
CS 380 - GPU and GPGPU Programming
Lecture 23: Prefix Sum Bank Conflicts;

Programming Tensor Cores

Markus Hadwiger, KAUST

2

Reading Assignment #9 (until Nov 4)

Read (required):

• Programming Massively Parallel Processors book, 4th edition
Chapter 11: Prefix Sum (Scan) – an introduction to work efficiency in parallel algorithms

• Warp Shuffle Functions
– CUDA Programming Guide, Chapter 10.22 (pdf; 7.22 online)

Read (optional):

• Guy E. Blelloch: Prefix Sums and their Applications
– https://www.cs.cmu.edu/~guyb/papers/Ble93.pdf/

• CUDA Cooperative Groups
– CUDA Programming Guide, Chapter 11 (pdf; 8 online)
– https://developer.nvidia.com/blog/cooperative-groups/

• Warp Matrix Functions (==tensor core programming)
– CUDA Programming Guide, Chapter 10.24 (pdf; 7.24 online)

3

Next Lectures

Lecture 24: Thu, Oct 31

Lecture 25: Mon, Nov 4

Lecture 26: Tue, Nov 5 (make-up lecture; 14:30 – 15:45)

Lecture 27: Thu, Nov 7: Vulkan tutorial #2

GPU Parallel Prefix SumGPU Parallel Prefix Sum

• Basic parallel programming primitive;
parallelize inherently sequential operations

6

Work Efficiency

Guy E. Blelloch and Bruce M. Maggs:
Parallel Algorithms, 2004 (https://www.cs.cmu.edu/~guyb/papers/BM04.pdf)

In designing a parallel algorithm, it is more important to make it efficient than to make it
asymptotically fast. The efficiency of an algorithm is determined by the total number of
operations, or work that it performs. On a sequential machine, an algorithm's work is the
same as its time. On a parallel machine, the work is simply the processor-time product.
Hence, an algorithm that takes time t on a P-processor machine performs work W = Pt. In
either case, the work roughly captures the actual cost to perform the computation, assuming
that the cost of a parallel machine is proportional to the number of processors in the
machine.

We call an algorithm work-efficient (or just efficient) if it performs the same amount of
work, to within a constant factor, as the fastest known sequential algorithm.

For example, a parallel algorithm that sorts n keys in O(sqrt(n) log(n)) time using sqrt(n)
processors is efficient since the work, O(n log(n)), is as good as any (comparison-based)
sequential algorithm.

However, a sorting algorithm that runs in O(log(n)) time using n^2 processors is not
efficient.

The first algorithm is better than the second - even though it is slower - because its work,
or cost, is smaller. Of course, given two parallel algorithms that perform the same amount of
work, the faster one is generally better.

Helpful fact for counting nodes of full binary trees:
If there are N leaf nodes, there will be N-1 non-leaf nodes

Stride 4

Courtesy John Owens

/ 2

Down-Sweep Variant 1: Exclusive Scan

Down-Sweep Variant 2: Inlusive Scan

32 for full warps!

32-thread full warp!

Use Padding to Reduce Conflicts

Programming Tensor CoresProgramming Tensor Cores

NVIDIA Volta SM

Multiprocessor: SM (CC 7.0)

• 64 FP32 + 64 INT32 cores

• 32 FP64 cores

• 32 LD/ST units; 16 SFUs

• 8 tensor cores
(FP16/FP32 mixed-precision)

4 partitions inside SM

• 16 FP32 + 16 INT32 cores each

• 8 FP64 cores each

• 8 LD/ST units; 4 SFUs each

• 2 tensor cores each

• Each has: warp scheduler,
dispatch unit, register file

NVIDIA Turing SM

Multiprocessor: SM (CC 7.5)

• 64 FP32 + INT32 cores

• 2 (!) FP64 cores

• 8 Turing tensor cores
(FP16/32, INT4/8 mixed-precision)

• 1 RT (ray tracing) core

4 partitions inside SM

• 16 FP32 + INT32 cores each

• 4 LD/ST units; 4 SFUs each

• 2 Turing tensor cores each

• Each has: warp scheduler,
dispatch unit, 16K register file

NVIDIA GA100 SM

Multiprocessor: SM (CC 8.0)

• 64 FP32 + 64 INT32 cores

• 32 FP64 cores

• 4 3rd gen tensor cores

• 1 2nd gen RT (ray tracing) core

4 partitions inside SM

• 16 FP32 + 16 INT32 cores

• 8 FP64 cores

• 8 LD/ST units; 4 SFUs each

• 1 3rd gen tensor core each

• Each has: warp scheduler,
dispatch unit, 16K register file

NVIDIA GA10x SM

Multiprocessor: SM (CC 8.6)

• 128 (64+64) FP32 + 64 INT32 cores

• 2 (!) FP64 cores

• 4 3rd gen tensor cores

• 1 2nd gen RT (ray tracing) core

4 partitions inside SM

• 32 (16+16) FP32 + 16 INT32 cores

• 4 LD/ST units; 4 SFUs each

• 1 3rd gen tensor core each

• Each has: warp scheduler,
dispatch unit, 16K register file

NVIDIA GH100 SM

Multiprocessor: SM (CC 9.0)

• 128 FP32 + 64 INT32 cores

• 64 FP64 cores

• 4x 4th gen tensor cores

• ++ thread block clusters, DPX insts., FP8, TMA

4 partitions inside SM

• 32 FP32 + 16 INT32 cores

• 16 FP64 cores

• 8x LD/ST units; 4 SFUs each

• 1x 4th gen tensor core each

• Each has: warp scheduler,
dispatch unit, 16K register file

Markus Hadwiger, KAUST 37

NVIDIA AD102 SM

Multiprocessor: SM (CC 8.9)

• 128 (64+64) FP32 + 64 INT32 cores

• 2 (!) FP64 cores

• 4x 4th gen tensor cores

• 1x 3rd gen RT (ray tracing) core

• ++ thread block clusters, FP8, … (?)

