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Reading Assignment #8 (until Oct 28)

Read (required):

« Programming Massively Parallel Processors book, 4" edition
Chapter 10: Reduction

» Optimizing Parallel Reduction in CUDA, Mark Harris,

https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

Read (optional):

* Faster Parallel Reductions on Kepler, Justin Luitjens
https://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/



Next Lectures

Lecture 21: Thu, Oct 24

Lecture 22: Mon, Oct 28
Lecture 23: Tue, Oct 29 (make-up lecture; 14:30 — 15:45)
Lecture 24: Thu, Oct 31



CUDA Memory:

Global Memory

 Memory coalescing

« Cached memory access (L2 / L1)



Memory and Cache Types

Global memory
 [Device] L2 cache
 [SM] L1 cache (shared mem carved out; or L1 shared with tex cache)

« [SM/TPC] Texture cache (separate, or shared with L1 cache)

« [SM] Read-only data cache (storage might be same as tex cache)

Shared memory

« [SM] Shareable only between threads in same thread block
(Hopper/CC 9.x: also thread block clusters)

Constant memory: Constant (uniform) cache

Unified memory programming: Device/host memory sharing

Markus Hadwiger, KAUST 5
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Maximize Byte Use

SM

SM

SM

DRAM

* Two things to keep in mind:
— Memory accesses are per warp

— Memory is accessed in discrete
chunks
* lines/segments

* want to make sure that bytes
that travel from DRAM to SMs
get used

— For that we should understand
how memory system works

* Note: not that different from CPUs

— 86 needs SSE/AVX memory
instructions to maximize performance
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GPU Memory System

\

s
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DRAM

* All data lives in DRAM
— Global memory
— Local memory
— Textures

— Constants
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GPU Memory System

-
SM

\

s
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L2

U
5

DRAM

 All DRAM accesses go
through L2

* Including copies:
— P2P
— CPU-GPU
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GPU Memory System
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DRAM

" Eiumn i NN e
goes into one of 3
caches/buffers

* Programmer’s choice

e,
require explicit code
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Access Path

L1 path

— Global memory

* Memory allocated with cudaMalloc()
* Mapped CPU memory, peer GPU memory
* Globally-scoped arrays qualified with __ global

— Local memory
» allocation/access managed by compiler so we’ll ignore

* Read-only/TEX path

— Data in texture objects, CUDA arrays

— CC 3.5 and higher:
* Global memory accessed via intrinsics (or specially qualified kernel arguments)

* Constant path
— Globally-scoped arrays qualified with __constant___
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Access Via L1

* Natively supported word sizes per thread:
— 1B, 2B, 4B, 8B, 16B
* Addresses must be alighed on word-size boundary
— Accessing types of other sizes will require multiple instructions

* Accesses are processed per warp
— Threads in a warp provide 32 addresses
* Fewer if some threads are inactive

— HW converts addresses into memory transactions

* Address pattern may require multiple transactions for an instruction
* If N transactions are needed, there will be (N-1) replays of the instruction

38



Global Memory Access

Aligned accesses (sequential/non-sequential)

all recent —
compute capabilities | | | —]
(up to current: 9.x) T
Compute capability.: 2%, 3%, 5
Memory transac tions: Uncached Cached
Beware:
Uncached here means
not cached in L1 Mis-aligned accesses (sequential/non-sequential)
Addresses: %

the L2 cache is ///////////W////////W///////

always used! freecs

Compute capability: 2%, 3% 5X
Memory transac tions: Uncached Cached

X a
1x 32B at 256




Compute Capab. 3.x (Kepler, Part 1)

K.3.2. Global Memory

Global memory accesses for devices of compute capability 3.x are cached in L2 and for devices
of compute capability 3.5 or 3.7, may also be cached in the read-only data cache described in
the previous section; they are normally not cached in L1. Some devices of compute capability
3.5 and devices of compute capability 3.7 allow opt-in to caching of global memory accesses in
L1 via the -Xptxas -dlcm=ca option to nvcc.

A cache line is 128 bytes and maps to a 128 byte aligned segment in device memory. Memory
accesses that are cached in both L1 and L2 are serviced with 128-byte memory transactions,
whereas memory accesses that are cached in L2 only are serviced with 32-byte memory
transactions. Caching in L2 only can therefore reduce over-fetch, for example, in the case of
scattered memory accesses.

