aligned.m8n8.x1.shared.b16 {d}, [addr];
// Load two 8x8 matrices in column-major format
.reg .b64 addr;
.reg .b32 d<2>;
ldmatrix.sync.aligned.m8n8.x2.trans.shared.b16 {d0, d1}, [addr];
// Load four 8x8 matrices
.reg .b64 addr;
.reg .b32 d<4>;
ldmatrix.sync.aligned.m8n8.x4.b16 {d0, d1, d2, d3}, [addr];
```


Raihan et al., 2019

Get SASS code from cuobjdump disassembly

Micro-benchmarking

Raihan et al., 2019

Get SASS code from cuobjdump disassembly

Cumulative Clock Cycles

(a) Disassembled SASS instructions for Mixed precision mode

Raihan et al., 2019

Get SASS code from cuobjdump disassembly

(b) Disassembled SASS instructions for FP16 mode

Raihan et al., 2019, reverse-engineered matrix fragment assignment

Figure 8: Distribution of operand matrix elements to threads for tensor cores in the RTX 2080 (Turing).

Raihan et al., 2019, reverse-engineered Tensor core microarchitecture

Figure 13: Proposed Tensor Core Microarchitecture

DEVELOPING CUDA KERNELS TO PUSH TENSOR CORES TO THE ABSOLUTE LIMIT ON NVIDIA A100

Andrew Kerr, May 21, 2020

https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/ s21745-developing-cuda-kernels-to-push-tensor-cores-to-the-absolute-limit-onnvidia-a100.pdf

NVIDIA AMPERE ARCHITECTURE

New and Faster Tensor Core Operations

- Floating-point Tensor Core operations 8x and 16x faster than F32 CUDA Cores
- Integer Tensor Core operations 32x and 64x faster than F32 CUDA Cores
- New IEEE double-precision Tensor Cores 2x faster than F64 CUDA Cores

Additional Data Types and Mode

Bfloat16, double, Tensor Float 32

Asynchronous copy

Copy directly into shared memory - deep software pipelines

Many additional new features - see "Inside NVIDIA Ampere Architecture"

PROGRAMMING NVIDIA AMPERE ARCHITECTURE

Deep Learning and Math Libraries using Tensor Cores (with CUDA kernels under the hood)

- cuDNN, cuBLAS, cuTENSOR, cuSOLVER, cuFFT, cuSPARSE
- "CUDNN V8: New Advances in Deep Learning Acceleration" (GTC 2020 S21685)
- "How CUDA Math Libraries Can Help you Unleash the Power of the New NVIDIA A100 GPU" (GTC 2020 S21681)
- "Inside the Compilers, Libraries and Tools for Accelerated Computing" (GTC 2020 S21766)

CUDA C++ Device Code

• CUTLASS, CUDA Math API, CUB, Thrust, libcu++

PROGRAMMING NVIDIA AMPERE ARCHITECTURE with CUDA C++

This is a talk for CUDA programmers

CUTLASS

CUDA C++ Templates for Deep Learning and Linear Algebra

CUTLASS What's new?

CUTLASS 2.2: optimal performance on NVIDIA Ampere Architecture

- Higher throughput Tensor Cores: more than 2x speedup for all data types
- New floating-point types: bfloat16, Tensor Float 32, double
- Deep software pipelines with cp.async: efficient and latency tolerant

CUTLASS 2.1

- Planar complex: complex-valued GEMMs with batching options targeting Volta and Turing Tensor Cores
- BLAS-style host side API

CUTLASS 2.0: significant refactoring using modern C++11 programming

- Efficient: particularly for Turing Tensor Cores
- Tensor Core programming model: reusable components for linear algebra kernels in CUDA
- Documentation, profiling tools, reference implementations, SDK examples, more..

https://github.com/NVIDIA/cutlass

CUTLASS PERFORMANCE ON NVIDIA AMPERE ARCHITECTURE

CUTLASS 2.2 - CUDA 11 Toolkit - NVIDIA A100

Mixed Precision Floating Point Double Precision Floating Point Mixed Precision Integer 250,000 20,000 1,000,000 Tensor Core - INT4 Tensor Core - BF16, F16 Tensor Core - F64 18,000 900,000 200,000 16,000 800,000 13.8x 14,000 13x 700,000 2x 150,000 12,000 600,000 GFLOP/s 10'000 GFLOP/s GFLOP/s Tensor Core - INT8 500,000 CUDA Core - F64 Tensor Core - TF32 100,000 8,000 400,000 6,000 300,000 7.7x 5.7x 50,000 4,000 200,000 CUDA Core - INT8 CUDA Core - F32 100,000 2,000 0 0 0 128 1152 2176 3200 4224 5248 5248 6272 7296 8320 10368 11392 12416 13440 32 544 1056 1568 2080 2592 3104 3104 3104 4128 4640 32 160 288 416 544 9344 14464 15488 672 800 6176 6688 7200 1056 1184 1312 1440 1568 1696 1824 1952 5152 5664 928 7712 GEMM K GEMM K GEMM K m=3456, n=4096 10

TENSOR CORES ON NVIDIA AMPERE ARCHITECTURE

WHAT ARE TENSOR CORES?

Matrix operations: D = op(A, B) + C

- Matrix multiply-add
- XOR-POPC

Input Data types: A, B

half, bfloat16, Tensor Float 32, double, int8, int4, bin1

Accumulation Data Types: C, D

half, float, int32_t, double

WHAT ARE TENSOR CORES?

Matrix operations: D = op(A, B) + C

- Matrix multiply-add
- XOR-POPC

M-by-N-by-K matrix operation

- Warp-synchronous, collective operation
- 32 threads within warp collectively hold A, B, C, and D operands

NVIDIA AMPERE ARCHITECTURE - TENSOR CORE OPERATIONS

ΡΤΧ	Data Types (A * B + C)	Shape	Speedup on NVIDIA A100 (vs F32 CUDA cores)	Speedup on Turing* (vs F32 Cores)	Speedup on Volta* (vs F32 Cores)
mma.sync.m16n8k16 mma.sync.m16n8k8	F16 * F16 + F16 F16 * F16 + F32 BF16 * BF16 + F32	16-by-8-by-16 16-by-8-by-8	16x	8x	8x
mma.sync.m16n8k8	TF32 * TF32 + F32	16-by-8-by-8	8x	N/A	N/A
mma.sync.m8n8k4	F64 * F64 + F64	8-by-8-by-4	2x	N/A	N/A
mma.sync.m16n8k32 mma.sync.m8n8k16	S8 * S8 + S32	16-by-8-by-32 8-by-8-by-16	32x	16x	N/A