4 partitions inside SM

• 32 (16+16) FP32 + 16 INT32 cores

• 4x LD/ST units; 4 SFUs each

• 1x 4th gen tensor core each

• Each has: warp scheduler,
dispatch unit, 16K register file

Markus Hadwiger, KAUST 38

Tensor Cores

Mixed-precision, fast matrix-matrix multiply and accumulate (mma)

From this, build larger shapes (sizes), higher dimensionalities, ...

API currently only allows using larger shapes (16x16, ...) in warps (wmma)

Markus Hadwiger, KAUST 39

Tensor Cores

Fused matrix multiply and accumulate

• Input matrices can be (at most) half-precision (FP16); (Ampere has more!)

• Accumulate can be FP16 or FP32; (Ampere has more!)

Markus Hadwiger, KAUST 40

Ampere Tensor Cores: Mixed Precision

Markus Hadwiger, KAUST 41

New in Ampere: TF32, BF16, FP64

plus FP64 (new in Ampere; GA100 only)

plus INT4/INT8/binary data types (experimental; introduced in Turing)

Ampere Tensor Cores: Sparsity Support

Markus Hadwiger, KAUST 42

Sparse MMA instructions

2:4 structured sparsity

Tensor Cores: More Mixed Precision Options

Markus Hadwiger, KAUST 43

New in Hopper: FP8

plus other data types from before (INT4/INT8/binary, …)

Tensor Cores: Hopper vs. Ampere

(preliminary)

Markus Hadwiger, KAUST 44

Tensor Memory Accelerator (TMA)

Asynchronous transfers

Markus Hadwiger, KAUST 45

Tensor Core APIs

Low-level options

• CUDA C WMMA (warp-level matrix multiply and accumulate)

• PTX wmma and mma (needed for some features) instructions

• SASS hmma instructions (not documented)

Intermediate-level options (template wrappers for low-level)

• NVIDIA CUTLASS (template abstractions for hi-perf matrix-multiplies)

High-level options

• NVIDIA cuBLAS

• NVIDIA cuDNN

• Integration into TensorFlow, ...

Markus Hadwiger, KAUST 46

CUTLASS 3.6.0 (October 2024)
https://github.com/NVIDIA/cutlass

CUDA C Warp Matrix Functions (WMMA)

Warp Level Matrix Multiply Accumulate (WMMA)

CUDA C Programming Guide (11.8), Appendix B.24

namespace nvcuda::wmma (and nvcuda::wmma::experimental)

Concept of a matrix fragment (section of a matrix split across threads in a warp)

Dimensions m,n,k: m x k matrix_a; k x n matrix_b; m x n accumulator

Markus Hadwiger, KAUST 50

CUDA C Warp Matrix Functions (WMMA)

Data types (T)

wmma API splits

this into fragments

Markus Hadwiger, KAUST 51

Volta/Turing/Ampere/Hopper/Ada:

CUDA C Warp Matrix Functions (WMMA)

Data types (T)

wmma API splits

this into fragments

Markus Hadwiger, KAUST 52

Ampere/Hopper only:

Turing/Ampere/Ada:

Ampere/Hopper/Ada only:

CUDA C Warp Matrix Functions (WMMA)

Warp Level Matrix Multiply Accumulate (WMMA)

CUDA C Programming Guide (12.6), Chapter 10.24 (online: 7.24)

Markus Hadwiger, KAUST 53

PTX ISA 8.5, Section 9.7.13 (90 pages)

PTX WMMA and MMA Instructions

Markus Hadwiger, KAUST 54

PTX ISA 8.5

PTX WMMA and MMA Instructions

55

Load and store: wmma

PTX WMMA and MMA Instructions

56

Load and store: wmma

PTX WMMA and MMA Instructions

57

wmma example

PTX WMMA and MMA Instructions

58

mma: fixed assigments of matrix fragments to registers in each thread of warp

PTX WMMA and MMA Instructions

59

mma: fixed assigments of matrix fragments to registers in each thread of warp

PTX WMMA and MMA Instructions

60

mma: fixed assignments of matrix fragments to registers in each thread of warp

PTX WMMA and MMA Instructions

61

Sparse matrices: mma.sp

PTX WMMA and MMA Instructions

25

Load and store: mma ldmatrix

Warp-wide load matrix instruction

PTX WMMA and MMA Instructions

63

PTX WMMA to SASS

Raihan et al., 2019

Get SASS code from cuobjdump disassembly

Micro-benchmarking

Markus Hadwiger, KAUST 64

PTX WMMA to SASS

Raihan et al., 2019

Get SASS code from cuobjdump disassembly

Markus Hadwiger, KAUST 65

PTX WMMA to SASS

Raihan et al., 2019

Get SASS code from cuobjdump disassembly

Markus Hadwiger, KAUST 66

PTX WMMA to SASS

Raihan et al., 2019, reverse-engineered matrix fragment assignment

PTX WMMA to SASS

Raihan et al., 2019, reverse-engineered Tensor core microarchitecture

https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/
s21745-developing-cuda-kernels-to-push-tensor-cores-to-the-absolute-limit-on-
nvidia-a100.pdf

Thank you.