If the size of the words accessed by each thread is more than 4 bytes, a memory request by a
warp is first split into separate 128-byte memory requests that are issued independently:

» Two memory requests, one for each half-warp, if the size is 8 bytes,

» Four memory requests, one for each quarter-warp, if the size i1s 16 bytes.



Compute Capab. 3.x (Kepler, Part 2)

Each memory request is then broken down into cache line requests that are issued
Independently. A cache line request is serviced at the throughput of L1 or L2 cache in case of a
cache hit, or at the throughput of device memory, otherwise.

Note that threads can access any words in any order, including the same words.

If a non-atomic instruction executed by a warp writes to the same location in global memory
for more than one of the threads of the warp, only one thread performs a write and which
thread does it is undefined.

Data that is read-only for the entire lifetime of the kernel can also be cached in the read-only
data cache described in the previous section by reading it using the  1dg () function (see

Read-Only Data Cache Load Function]). When the compiler detects that the read-only condition

Is satisfied for some data, it willuse  1dg () to read it. The compiler might not always be able
to detect that the read-only condition is satisfied for some data. Marking pointers used for
loading such data with both the const and  restrict  qualifiers increases the likelihood
that the compiler will detect the read-only condition.

Figure 21 shows some examples of global memory accesses and corresponding memory
transactions.




Compute Capab. 5.x (Maxwell, Part 1)

K.4.2. Global Memory

Global memory accesses are always cached in L2 and caching in L2 behaves in the same way
as for devices of compute capability 3.x (see Global Memory].

Data that is read-only for the entire lifetime of the kernel can also be cached in the unified L1/
texture cache described in the previous section by reading it using the  1dg () function (see
Read-0Only Data Cache Load Function). When the compiler detects that the read-only condition
s satisfied for some data, it willuse  1dg () to read it. The compiler might not always be able
to detect that the read-only condition is satisfied for some data. Marking pointers used for
loading such data with both the const and  restrict qualifiers increases the likelihood
that the compiler will detect the read-only condition.

Data that is not read-only for the entire lifetime of the kernel cannot be cached in the unified
L1/texture cache for devices of compute capability 5.0. For devices of compute capability 5.2, it
is, by default, not cached in the unified L1/texture cache, but caching may be enabled using the
following mechanisms:

Markus Hadwiger, KAUST 15



Compute Capab. 5.x (Maxwell, Part 2)

Data that is not read-only for the entire lifetime of the kernel cannot be cached in the unified
L1/texture cache for devices of compute capability 5.0. For devices of compute capability 5.2, it
is, by default, not cached in the unified L1/texture cache, but caching may be enabled using the
following mechanisms:

» Perform the read using inline assembly with the appropriate modifier as described in the
PTX reference manual;

» Compile with the -Xptxas -dlcm=ca compilation flag, in which case all reads are cached,

except reads that are performed using inline assembly with a modifier that disables
caching;

» Compile with the -Xptxas -fscm=ca compilation flag, in which case all reads are cached,
iIncluding reads that are performed using inline assembly regardless of the modifier used.

When caching is enabled using one of the three mechanisms listed above, devices of compute
capability 5.2 will cache global memory reads in the unified L1/texture cache for all kernel
launches except for the kernel launches for which thread blocks consume too much of the
SM's register file. These exceptions are reported by the profiler.

Markus Hadwiger, KAUST 16



PTX State Spaces (1)

Memory type/access etc. organized using notion of state spaces

Table 6 State Spaces

Name Description
.reg Registers, fast.
.sreg Special registers. Read-only; pre-defined; platform-specific.
.const Shared, read-only memory.
.global Global memory, shared by all threads.
.local Local memory, private to each thread.
-param Kernel parameters, defined per-grid; or
Function or local parameters, defined per-thread.
.shared Addressable memory shared between threads in 1 CTA.
.tex Global texture memory (deprecated).

Markus Hadwiger, KAUST 17



PTX State Spaces (2)

Table 7 Properties of State Spaces

Name Addressable Initializable Access Sharing

.reg No No R/W per-thread

.sreg No No RO per-CTA

.const Yes Yes' RO per-grid

.global Yes Yes' R/W Context

.local Yes No R/W per-thread
.param (as input Yes? No RO per-grid

to kernel)

.param (used in Restricted’ No R/W per-thread
functions)

.shared Yes No R/W per-CTA

.tex No* Yes, via driver RO Context

Notes:

! Variables in .const and .global state spaces are initialized to zero by default.