mma.sync.m16n8k64	S4 * S4 + S32	16-by-8-by-64	64x	32x	N/A
mma.sync.m16n8k256	B1 ^ B1 + S32	16-by-8-by-256	256x	128x	N/A

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-mma-and-friends

* Instructions with equivalent functionality for Turing and Volta differ in shape from the NVIDIA Ampere Architecture in several cases.

TENSOR CORE OPERATION: FUNDAMENTAL SHAPE

Warp-wide Tensor Core operation: 8-by-8-by-128b

S8 * S8 + S32

8-by-8-by-16

			Î.	b ₀								
		32	2 bits	b ₁ b ₂	то	Т4	т8	т12	Т16	т20	Т24	т28
			ļ	b ₃	Т1	Т5	т9	т13	T17	T21	Т25	Т29
<u> </u>	32 bits				т2	т6	т10	т14	Т18	т22	т26	Т30
b ₀	b ₁ b ₂	2 b ₃			тз	Т7	T11	т15	т19	т23	Т27	Т31
	Т0	T1	Т2	Т3	Т	0	Т	1	Ţ	2	T:	3
	T4	Т5	Т6	Τ7	Г	-4	т	5	Т	6	Т	7
	Т8	Т9	T10	T11	1	8	т	9	T	10	Т1	1
	T12	T13	T14	T15	т	12	Т:	13	Τſ	14	Т1	5
	T16	T17	T18	Т19	т	16	T	17	T	18	Т1	9
	T20	T21	T22	T23	Т	20	T:	21	T2	22	Т2	3
	T24	T25	T26	T27	Т	24	Т	25	T2	26	Т2	7
	T28	T29	T30	T31	Т	28	Т	29	T	30	ТЗ	1

mma.sync.aligned (via inline PTX)

int32_t	D[2];
<pre>uint32_t const</pre>	A;
<pre>uint32_t const</pre>	В;
<pre>int32_t const</pre>	C[2];

64 bits

 r_1

r_o

// Example targets 8-by-8-by-16 Tensor Core operation

EXPANDING THE M DIMENSION

Warp-wide Tensor Core operation: 16-by-8-by-128b

F16 * F16 + F32

16-by-8-by-8

			3	2 bits	h₀ h₁	T0	T4 T5	т8 т9	T12	T16	т20 т21	т24 т25	T28 T29
32	bits 🔸					т2	тб	т10	T14	T18	т22	т26	тзо
h ₀	h ₁						-				-	2	-
*******	·····	Sec. Sec.				Т3	T7	T11	T15	T19	T23	T27	T31
		То				Г	0				_	-	
		T0 T4	11 T5	12 T6	13 T7	-	1	T	1		2	т. Т	3 7
		T8	T9	T10	T11	-	19	Т	-9	T	0	т1	1
		T12	T13	T14	T15	т	12	Т	13	T	14	T1	5
32	bits	T16	T17	T18	T19	т	16	т	17	T:	18	T1	9
	· · · ·	Т20	T21	T22	T23	т	20	Т	21	Т	22	T2	.3
h ₀	h ₁	T24	T25	T26	T27	т	24	T.	25	T2	26	T2	7
	******	T28	T29	T30	T31	Т	28	T.	29	T.	30	Т3	1
		то	T1	T2	Т3	Т	0	Т	1	Т	2	T	3
		T4	Т5	т6	T7		٢4	Т	5	т	6	Т	7
		Т8	Т9	T10	T11	-	г8	т	9	T	LO	T1	1
		T12	T13	T14	T15	Т	12	т	13	T	.4	T1	5
		T16	T17	T18	T19	т	16	T	17	T:	18	T1	9
		T20	T21	T22	T23	Т	20	T.	21	T2	22	Т2	3
		T24	T25	T26	T27	Т	24	T.	25	T	26	T2	7
		T28	T29	T30	T31	Т	28	T.	29	T:	30	ТЗ	1

mma.sync.aligned (via inline PTX)

float D[4]; uint32_t const A[2]; uint32_t const B; float const C[4];

64 bits

64 bits

r₂

r₃

 r_1

ro

// Example targets 16-by-8-by-8 Tensor Core operation

EXPANDING THE K DIMENSION

Warp-wide Tensor Core operation: 16-by-8-by-256b

F16 * F16 + F32

16	р-р,	y-8	3-b	y-1	16	32	pits	h ₀	то т1 т2 т3	T4 T5 T6 T7 T4	T8 T9 T10 T11	T12 T13 T14 T15 T12	T16 T17 T18 T19 T16	T20 T21 T22 T23	T24 T25 T26 T27 T24	T28 T29 T30 T31	
	32	2 bits							т1 т2	т5 т6	т9 т10	T13	T17	T21	T25	T29	
	ha	ŀ	1,						12	10	110	114	110	122	120	- 50	
			and the second						тз	77	T11	T15	T19	T23	Т27	Т31	
Ì	т0	T1	T2	Т3	Т0	T1	T2	Т3	Т	0	т	1	т	2	T;	3	1
	T4	Т5	т6	Т7	T4	Т5	Т6	T7		4	т	5	т	6	т	,	
	Т8	Т9	T10	T11	Т8	Т9	T10	T11	T	8	т	9	TI	.0	Τ1	1	
	T12	T13	T14	T15	T12	T13	T14	T15	т	12	T	13	T1	4	T1	5	
	T16	T17	T18	T19	T16	T17	T18	T19	т	16	T	17	T1	.8	Τ1	9	
	T20	T21	T22	T23	T20	T21	T22	T23	Т	20	T:	21	Tz	2	Т2	3	
	T24	T25	T26	T27	T24	T25	T26	T27	Т	24	T:	25	T2	6	Т2	7	
	T28	T29	T30	T31	T28	T29	T30	T31	T	28	T.	29	T3	0	T3	1	-
ſ	Т0	Τ1	T2	Т3	TO	T1	T2	Т3	Т	0	Т	1	Т	2	T:	3	· [
	T4	Т5	Т6	T7	T4	T5	Т6	Т7	Т	4	т	5	Т	6	T	7	
	Т8	Т9	T10	T11	Т8	Т9	T10	T11	Т	8	т	9	т	0	Τ1	1	
	T12	T13	T14	T15	T12	T13	T14	T15	т	12	T	13	T1	.4	Τ1	5	
	T16	T17	T18	T19	T16	T17	T18	T19	т	16	T:	17	TI	.8	Τ1	9	
	T20	T21	T22	T23	T20	T21	T22	T23	Т	20	T:	21	Т2	2	Т2	3	
	T24	T25	T26	T27	T24	T25	T26	T27	Т	24	T	25	Т2	6	Т2	7	
	T28	T29	T30	T31	T28	T29	T30	T31	T	28	T	29	T3	0	Т3	1	

mma.sync.aligned (via inline PTX)

float		D[4];
uint32_t	const	A[4];
<pre>uint32_t</pre>	const	B[2];
float	const	C[4];

// Example targets 16-by-8-by-32 Tensor Core operation

asm(

64 bits

64 bits

r₂ r₃

r₁

ro

"mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32 "

S8 * S8 + S32

16	b-b	y-8	3-b	y-3	32	32	pits	b ₀ b ₁ b ₂ b ₃	ТО т1 т2 т3	т4 т5 т6 т7	т8 т9 т10	T12 T13 T14 T15	T16 T17 T18 T19	T20 T21 T22 T23	T24 T25 T26 T27	T28 T29 T30 T31	
									то	T4	т8	т12	т16	т20	T24	т28	
									т1	т5	т9	т13	т17	т21	T25	т29	
÷	32	2 bits	_						т2	т6	т10	т14	т18	т22	т26	т30	
	b ₀ b ₁	b ₂	b ₃						тз	т7	T11	т15	т19	т23	T27	т31	
	Т0	T1	Т2	Т3	Т0	T1	T2	Т3	Т	0	1	1	Т	2	T	3	ſ
	T4	Т5	Т6	T7	T4	Т5	Т6	T7	1	4	1	5	т	6	т	7	
	Т8	Т9	T10	T11	Т8	Т9	T10	T11	٦	8	1	9	tΤ	0	Т1	1	
	T12	T13	T14	T15	T12	T13	T14	T15	т	12	т	13	Т1	.4	T1	5	
	T16	T17	T18	T19	T16	T17	T18	T19	т	16	т	17	TI	8	Т1	9	
	T20	T21	T22	T23	T20	T21	T22	T23	Т	20	Т	21	T2	22	T2	3	
	T24	T25	T26	T27	T24	T25	T26	T27	Т	24	Т	25	T2	26	T2	7	
8	T28	T29	T30	T31	T28	T29	T30	T31	Т	28	T	29	Т3	30	Т3	1	
	Т0	T1	T2	Т3	Т0	T1	T2	Т3	Т	0	1	1	т	2	T:	3	
	T4	Т5	Т6	T7	T4	Т5	Т6	Т7	٦	4	1	5	Т	6	Т	7	
	Т8	Т9	T10	T11	Т8	Т9	T10	T11	1	8	٦	9	TI	.0	Τ1	1	
	T12	T13	T14	T15	T12	T13	T14	T15	Т	12	т	13	TI	4	Τ1	5	
	T16	T17	T18	T19	T16	T17	T18	T19	Т	16	т	17	TI	.8	Τ1	9	
	T20	T21	T22	T23	T20	T21	T22	T23	Т	20	Т	21	T2	22	T2	3	
	T24	T25	T26	T27	T24	T25	T26	T27	Т	24	Т	25	T2	26	T2	7	
	T28	T29	T30	T31	T28	T29	T30	T31	T	28	T	29	T3	80	Т3	1	

mma.sync.aligned (via inline PTX)

```
int32_t D[4];
uint32_t const A[4];
uint32_t const B[2];
int32_t const C[4];
```

// Example targets 16-by-8-by-32 Tensor Core operation

asm(

64 bits

64 bits

r₂

r₃

 r_1

ro

"mma.sync.aligned.m16n8k32.row.col.s32.s8.s8.s32 "

```
" { %0, %1, %2, %3 }, "
" { %4, %5, %6, %7 }, "
" { %8, %9 }, "
" { %10, %11, %12, %13 };"
:
"=r"(D[0]), "=r"(D[1]), "=r"(D[2]), "=r"(D[3])
:
"r"(A[0]), "r"(A[1]), "r"(A[2]), "r"(A[3]),
"r"(B[0]), "r"(B[1]),
"r"(C[0]), "r"(C[1]), "r"(C[2]), "r"(C[3])
);
```

HALF-PRECISION : F16 * F16 + F16

	16	-b	y-8	s-b	y-1	6	1	h	То	TA	70	T12	T16 T20	1724	720					
						221	aita			14	10	112	110120	124	120					
						32 [bits	h. /	т1	Т5	т9	т13	T17 T21	T25	т29					
							ļ		T2	т6	T10	T14	т18 т22	2 Т26	т30					
									тз	т7	т11	т15	т19 т23	3 Т27	Т31					
									то	т4	т8	т12	т16 т20	T24	т28					
									т1	т5	т9	т13	T17 T21	т25	т29					
-	32	2 bits							T2	т6	т10	т14	т18 т22	2 т26	т30	 				
	ho	h	1						т3	77	т11	T15	T19 T23	3 T27	T31		37	hite		
									1.00.1		1. T. I.					-	52	Dita	, +	1
	то	T1	T2	Т3	Т0	T1	Т2	Т3	Т	0	Т	1	Т2	T:	3		h ₀	h	1	
	T4	T5	Т6	T7	T4	T5	Т6	T7	1	4	Т	5	Т6	Т	7		С	[0]		
	Т8	Т9	T10	T11	Т8	Т9	T10	T11	7	8	т	9	T10	T1	1		Ū			
	T12	T13	T14	T15	T12	T13	T14	T15	т	12	T	13	T14	T1	5					
	T16	T17	T18	T19	T16	T17	T18	T19	т	16	T	17	T18	T1	9					
	T20	T21	T22	T23	T20	T21	T22	T23	Т	20	T2	21	T22	T2	3					
	T28	T29	T20	12/ T31	T24	T25	T26	T27	- T	24	12	25	T26	12 T3	/		32	bits	5	
F	120	125	150	1.51	120	125	150	151		20			150		•		le.	-	_	
	TO	T1	T2	T3	T0	T1	T2	Т3	1	0	Т	1	T2	T3	3		n ₂		3	
	T4	T5	T6	77	T4	T5	T6	T7		4	Т	5	T6	T	/		С	[1]		
	18	19	T10	T15	18	19	T10	T11	-	8 17	T	9	T10	T1	L C					
\vdash	T16	T17	T18	T10	T16	T17	T19	T10		16	() T1	17	T18	T1	ر ۵					
	T20	T21	T22	T23	T20	T21	T22	T23	Η _T	20	T	21	T22	T2	3					
	T24	T25	T26	T27	T24	T25	T26	T27	T	24	Tz	25	T26	T2	7					
	124																			

mma.sync.aligned (via inline PTX)

<pre>uint32_t D[2];</pre>	//	two	registers	needed	(vs.	four)
<pre>uint32_t const A[4];</pre>						
<pre>uint32_t const B[2];</pre>						
<pre>uint32_t const C[2];</pre>	//	two	registers	needed	(VS.	four)

// Example targets 16-by-8-by-16 Tensor Core operation

asm(

"mma.sync.aligned.m16n8k16.row.col.f16.f16.f16.f16 "

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-mma-and-friends

DOUBLE-PRECISION: F64 * F64 + F64 mma.sync.aligned **8-by-8-by-4**

128 bits

f64₀

f64₁

uint64_t	D[2]; /	//	two	64-bit	accumulators
<pre>uint64_t const</pre>	A; /	11	one	64-bit	element for A operand
<pre>uint64_t const</pre>	B; /	//	one	64-bit	element for B operand
<pre>uint64_t const</pre>	C[2]; /	//	two	64-bit	accumulators

// Example targets 8-by-8-by-4 Tensor Core operation

CUTLASS: wraps PTX in template *m*-by-*n*-by-*k*

cutlass::arch::Mma

```
/// Matrix multiply-add operation
template <</pre>
```

```
/// Size of the matrix product (concept: GemmShape)
typename Shape,
```

```
/// Number of threads participating
```

int kThreads,

/// Data type of A elements

typename ElementA,

/// Layout of A matrix (concept: MatrixLayout)

typename LayoutA,

```
/// Data type of B elements
```

typename ElementB,

/// Layout of B matrix (concept: MatrixLayout)
typename LayoutB,

```
/// Element type of C matrix
```

```
typename ElementC,
```

```
/// Layout of C matrix (concept: MatrixLayout)
typename LayoutC,
```

```
/// Inner product operator
typename Operator
```

```
>
```

struct Mma;

CUTLASS: wraps PTX in template

16-by-8-by-16

cutlass::arch::Mma

__global__ void kernel() {

. . .

}

// arrays containing logical elements
Array<half_t, 8> A;
Array<half_t, 4> B;
Array< float, 4> C;

// define the appropriate matrix operation
arch::Mma< GemmShape<16, 8, 16>, 32, ... > mma;

// in-place matrix multiply-accumulate
mma(C, A, B, C);

https://github.com/NVIDIA/cutlass/blob/master/include/cutlass/arch/mma_sm80.h

EFFICIENT DATA MOVEMENT FOR TENSOR CORES

HELLO WORLD: TENSOR CORES

Map each thread to coordinates of the matrix operation

Load inputs from memory

Perform the matrix operation

Store the result to memory

64 bits

}

CUDA example

```
global void tensor core example 8x8x16(
 int32 t
                *D,
 uint32_t const *A,
 uint32 t const *B,
 int32 t const *C) {
```

// Compute the coordinates of accesses to A and B matrices

int outer = threadIdx.x / 4; // m or n dimension int inner = threadIdx.x % 4; // k dimension

// Compute the coordinates for the accumulator matrices int c row = threadIdx.x / 4; int c col = 2 * (threadIdx.x % 4);

```
// Compute linear offsets into each matrix
int ab idx = outer * 4 + inner;
int cd_idx = c_row * 8 + c_col;
```