2 Accessible only via the 1d.param instruction. Address may be taken via mov instruction.

3 Accessible via ld.param and st.param instructions. Device function input and return parameters may
have their address taken via mov; the parameter is then located on the stack frame and its address is in
the .local state space.

* Accessible only via the tex instruction.
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PTX Cache Operators

Table 27

Cache Operators for Memory Load Instructions

Operator

Meaning

.ca

Cache at all levels, likely to be accessed again.

The default load instruction cache operation is ld.ca, which allocates cache lines in all
levels (L1 and L2) with normal eviction policy. Global data is coherent at the L2 level,

but multiple L1 caches are not coherent for global data. If one thread stores to global
memory via one L1 cache, and a second thread loads that address via a second L1 cache
with 1d. ca, the second thread may get stale L1 cache data, rather than the data stored
by the first thread. The driver must invalidate global L1 cache lines between dependent
grids of parallel threads. Stores by the first grid program are then correctly fetched by the
second grid program issuing default 1d. ca loads cached in L1.

.cg

Cache at global level (cache in L2 and below, not L1).

Use 1d.cg to cache loads only globally, bypassing the L1 cache, and cache only in the L2
cache.

.CS

Cache streaming, likely to be accessed once.

The 1d. cs load cached streaming operation allocates global lines with evict-first policy
in L1 and L2 to limit cache pollution by temporary streaming data that may be accessed
once or twice. When 1d.cs is applied to a Local window address, it performs the 1d.1u
operation.

.1u

Last use.

The compiler/programmer may use 1d.1lu when restoring spilled registers and popping
function stack frames to avoid needless write-backs of lines that will not be used again.
The 1d. 1u instruction performs a load cached streaming operation (1d.cs) on global
addresses.

.CV

Don't cache and fetch again (consider cached system memory lines stale, fetch again).

The ld.cv load operation applied to a global System Memory address invalidates (discards)
a matching L2 line and re-fetches the line on each new load.

19



SASS LD/ST Instructions

ArCh |te Ctu re-d e p . Compute Load/Store Instructions

LDC Load from Constant
LD Load from Memory
LDG Non-coherent Global Memory Load
LDL Load from Local Memory
LDS Load from Shared Memory
LDSLK Load from Shared Memory and Lock
ST Store to Memory

Kep I er. STL Store to Local Memory
STS Store to Shared Memory
STSCUL Store to Shared Memory Conditionally and Unlock
ATOM Atomic Memory Operation
RED Atomic Memory Reduction Operation
CCTL Cache Control
CCTLL Cache Control (Local)
MEMBAR Memory Barrier

(see also LDG.CI etc.)

Markus Hadwiger, KAUST 20



Compute Capab. 6.x (Pascal)

K.20.2. Global Memory

Global memory behaves the same way as in devices of compute capability 5.x (See Global
Memory).

Markus Hadwiger, KAUST 21



Compute Capab. 7.x (Volta/Turing)

K.6.3. Global Memory

Global memory behaves the same way as in devices of compute capability 5.x (See Global
Memory).

Markus Hadwiger, KAUST 22



Compute Capab. 8.x (Ampere/Ada)

K.7.2. Global Memory

Global memory behaves the same way as for devices of compute capability 5.x (See Global
Memory].
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Compute Capab. 9.x (Hopper)

K.8.2. Global Memory

Global memory behaves the same way as for devices of compute capability 5.x (See Global
Memoryl].

Markus Hadwiger, KAUST 24



Vectorized Memory Access

See https://devblogs.nvidia.com/cuda-pro-tip-increase-
performance-with-vectorized-memory-access/

__global _ void device copy_vector2 kernel(int* d_in, int* d_out, int N) {
int idx = blockIdx.x * blockDim.x + threadIdx.Xx;
for (int i = idx; i < N/2; i += blockDim.x * gridDim.x) {
reinterpret_cast<int2*>(d_out)[i] = reinterpret_cast<int2*>(d_in)[i];

}

// in only one thread, process final element (if there is one)
if (idx==N/2 && N%2==1)
d_out[N-1] = d_in[N-1];
Iy
void device copy_vector2(int* d_in, int* d_out, int n) {
threads = 128;

blocks = min((N/2 + threads-1) / threads, MAX_BLOCKS);

device copy vector2 kernel<<<blocks, threads>>>(d_in, d_out, N);

}

/*0088*/ IMAD R1@.CC, R3, R5, c[exe][ex14e]

/*¥0090% / IMAD.HI.X R11, R3, R5, c[0x®][ex144] SASS

/*@098*/ IMAD R8.CC, R3, R5, c[ex8][ex148]