```
// Issue Tensor Core operation
asm(
  "mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 "
    { %0, %1 }, "
       %2,
  н
       %3,
    { %4, %5 }; "
    "=r"(D[cd_idx]), "=r"(D[cd_idx + 1])
    "r"(A[ab_idx]),
    "r"(B[ab_idx]),
    "r"(C[cd_idx]), "r"(C[cd_idx + 1])
);
```

PERFORMANCE IMPLICATIONS

Load A and B inputs from memory: 2 x 4B per thread Perform one Tensor Core operation: 2048 flops per warp

2048 flops require 256 B of loaded data

→ 8 flops/byte

NVIDIA A100 Specifications:

- 624 TFLOP/s (INT8)
- 1.6 TB/s (HBM2)
- → 400 flops/byte

8 flops/byte * 1.6 TB/s → 12 TFLOP/s

This kernel is global memory bandwidth limited.

CUDA example

```
__global___void tensor_core_example_8x8x16(
int32_t *D,
uint32_t const *A,
uint32_t const *B,
int32_t const *C) {
```

// Compute the coordinates of accesses to A and B matrices

int outer = threadIdx.x / 4; // m or n dimension
int inner = threadIdx.x % 4; // k dimension

// Compute the coordinates for the accumulator matrices int c_row = threadIdx.x / 4; int c_col = 2 * (threadIdx.x % 4);

```
// Compute linear offsets into each matrix
int ab_idx = outer * 4 + inner;
int cd idx = c row * 8 + c col;
```

```
// Issue Tensor Core operation
asm(
    "mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 "
    " { %0, %1 }, "
    " %2, "
    " %3, "
    " { %4, %5 }; "
    :
        "=r"(D[cd_idx]), "=r"(D[cd_idx + 1])
    :
        "r"(A[ab_idx]),
        "r"(B[ab_idx]),
        "r"(C[cd_idx]), "r"(C[cd_idx + 1])
    );
}
```

FEEDING THE DATA PATH

Efficient storing and loading through Shared Memory

Tiled, hierarchical model: reuse data in Shared Memory and in Registers

See CUTLASS GTC 2018 talk for more details about this model.

FEEDING THE DATA PATH

Move data from Global Memory to Tensor Cores as efficiently as possible

Latency-tolerant pipeline from Global Memory

- Conflict-free Shared Memory stores
- Conflict-free Shared Memory loads

ASYNCHRONOUS COPY: EFFICIENT PIPELINES

New NVIDIA Ampere Architecture feature: cp.async

- Asynchronous copy directly from Global to Shared Memory
- See "Inside the NVIDIA Ampere Architecture" for more details (GTC 2020 S21730)

Enables efficient software pipelines

- Minimizes data movement: $L2 \rightarrow L1 \rightarrow RF \rightarrow SMEM$ becomes $L2 \rightarrow SMEM$
- Saves registers: RF no longer needed to hold the results of long-latency load instructions
- Indirection: fetch several stages in advance for greater latency tolerance

FEEDING THE DATA PATH

Move data from Global Memory to Tensor Cores as efficiently as possible

- Latency-tolerant pipeline from Global Memory
- Conflict-free Shared Memory stores
- Conflict-free Shared Memory loads

GLOBAL MEMORY TO TENSOR CORES

T24 T25 T26 T27

T28 T29 T30 T31

T24 T25 T26 T27

T28 T29 T30 T31

T24 T25 T26 T27

T28

T29 T30 T31

LDMATRIX: FETCH TENSOR CORE OPERANDS

PTX instruction to load a matrix from Shared Memory

Each thread supplies a pointer to 128b row of data in Shared Memory

Each 128b row is broadcast to groups of four threads

(potentially different threads than the one supplying the pointer)

Data matches arrangement of inputs to Tensor Core operations

Shared Memory Pointers To Ti Tz Ta Tu Ti Tz Ta Tu <	ore o.	perations											1.		115	11/ 121	123 123
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Shared Poi	Memory nters					Shared Poi	Memory nters					т2 т тз т	6 T10	Г14 Т15	T18 T22	T26 T30
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	то	\rightarrow	TO	T1	T2	Т3	T16	>	TO	T1	T2	Т3	то	T	1	T2	тз
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T1	\rightarrow	T4	T5	Т6	T7	T17	\longrightarrow	T4	T5	Т6	T7	T4	T!	5	T6	Т7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T2	\longrightarrow	T8	Т9	T10	T11	T18	\longrightarrow	T8	Т9	T10	T11	т8	TS		T10	T11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Т3	\longrightarrow	T12	T13	T14	T15	T19	\longrightarrow	T12	T13	T14	T15	T12	T1	3	Т14	T15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T4	\longrightarrow	T16	T17	T18	T19	Т20	\longrightarrow	T16	T17	T18	T19	T16	T1	7	T18	T19
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T5	\longrightarrow	T20	T21	T22	T23	T21	\longrightarrow	T20	T21	T22	T23	Т20	T2	1	T22	T23
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Т6	\rightarrow	T24	T25	T26	T27	T22	\longrightarrow	T24	T25	T26	T27	T24	T2	5	T26	T27
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Τ7	\rightarrow	T28	T29	T30	T31	T23	\longrightarrow	T28	T29	T30	T31	T28	T2	9	T30	T31
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	т8	\rightarrow	Т0	T1	T2	Т3	Т24	\longrightarrow	Т0	T1	T2	Т3	то	T;	1	T2	Т3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Т9	>	T4	T5	Т6	T7	T25	\longrightarrow	T4	T5	T6	T7	T4	T:	5	Т6	Т7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T10	>	Т8	Т9	T10	T11	T26	\rightarrow	Т8	Т9	T10	T11	Т8	TS	•	T10	T11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T11	\longrightarrow	T12	T13	T14	T15	T27	\longrightarrow	T12	T13	T14	T15	T12	T1	3	T14	T15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T12	\longrightarrow	T16	T17	T18	T19	T28	\longrightarrow	T16	T17	T18	T19	T16	T1	7	T18	T19
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T13	\rightarrow	T20	T21	T22	T23	T29	\longrightarrow	T20	T21	T22	T23	T20	T2	1	T22	T23
T1E T28 T29 T30 T31 T31 T31 T28 T29 T30 T31 T20 T20 T30 T30 T30 T30 T30 T30 T30 T30 T30 T3	T14	\rightarrow	T24	T25	T26	T27	Т30	\longrightarrow	T24	T25	T26	T27	T24	T2	5	T26	T27
	T15	\rightarrow	T28	T29	T30	T31	T31	>	T28	T29	T30	T31	T28	T2	9	T30	T31

T0 T4 T8 T12 T16 T20 T24 T28

T1 T5 T9 T13 T17 T21 T25 T29

T2 T6 T10 T14 T18 T22 T26 T30

T3 T7 T11 T15 T19 T23 T27 T31

T0 T4 T8 T12 T16 T20 T24 T28

TO T12 T17 T21 T25

LDMATRIX: PTX INSTRUCTION

PTX instruction to load a matrix from SMEM

Each thread supplies a pointer to 128b row of data in Shared Memory Each 128b row is broadcast to groups of four threads (potentially different threads than the one supplying the pointer) Data matches arrangement of inputs to Tensor Core operations

```
// Inline PTX assembly for ldmatrix
```

```
uint32_t R[4];
uint32_t smem_ptr;
```

```
asm volatile (
    "ldmatrix.sync.aligned.x4.m8n8.shared.b16 "
    "{%0, %1, %2, %3}, [%4];
    "
    "=r"(R[0]), "=r"(R[1]), "=r"(R[2]), "=r"(R[3])
    :
    "r"(smem_ptr)
);
```


GLOBAL MEMORY TO TENSOR CORES

	T0 T4 T8 T12 T16 T20 T24 T28	T0 T4 T8 T12 T16	T20 T24 T28
Clobal Mamany	T1 T5 T9 T13 T17 T21 T25 T29 T29 T29 T29 T20 T20 <tht20< th=""> <tht20< th=""> <tht20< th=""></tht20<></tht20<></tht20<>	T1 T5 T9 T13 T17	T21 T25 T29
Global Memory	T2 T6 T10 T14 T18 T22 T26 T30	T3 T7 T11 T15 T19	T23 T27 T31
CD. async	T3 T7 T11 T15 T19 T23 T27 T31		T20 T24 T28
	T0 T1 T2 T4 T5 T6 T7 T0 T10 T11 T12 T14 T15 Shared N	Memory Shared Memory T1 T5 T9 T13 T17 T2 T5 T10 T14 T18	T21 T25 T29
•		ters Pointers 13 17 T11 T15 T19	T23 T27 T31
Shared Memory	110 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 T1 T2 120 121 120 121 120 120 121 120 121 121	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 T3 5 T7 0 T11
	T3 T4 T5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4 T15 .8 T19
	T6 T7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 123 6 T27 10 T31
	T8 T9	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 T3 5 T7
	110	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 T11

ldmatrix

T12

T13

T14

T15 ____

T16 T17 T18 T19

T20 T21

T24 T25

T28

T29

T28

T29

Т30

T31

T22 T23

T26 T27

T30 T31

T16 T17 T18 T19

T20 T21 T22 T23

T24 T25 T26 T27

T28 T29

->

T16

T20 T21 T22 T23

⊤24

T28

T30 T31

T17 T18 T19

T26 T27

T31

T29 T30

T25

NVIDIA AMPERE ARCHITECTURE - SHARED MEMORY BANK TIMING

Bank conflicts between threads in the same p	Phase 0: T0 T7				
4B words are accessed in 1 phase		Phase 1: T8 T15			
8B words are accessed in 2 phases:		Phase 2: T16 T23			
 Process addresses of the first 16 threads in a warp 	Phase 3: T24 T31				
 Process addresses of the second 16 threads in a w 	varp				
16B words are accessed in 4 phases:	ss size				
 Each phase processes 8 consecutive threads of a warp 					

Slide borrowed from: Guillaume Thomas-Collignon and Paulius Micikevicius. "Volta Architecture and performance optimization." GTC 2018.

http://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf

GLOBAL MEMORY TO TENSOR CORES

Bank conflict on either store or load from Shared Memory

Registers

GLOBAL TO SHARED MEMORY Load from Global Memory TO Τ4 T8 T12 T16 T20 T24 T28 Τ5 T13 T17 T21 T25 T29 **T9** T1 Load Т6 T10 T14 T18 T22 T26 T30 T2 (128 bits per thread) T11 T15 T19 T23 T27 T31 Т3 T7 Permuted Shared Memory layout XOR function maps thread index to Shared Memory location Store to Shared Memory Τ1 T2 Т3 Τ4 Τ5 Τ6 Τ7 T0 Т9 Т8 T11 T15 T10 T13 T12 T14 Store T18 T16 T17 T22 T23 T20 T19 T21 (128 bits per thread) T27 T26 T25 T24 T30 T29 T28 T31

Store to Shared Memory

то	T1	T2	Т3	T4	T5	Т6	T7	
Т9	Т8	T11	T10	T13	T12	T15	T14	
T18	T19	T16	T17	T22	T23	T20	T21	
T27	T26	T25	T24	T31	Т30	T29	T28	
[·]	

Phase	0:	тø	••	Т7
Phase	1:	Т8		T15
Phase	2:	T16		T23
Phase	3:	T24		T31

Load

Store to Shared Memory

0:	ТØ		Τ7
1:	Т8	•••	T15
2:	T16		T23
3:	T24		T31
	0: 1: 2: 3:	0: T0 1: T8 2: T16 3: T24	0: T0 1: T8 2: T16 3: T24

Load from Global Memory

Store to Shared Memory

т0	T1	T2	Т3	T4	T5	Т6	T7
Т9	Т8	T11	T10	T13	T12	T15	T14
T18	T19	T16	T17	T22	Т23	Т20	T21
T27	T26	T25	T24	T31	Т30	T29	T28
[
L							

0:	ТØ		Τ7
1:	Т8		T15
2:	T16	••	T23
3.	T24	3816-20	T31
	0: 1: 2: 3:	0: T0 1: T8 2: T16 3: T24	0: T0 1: T8 2: T16 3: T24

Load

(128 bits per thread)

Load from Global Memory

Store to Shared Memory

				wawara Liko waxakina		i arractore possistentes	
т0	T1	T2	Т3	Т4	T5	Т6	Т7
Т9	Т8	T11	T10	T13	T12	T15	T14
T18	T19	T16	T17	T22	T23	T20	T21
T27	T26	T25	T24	T31	Т30	T29	T28
				+			

Phase	3:	T24	••	T31
Phase	2:	T16	• •	T23
Phase	1:	Т8	• •	T15
Phase	0:	ТØ		Τ7

Load

(128 bits per thread)
FEEDING THE DATA PATH

Move data from Global Memory to Tensor Cores as efficiently as possible

- Latency-tolerant pipeline from Global Memory
- Conflict-free Shared Memory stores
- Conflict-free Shared Memory loads

Logical view of threadblock tile

то	Т1	Т2	тз	Т4	Т5	Т6	т7	Т8	Т9	т10	T11	Т12	Т13	T14	T15
Т16	T17	т18	т19	т20	Т21	т22	т23	т24	т25	т26	т27	т28	т29	т30	т31

Load Matrix from Shared Memory

то	T16			T1	T17		
T18	T2			T19	Т3		
		T4	T20			T5	T21
		T22	Т6			T23	Т7
Т8	T24			Т9	T25		
T26	T10			T27	T11		
		T12	T28			T13	T29
		Т30	T14			Т31	T15
Г							7