/*eeae*/ LD.E.64 R6, [R10] LD.E.64, LD.E.128,
/*@0ag*/ IMAD.HI.X R9, R3, R5, c[@xe][exlac] ST.E.64, ST.E.128

/*eec8*/ ST.E.64 [R8], R6




Vectorized Memory Access

See https://devblogs.nvidia.com/cuda-pro-tip-increase-
performance-with-vectorized-memory-access/

__global  void device copy vector4 kernel(int* d_in, int* d_out, int N) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
for(int 1 = idx; i < N/4; i += blockDim.x * gridDim.x) {
reinterpret_cast<int4*>(d_out)[i] = reinterpret_cast<int4*>(d_in)[i];

}

// in only one thread, process final elements (if there are any)
int remainder = N%4;
if (idx==N/4 && remainder!=@) {
while(remainder) {
int idx = N - remainder--;
d_out[idx] = d_in[idx];
¥
}
}

void device_copy vector4(int* d_in, int* d_out, int N) {
int threads = 128;

int blocks = min((N/4 + threads-1) / threads, MAX_BLOCKS);

device_copy_vectord_kernel<<<blocks, threads>>>(d_in, d_out, N);

}

/*0090%*/ IMAD R10.CC, R3, R13, c[exe][ex14e]

/*0098%/ IMAD.HI.X R11, R3, R13, c[ox@][ex144] SASS

/*00ae*/ IMAD R8.CC, R3, R13, c[@x@][ox148]

/*00as*/ LD.E.128 R4, [R1@] LD.E.64, LD.E.128,
/*00be*/ IMAD.HI.X R9, R3, R13, c[exe][exl4c] ST.E.c4, ST.E.128

/*0edo*/ ST.E.128 [R8], R4




GMEM Writes

Not cached in the SM
— Invalidate the line in L1, go to L2

Access is at 32 B segment granularity
Transaction to memory: 1, 2, or 4 segments
— Only the required segments will be sent
If multiple threads in a warp write to the same address

— One of the threads will “win”
— Which one is not defined
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OPTIMIZE

Kernel Optimizations: Global Memory Throughput




Kepler Memory Hierarchy
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Load Operation

Memory operations are issued per warp (32 threads)
Just like all other instructions

Operation:
Threads in a warp provide memory addresses

Determine which lines/segments are needed
Request the needed lines/segments




Memory Throughput Analysis

Two perspectives on the throughput:
Application’s point of view:
count only bytes requested by application
HW point of view:
* count all bytes moved by hardware
The two views can be different:

Memory is accessed at 32 byte granularity
* Scattered/offset pattern: application doesn’t use all the hw transaction bytes

Broadcast: the same small transaction serves many threads in a warp
Two aspects to inspect for performance impact:

Address pattern
Number of concurrent accesses in flight




Global Memory Operation

Memory operations are executed per warp
32 threads in a warp provide memory addresses
Hardware determines into which lines those addresses fall

Memory transaction granularity is 32 bytes

There are benefits to a warp accessing a contiguous aligned region of 128 or
256 bytes

¢ Access word size
Natively supported sizes (per thread): 1, 2, 4, 8, 16 bytes
* Assumes that each thread’s address is aligned on the word size boundary

If you are accessing a data type that’s of non-native size, compiler will
generate several load or store instructions with native sizes




Access Patterns vs. Memory Throughput

Scenario:

Warp requests 32 aligned, consecutive 4-byte words
Addresses fall within 4 segments

Warp needs 128 bytes

128 bytes move across the bus
Bus utilization: 100%

addresses from a warp

Hlll — 2

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses




Access Patterns vs. Memory Throughput

Scenario:

Warp requests 32 aligned, permuted 4-byte words
Addresses fall within 4 segments

Warp needs 128 bytes

128 bytes move across the bus
Bus utilization: 100%

addresses from a warp
s

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses




Access Patterns vs. Memory Throughput

Scenario:

Warp requests 32 misaligned, consecutive 4-byte words
Addresses fall within at most 5§ segments

Warp needs 128 bytes

At most 160 bytes move across the bus

Bus utilization: at least 80%
* Some misaligned patterns will fall within 4 segments, so 100% utilization

addresses from a warp

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses




Access Patterns vs. Memory Throughput

Scenario:

All threads in a warp request the same 4-byte word
Addresses fall within a single segment