т0	\rightarrow	то
T1	\rightarrow	T4
T2	\longrightarrow	Т8
Т3	>	T12
T4	\longrightarrow	T16
T5	>	T20
Т6	\longrightarrow	T24
T7	\longrightarrow	T28
T8	\rightarrow	то
Т9	\longrightarrow	T4
T10	\longrightarrow	тв
T11	>	T12
T12	\rightarrow	TIE
T13	\rightarrow	T20
Т13 Т14		T20

Shared Memory

Pointers

TO	T1	T2	Т3
T4	T5	Т6	T7
Т8	Т9	T10	T11
T12	T13	T14	T15
T16	T17	T18	T19
T20	T21	T22	T23
T24	T25	T26	T27
T28	T29	T30	T31
то	T1	T2	T3
то т4	T1 T5	T2 T6	T3 T7
T0 T4 T8	T1 T5 T9	T2 T6 T10	T3 T7 T11
T0 T4 T8 T12	T1 T5 T9 T13	T2 T6 T10 T14	T3 T7 T11 T15
T0 T4 T8 T12 T16	T1 T5 T9 T13 T17	T2 T6 T10 T14 T18	T3 T7 T11 T15 T19
T0 T4 T8 T12 T16 T20	T1 T5 T9 T13 T17 T21	T2 T6 T10 T14 T18 T22	T3 T7 T11 T15 T19 T23
T0 T4 T8 T12 T16 T20 T24	T1 T5 T9 T13 T17 T21 T25	T2 T6 T10 T14 T18 T22 T26	T3 T7 T11 T15 T19 T23 T27

Shareo Po	d Memory inters					т2 т3	т6 т7	T10	T14 T15	T18 T19	т22 т23	T26 T27	тз: ТЗ
T16	\longrightarrow	TO	T1	T2	T3	-	го	Т	1	Т	2	т	3
T17	\rightarrow	T4	T5	Т6	T7		Г4	Т	5	т	6	т	7
T18	\longrightarrow	Т8	Т9	T10	T11		T 8	т	9	T	10	T	11
T19	\longrightarrow	T12	T13	T14	T15	Т	12	т	13	Т:	14	T	15
T20	\longrightarrow	T16	T17	T18	T19	Т	16	т	17	T	18	T	19
T21	\longrightarrow	T20	T21	T22	T23	Т	20	T,	21	т	22	Ta	23
T22	\longrightarrow	T24	T25	T26	T27	Т	24	T	25	T:	26	T	27
T23	\longrightarrow	T28	T29	T30	T31	Т	28	T	29	T:	30	T3	31
T24	\longrightarrow	то	T1	T2	Т3		го	Т	1	Т	2	т	3
T25	\longrightarrow	T4	T5	Т6	T7		r4	т	5	т	6	т	7
T26	\longrightarrow	Т8	Т9	T10	T11		F 8	т	9	T	10	т	11
T27	\longrightarrow	T12	T13	T14	T15	Т	12	т	13	T	14	TI	15
T28	\rightarrow	T16	T17	T18	T19	Т	16	т	17	т	18	т	19
T29	\longrightarrow	T20	T21	T22	T23	Т	20	T	21	T	22	T	23
Т30	\longrightarrow	T24	T25	T26	T27	Т	24	Т	25	Т	26	T	27
T31	\longrightarrow	T28	T29	T30	T31	Т	28	T.	29	T	30	T	31

T0 T4 T8 T12 T16 T20 T24 T2

T1 T5 T9 T13 T17 T21 T25 T2

T2 T6 T10 T14 T18 T22 T26

T3 T7 T11 T15 T19 T23 T27 T31

T0 T4 T8 T12 T16 T20 T24 T28

T1 T5 T9 T13 T17 T21 T25 T29

Logical view of threadblock tile

то	Т1	т2	тз	T4	Т5	Т6	т7	т8	Т9	т10	T11	T12	T13	T14	T15
т16	T17	т18	т19	т20	T21	T22	т23	T24	T25	т26	т27	т28	т29	т30	т31
											1	h	h		

Load Matrix from Shared Memory

то	T16			T1	T17		
T18	T2			T19	Т3		
		T4	T20			T5	T21
		T22	Т6			T23	T7
Т8	T24			T9	T25		
T26	T10			T27	T11		
		T12	T28			T13	T29
		Т30	T14			T31	T15
Γ							1
				2			

	то	\longrightarrow	Г
	T1	\rightarrow	Т
	T2	\longrightarrow	Т
	Т3	>	Т
	T4	\longrightarrow	Т
	T5	\longrightarrow	Т
	Т6	\longrightarrow	Т
	17	\rightarrow	Г
ĺ	T8	\rightarrow	T T
	Т7 Т8 Т9	\rightarrow	T T
	T8 T9 T10		ד ד ד
	T8 T9 T10 T11		T T T
	T7 T8 T9 T10 T11 T12	1 1 1 1 1 1 1 1	T T T T
	T7 T8 T9 T10 T11 T12 T13	1 1 1 1 1 1 1 1 1 1	ד ד ד ד ד ד
	T7 T8 T9 T10 T11 T12 T13 T14		1 1 1 1 1 1 1

Shared Memory

Pointers

то	T1	T2	Т3	
T4	T5	Т6	T7	
Т8	Т9	T10	T11	
т12	T13	T14	T15	
T16	T17	T18	T19	
T20	T21	T22	T23	
T24	T25	T26	T27	
T28	T29	T30	T31	
_				
то	Т1	T2	ТЗ	
то т4	T1 T5	T2 T6	T3 T7	
T0 T4 T8	T1 T5 T9	T2 T6 T10	T3 T7 T11	
T0 T4 T8 T12	T1 T5 T9 T13	T2 T6 T10 T14	T3 T7 T11 T15	
T0 T4 T8 T12 T16	T1 T5 T9 T13 T17	T2 T6 T10 T14 T18	T3 T7 T11 T15 T19	
T0 T4 T8 T12 T16 T20	T1 T5 T9 T13 T17 T21	T2 T6 T10 T14 T18 T22	T3 T7 T11 T15 T19 T23	
T0 T4 T8 T12 T16 T20 T24	T1 T5 T9 T13 T17 T21 T25	T2 T6 T10 T14 T18 T22 T26	T3 T7 T11 T15 T19 T23 T27	

Shared Memory

Pointers

T16 T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 T30 T31

				10	14	18	112	116	120	124	120
				т1	т5	т9	т13	т17	т21	т25	т29
				т2	т6	т10	T14	T18	т22	т26	т30
				тз	77	т11	T15	т19	т23	т27	т31
				то	т4	тв	т12	т16	т20	т24	т28
				т1	т5	т9	Т13	Т17	т21	т25	т29
				т2	т6	т10	T14	T18	т22	т26	т30
				тз	77	т11	т15	т19	т23	т27	т31
т0	T1	T2	T3		го	Т	1	т	2	т	3
									~		-
Т4	T5	Т6	T7	1	r4	т	5	т	6	т	7
T4 T8	T5 T9	T6 T10	T7 T11	1	г4 г8	T T	5 9	T T	6 10	т т1	7
T4 T8 T12	T5 T9 T13	T6 T10 T14	T7 T11 T15	1 1 T	r4 r8 12	т Т Т	5 9 13	т т: т:	6 10 14	T T1 T1	7 .1 .5
T4 T8 T12 T16	T5 T9 T13 T17	T6 T10 T14 T18	T7 T11 T15 T19	ר ד ד	r4 r8 12 16	T T T T	5 9 13 17	т тт тт тт	6 10 14	т т1 т1 т1	7 1 5 9
T4 T8 T12 T16 T20	T5 T9 T13 T17 T21	T6 T10 T14 T18 T22	T7 T11 T15 T19 T23	ן ד ד ד	r4 r8 12 16 20	T T T T	75 79 13 17 21	T T T T T T	6 10 14 18 22	T T1 T1 T1 T1 T2	7 .1 .5 .9
T4 T8 T12 T16 T20 T24	T5 T9 T13 T17 T21 T25	T6 T10 T14 T18 T22 T26	T7 T11 T15 T19 T23 T27	T T T T	r4 r8 12 16 20 24	т т т т. т.	5 9 13 17 21 25	т т: т: т: т: т:	6 10 14 18 22 26	T T1 T1 T1 T1 T2 T2	7 1 5 9 3 7