Warp needs 4 bytes

32 bytes move across the bus
Bus utilization: 12.5%

addresses from a warp

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses




Access Patterns vs. Memory Throughput

Scenario:
Warp requests 32 scattered 4-byte words
Addresses fall within N segments
Warp needs 128 bytes

N*32 bytes move across the bus
Bus utilization: 128 / (N*32)

addresses from a warp

P T _

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses




Structures of Non-Native Size

Say we are reading a 12-byte structure per
thread

struct Position

{
float x, v, z;

i

__global  wvoid kernel( Position *data, ... )
{

int idx = blockIdx.x * blockDim.x + threadIdx.x;
Position temp = data[idx];




Structure of Non-Native Size

Compiler converts temp = data[idx] into 3 loads:

Each loads 4 bytes

Can’t do an 8 and a 4 byte load: 12 bytes per element means that every
other element wouldn’t align the 8-byte load on 8-byte boundary

Addresses per warp for each of the loads:
Successive threads read 4 bytes at 12-byte stride




First Load Instruction

addresses from a warp

N S T T O

O 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64




Second Load Instruction

addresses from a warp

N S S Y T O

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64




Third Load Instruction

addresses from a warp

I A S O T O I

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64




Performance and Solutions

Because of the address pattern, we end up moving 3x more bytes
than application requests
We waste a lot of bandwidth, leaving performance on the table

Potential solutions:

Change data layout from array of structures to structure of arrays
* In this case: 3 separate arrays of floats
* The most reliable approach (also ideal for both CPUs and GPUs)
Use loads via read-only cache
* As long as lines survive in the cache, performance will be nearly optimal

Stage loads via shared memory




Global Memory Access Patterns

» SOA vs AoS: “'”
Cieloleh palptell] —l——
Not so good: point]i].x
» Strided array access:
~OK: x[i] = a[i+1] - ali]
Slower: x[i] = a[64*1] — a[i]
' .

* Random array access: /
Slower: a[rand(i)] [ l_l_




Summary: GMEM Optimization

Strive for perfect address coalescing per warp
Align starting address (may require padding)
A warp will ideally access within a contiguous region

Avoid scattered address patterns or patterns with large strides between
threads

Analyze and optimize address patterns:
Use profiling tools (included with CUDA toolkit download)
Compare the transactions per request to the ideal ratio
Choose appropriate data layout (prefer SoA)
If needed, try read-only loads, staging accesses via SMEM




A note about caches

L1 and L2 caches

Ignore in software design

Thousands of concurrent | ¢Regi;‘ers$ |
threads — cache blocking | L1 | fomen Read
difficult at best 3

Registers Registers

3t 1 T 1

Read Read

SMEM SMEM
L1 , | .Oﬂly | L1 . || only

* Read-only Data Cache
Shared with texture pipeline
* Useful for uncoalesced reads

* Handled by compiler when
const _ restrict__ is used, or
use _1ldg() primitive




Read-only Data Cache

Go through the read-only cache
Not coherent with writes
Thus, addresses must not be written by the same kernel

Two ways to enable:

Decorating pointer arguments as hints to compiler:
Pointer of interest: const _ restrict
* All other pointer arguments: __ restrict__
— Conveys to compiler that no aliasing will occur
Using __Idg() intrinsic
Requires no pointer decoration




Read-only Data Cache

Go through the read-only cache

Not coherent with writes

Thus, addresses must not be written by the same kernel

Two ways to enable:

Decorating pointer argumen”

Pointer of interest: const

* All other pointer argumer
— Conveys to compiler |

Using __Idg() intrinsic
* Requires no pointer deco

__global  void kernel (

int* restrict  output,
const int*  restrict  input )
{
output[idx] = input[idx];




Read-only Data Cache

Go through the read-only cache

Not coherent with writes

Thus, addresses must not be written by the same kernel

Two ways to enable:

Decorating pointer argumen”

Pointer of interest: const

* All other pointer argumer
— Conveys to compiler |

Using __Idg() intrinsic
* Requires no pointer deco

__global  wvoid kernel( int *output,
int *input )

{

output[idx] = 1ldg( &input[idx]




Blocking for L1, Read-only, L2 Caches

Short answer: DON’T

GPU caches are not intended for the same use as CPU caches
Smaller size (especially per thread), so not aimed at temporal reuse

Intended to smooth out some access patterns, help with spilled registers,
etc.