T4 T8 T12 T16 T20 T24 T28	T5 T9 T13 T17 T21 T25 T29	T6 T10 T14 T18 T22 T26 T30	T7 T11 T15 T19 T23 T27 T31	T T T T T	r4 r8 12 16 20 24 28	т т т. т. т. т.	5 9 13 17 21 25 29	T T1 T1 T2 T2 T2 T2	6 10 14 18 22 26 30	T T1 T1 T1 T2 T2 T3	7 1 5 9 3 7 1
T4 T8 T12 T16 T20 T24 T28 T0	T5 T9 T13 T17 T21 T25 T29 T1	T6 T10 T14 T18 T22 T26 T30 T2	T7 T11 T15 T19 T23 T27 T31 T3		r4 r8 12 16 20 24 28	т т т. т. т. т. т.	5 9 13 17 21 25 29	т т т т т т т т т	6 10 14 18 22 26 30	T T1 T1 T1 T2 T2 T3 T.	7 1 5 9 3 7 1 1 3
T4 T8 T12 T16 T20 T24 T28 T0 T4	T5 T9 T13 T17 T21 T25 T29 T1 T5	T6 T10 T14 T18 T22 T26 T30 T2 T6	T7 T11 T15 T19 T23 T27 T31 T7		r4 r8 12 16 20 24 28 r0 r4	т т т т т. т. т. т. т. т.	5 9 13 17 21 25 29	T T T T T T T T T T T T	6 10 14 18 22 26 80 2 2 6	T T1 T1 T1 T1 T2 T2 T3 T3 T. T.	7 1 5 9 3 7 1 1 3 7
T4 T8 T12 T16 T20 T24 T28 T0 T4 T8	T5 T9 T13 T17 T21 T25 T29 T1 T5 T9	T6 T10 T14 T18 T22 T26 T30 T2 T6 T10	T7 T11 T15 T19 T23 T27 T31 T3 T7 T11		r4 r8 12 16 20 24 28 r0 r4 r8	т т т т. т. т. т. т. т. т. т.	5 9 13 17 21 25 29 71 5 5 9	T T T T T T T T T T T T T	2 6 10 14 18 22 26 80 22 6 10	T T1 T1 T1 T1 T2 T2 T2 T3 T1 T1	7 1 5 9 3 7 1 1
T4 T8 T12 T16 T20 T24 T28 T0 T4 T8 T12	T5 T9 T13 T17 T21 T25 T29 T1 T5 T9 T13	T6 T10 T14 T18 T22 T26 T30 T2 T6 T10 T14	T7 T11 T15 T19 T23 T27 T31 T3 T7 T11 T15		r4 r8 12 16 20 24 28 r0 r4 r8 r8 12	т т т т. т. т. т. т. т. т. т.	5 9 113 117 21 22 229 7 1 5 9 9 113	T T1 T1 T2 T2 T2 T2 T2 T2 T2 T2 T2 T1 T1	2 6 10 14 18 22 26 80 22 6 10 14	T T1 T1 T1 T1 T2 T2 T2 T3 T1 T1 T1	7 1 5 9 3 3 7 1 5
T4 T8 T12 T16 T20 T24 T28 T0 T4 T8 T12 T16	T5 T9 T13 T17 T21 T25 T29 T1 T5 T9 T13 T17	T6 T10 T14 T18 T22 T26 T30 T2 T6 T10 T14	T7 T11 T15 T19 T23 T27 T31 T3 T3 T7 T11 T15 T19		r4 r8 12 16 20 24 28 r0 r4 r4 r8 12 16	т т т т. т. т. т. т. т. т. т. т. т. т.	5 9 13 17 21 25 29 7 1 5 9 13 17	T T T T T T T T T T T T T T T	2 6 10 14 18 22 26 80 2 2 6 10 14 18	T T1 T1 T1 T1 T2 T2 T2 T3 T3 T1 T1 T1 T1	7 1 5 9 9 3 3 7 1 5 9
T4 T8 T12 T16 T20 T24 T28 T0 T4 T8 T12 T16 T20	T5 T9 T13 T17 T21 T25 T29 T1 T5 T9 T13 T17 T25 T29 T1 T5 T9 T13 T17 T21	T6 T10 T14 T18 T22 T26 T30 T2 T6 T10 T14 T18 T22 T2 T6 T10 T14 T18 T22	T7 T11 T15 T19 T23 T27 T31 T3 T7 T11 T15 T19 T19 T23		r 4 r 7 r 8 r 2 2 0 r 2 4 r 2 8 r 0 r 4 r 8 r 12 r 2 8 r 12 r 16 r 20 r 24 r 28 r 12 r 16 r 20 r 24 r 28 r 12 r 16 r 20 r 16 r 20 r 16 r 20 r 17 r 16 r 20 r 20 r 16 r 20 r 20 r 16 r 20 r 20 r 20 r 20 r 20 r 20 r 20 r 2	T T T T T T T T T T T	5 9 13 17 21 25 29 13 13 17 21	T T T T T T T T T T T T T T T T	6 10 14 18 22 26 80 22 6 6 10 14 14 18 8 22	T T1 T1 T1 T1 T1 T2 T2 T2 T3 T1 T1 T1 T1 T1 T1 T1 T1 T1	7 1 5 9 3 7 1 3 7 1 5 9 3 3
T4 T8 T12 T16 T20 T24 T28 T0 T4 T8 T12 T16 T20 T21 T12 T16 T20 T21 T16 T20 T21	T5 T9 T13 T17 T21 T25 T29 T1 T5 T9 T13 T17 T21 T5 T9 T13 T17 T21 T25	T6 T10 T14 T18 T22 T26 T30 T2 T6 T10 T14 T18 T22 T6 T10 T14 T18 T22 T26	T7 T11 T15 T19 T23 T27 T31 T3 T7 T11 T15 T19 T23 T7 T11 T15 T19 T23 T27		ra (14) (14) (14) (14) (14) (14) (14) (14)	T T T T T T T T T T T T	5 9 13 17 21 25 29 1 1 5 5 9 13 17 21 25	T T T T T T T T T T T T T T T T T T	6 10 14 18 22 26 30 2 2 6 10 14 18 22 26 10 14 18 22 26 10 14 18 22 26 10 14 18 22 26 10 14 14 18 18 19 19 19 19 19 19 19 19 19 19	T T T T T T T T T T T T T T T T T T T	7 1 5 9 3 7 3 7 1 1 5 9 9 3 3 7 7

Logical view of threadblock tile

то	T1	т2	тз	Т4	Т5	Т6	т7	т8	Т9	т10	T11	T12	т13	T14	T15
т16	T17	т18	т19	т20	Т21	т22	т23	т24	T25	т26	т27	т28	т29	т30	Т31

Load Matrix from Shared Memory

то	T16			T1	T17		
T18	T2			T19	Т3		
ļ, ti		T4	T20			T5	T21
		T22	Т6			T23	Т7
Т8	T24			T9	T25		
T26	T10			T27	T11		
		T12	T28			T13	T29
		Т30	T14			T31	T15
[

то	\rightarrow	Γ
Τ1	\longrightarrow	t
Т2	\longrightarrow	F
Т3	\longrightarrow	Γ
T4	\longrightarrow	Γ
Т5	\longrightarrow	Γ
Т6	>	Γ
Т7	\longrightarrow	
Т8	\rightarrow	Г
Т9	\rightarrow	t
T10	\longrightarrow	t
T11	\rightarrow	t
T12	\longrightarrow	F
T13	\longrightarrow	F
T14	\longrightarrow	F

T15

Shared Memory

Pointers

то	T1	T2	Т3
T4	T5	T6	T7
Т8	Т9	T10	T11
T12	T13	T14	T15
T16	T17	T18	T19
T20	T21	T22	T23
T24	T25	T26	T27
T28	T29	T30	T31
то	T1	T2	T3
T4	T5	Т6	T7
Т8	Т9	T10	T11
T12	T13	T14	T15
T16	T17	T18	T19
T20	T21	T22	T23
T24	T25	T26	T27
720	T20	T20	T21

					то	T4	т8	T12	T16	т20	Т24	т28						
					т1	Т5	т9	т13	T17	т21	т25	т29						
Shared Memory					т2	т6	т10	T14	T18	т22	т26	т30						
Pointers					тз	77	т11	т15	т19	т23	т27	т31						
T16	TO	T1	T2	T3	Γ	то	Т	1	Т	2	T.	3						
T17	T4	T5	Т6	T7		т4	Т	5	т	6	Т	7						
T18>	Т8	Т9	T10	T11		т8	Т	9	TI	0	T1	1						
T19>	T12	T13	T14	T15		F12	T13		T13		T13		T13		T	.4	Τ1	5
T20	T16	T17	T18	T19		Г16	т	17	T	.8	T1	9						
T21>	T20	T21	T22	T23		F20	T.	21	Т2	22	T2	3						
T22>	T24	T25	T26	T27		r24	T	25	T2	26	T2	7						
T23	T28	T29	T30	T31		F28	T	29	Т3	80	Т3	1						
T24 →	то	T1	T2	Т3		то	Т	1	Т	2	T:	3						
T25	T4	T5	Т6	T7		т4	Т	5	Т	6	Т	7						
T26	Т8	Т9	T10	T11		т8	Т	9	TI	.0	Т1	1						
T27>	T12	T13	T14	T15		F12	Т	13	TI	4	T1	5						
T28>	T16	T17	T18	T19		Г16	Т	17	TI	.8	Τ1	9						
T29>	T20	T21	T22	T23		F20	Т	21	Т2	2	T2	3						
Т30 — →	T24	T25	T26	T27		F24	T.	25	Т2	6	T2	7						
T31	T28	T29	T30	T31		728	T	29	Т3	0	Т3	1						

T0 T4 T8 T12 T16 T20 T24 T28

T1 T5 T9 T13 T17 T21 T25 T2

T2 T6 T10 T14 T18 T22 T26

T3 T7 T11 T15 T19 T23 T27 T31

Logical view of threadblock tile

Load Matrix from Shared Memory

то	T16			T1	T17		
T18	T2			T19	Т3		
		T4	T20			T5	T21
		T22	Т6			T23	Т7
Т8	T24			T9	T25		
T26	T10			T27	T11		
		T12	T28			T13	T29
		Т30	T14			T31	T15
Γ							

Т	0		*	Т
1	٢1		*	т
٦	F2		>	Т
٦	ГЗ		►	Т
1	Г4		►	Т
1	5		>	Т
٦	Г6		*	Т
٦	٢7		►	Т
1	8		*	Т
٦	F9		*	Т
٦	10		*	Т
٦	11		*	т
1	12	;	-	Т
٦	13		*	Т
٦	Г14		*	Т

T15

Shared Memory

Pointers

то	T1	T2	T3	T16
T4	T5	T6	T7	T17
Т8	Т9	T10	T11	T18
T12	T13	T14	T15	Т19
T16	T17	T18	T19	Т20
T20	T21	T22	T23	T21
T24	T25	T26	T27	Т22
T28	T29	T30	T31	Т23
-				1 724
то	T1	T2	T3	124
T4	T5	T6	T7	T25
T8	Т9	T10	T11	T26
T12	T13	T14	T15	T27
T16	T17	T18	T19	Т28
T20	T21	T22	T23	Т29
T24	T25	T26	T27	Т30
	3.64770		10000	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1

								-	-			_		-
							т1	т5	т9	т13	т17	т21	T25	т29
							т2	т6	T10	T14	T18	т22	т26	т30
							тз	77	т11	T15	т19	т23	т27	т31
							то	т4	тв	T12	т16	т20	т24	т28
							т1	т5	т9	т13	т17	т21	т25	т29
Shared	l Memory						т2	т6	т10	Т14	т18	т22	т26	т30
Poi	nters						т3	т7	т11	т15	т19	т23	т27	Т31
T16	\longrightarrow	то	T1	T2	T3		1	0	Т	1	Т	2	T.	3
T17	\rightarrow	T4	T5	Т6	T7		7	4	т	5	т	6	Т	7
T18	\longrightarrow	т8	Т9	T10	T11		1	8	т	9	т	10	Т1	1
T19	\longrightarrow	T12	T13	T14	T15		T	12	T	13	T	4	T1	5
T20	\longrightarrow	T16	T17	T18	T19		т	16	T	17	T	18	T1	9
T21	\longrightarrow	T20	T21	T22	T23		Т	20	T.	21	т	22	T2	3
T22	\longrightarrow	T24	T25	T26	T27		Т	24	T:	25	T	26	Т2	7
T23	\longrightarrow	T28	T29	T30	T31		Т	28	T	29	T3	30	T3	1
T24	\rightarrow	то	T1	T2	Т3	1	-	0	Т	1	т	2	т	<u> </u>
T25	\longrightarrow	T4	T5	T6	T7		-	о а	, T	5	т	6	T	,
T26	\longrightarrow	т8	T9	T10	T11		-	8	T	9	т	0	T1	1
T27	\longrightarrow	T12	T13	T14	T15		т	12		13	T	4	T1	5
T28	\rightarrow	T16	T17	T18	T19		т	16	T	17	TI	8	T1	9
T29	\rightarrow	T20	T21	T22	T23		т	20	T	21	T	22	T2	3
Т30	\longrightarrow	T24	T25	T26	T27		т	24	Т	25	T	26	T2	7
T31	\rightarrow	T28	T29	T30	T31		T	28	T	29	T3	30	Т3	1
		10		1		- L					1000			-

T0 T4 T8 T12 T16 T20 T24 T28

ADVANCING TO NEXT K GROUP

ADVANCING TO NEXT K GROUP

				and the second se	the state of the s			
то	T16			T1	T17			
T18	T2			T19	Т3			
		T4	T20			Т5	T21	
		T22	T6			T23	T7	
Т8	T24			Т9	T25			
Т26	T10			T27	T11			
		T12	T28			T13	T29	
		Т30	T14			T31	T15	

		то	T16			T1	T17
		T18	T2			T19	Т3
T4	T20			Т5	T21		
T22	T6			T23	T7		
		T8	T24			Т9	T25
		T26	T10			T27	T11
T12	T28			T13	T29		
Т30	T14			T31	T15		

smem_ptr = row_idx * 8 + column_idx;

smem_ptr = smem_ptr ^ 2;

Logical view of threadblock tile

Phase 0

		то	T16			T1	T17
		T18	Т2			T19	Т3
T4	T20			T5	T21		
T22	Т6			T23	T7		
		Т8	T24			Т9	T25
		T26	T10			T27	T11
T12	T28			T13	T29		
T30	T14			T31	T15		
Г -							7

Phase 1

Logical view of threadblock tile

		то	T16			Т1	T17
		T18	T2			T19	Т3
T4	T20			T5	T21		
T22	T6			T23	T7		
		Т8	T24			Т9	Т25
		T26	T10			T27	T11
T12	T28			T13	T29		
T30	T14			T31	T15		
				4			

Logical view of threadblock tile

Phase 2

	10	TO	T16			T1	T17
		T18	T2			T19	Т3
T4	T20			Т5	T21		
T22	Т6			T23	T7		
		T8	T24			Т9	T25
		T26	T10			T27	T11
T12	Т28			T13	T29		
Т30	T14			T31	T15		
Г <u></u> -							7

Logical view of threadblock tile

K=16..31

Phase 3

		то	T16			T1	T17
		T18	Т2			T19	Т3
T4	T20			Т5	T21		
T22	T6			T23	T7		
		T8	T24			Т9	T25
		T26	T10			T27	T11
T12	T28			T13	T29		
T30	T14			T31	T15		
Г <u></u> -							7
				2			

CUTLASS

CUDA C++ Templates as an Optimal Abstraction Layer for Tensor Cores

- Latency-tolerant pipeline from Global Memory
- Conflict-free Shared Memory stores
- Conflict-free Shared Memory loads

CUTLASS: OPTIMAL ABSTRACTION FOR TENSOR CORES

CUTLASS: OPTIMAL ABSTRACTION FOR TENSOR CORES

Thank you.