Usually not worth trying to cache-block like you would on CPU
100s to 1,000s of run-time scheduled threads competing for the cache

If it is possible to block for L1 then it’s possible block for SMEM
¢ Same size
* Same or higher bandwidth
* Guaranteed locality: hw will not evict behind your back
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Some Store Pattern Examples

addresses fromawarp  one 4-segment transaction

il 4

96 128 160 192 224 256 288 320 352 384
Memory addresses

416

448
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Some Store Pattern Examples

addresses fromawarp  three 1-segment transactions
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96 128 160 192 224 256 288 320 352 384 4le
Memory addresses

448
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Some Store Pattern Examples

addresses fromawarp  one 2-segment transaction

bl

96 128 160 192 224 256 288 320 352 384
Memory addresses

416

448
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Some Store Pattern Examples

addresses fromawarp 2 1-segment transactions

$
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96 128 160 192 224 256 288 320 352 384
Memory addresses

416

448
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GMEM Reads

Attempt to hit in L1 depends on programmer choice and compute capability

HW ability to hit in L1:
— CCl.xnoll
— CC2.¢canhitin L1
— CC3.0, 3.5: cannot hitin L1
* L1 is used to cache LMEM (register spills, etc.), buffer reads
Read instruction types
— Caching:
* Compileroption: -Xptxas -dlcm=ca
* On Ll miss goto L2, on L2 miss go to DRAM
* Transaction: 128 B line
— Non-caching:
= Compileroption: -Xptxas -dlcm=cg
» Godirectly to L2 (invalidate line in L1), on L2 miss go to DRAM
* Transaction: 1, 2, 4 segments, segment = 32 B (same as for writes)
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Caching Load

Scenario:

— Warp requests 32 aligned, consecutive 4-byte words
Addresses fall within 1 cache-line

— No replays

— Bus utilization: 100%

» Warp needs 128 bytes
* 128 bytes move acrossthe bus on a miss

addresses from a warp

RE2 I T

32 64 96 128 180 192 224 256 288
Memory addresses

320

352

384

416

448
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Non-caching Load

* Scenario:

— Warp requests 32 aligned, consecutive 4-byte words
* Addresses fall within 4 segments

— No replays

— Bus utilization: 100%

» Warp needs 128 bytes
* 128 bytes move acrossthe bus on a miss

> L
D0
[
L
2L
T L
0Z
—O
-
.
o
%
- = >

addresses from a warp
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Memory addresses
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Caching Load

Scenario:

— Warp requests 32 aligned, permuted 4-byte words
Addresses fall within 1 cache-line

— No replays

— Bus utilization: 100%

» Warp needs 128 bytes
* 128 bytes move acrossthe bus on a miss

addresses from a warp

32 64 96 128 180 192 224 256 288
Memory addresses

320

352

384

416

448
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CI2012, NVIDIA

Non-caching Load

* Scenario:

— Warp requests 32 aligned, permuted 4-byte words
* Addresses fall within 4 segments

— No replays

— Bus utilization: 100%

» Warp needs 128 bytes
* 128 bytes move acrossthe bus on a miss

addresses from a warp

32 64 96 128 180 192 224 256 288
Memory addresses

320

352

384

416

448
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CI2012, NVIDIA

Caching Load

* Scenario:
— Warp requests 32 consecutive 4-byte words, offset from perfect alignment
+ Addresses fall within 2 cache-lines

— 1 replay (2 transactions)

— Bus utilization: 50%
» Warp needs 128 bytes
» 256 bytes move acrossthe bus on misses

addresses from a warp

0 32 64 96 128 1e0 192 224 256 288 320 352 384 416

Memory addresses

448
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Non-caching Load

Scenario:
— Warp requests 32 consecutive 4-byte words, offset from perfect alignment
Addresses fall within at most 5 segments

— 1 replay (2 transactions)

— Bus utilization: at least 80%
» Warp needs 128 bytes
* At most 160 bytes move acrossthe bus
» Some misaligned patterns will fall within 4 segments, so 100% utilization

addresses from a warp

32 64 96 128 180 192 224 256 288 320 352 384 416 448
Memory addresses

a0
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Caching Load

Scenario:

— All threads in a warp request the same 4-byte word
Addresses fall within a single cache-line

— No replays

— Bus utilization: 3.125%

» Warp needs 4 bytes
* 128 bytes move acrossthe bus on a miss

addresses from a warp

32 64 96 128 180 192 224 256 288
Memory addresses

320

352

384

416

448

a1
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Non-caching Load

Scenario:

— All threads in a warp request the same 4-byte word
Addresses fall within a single segment

— No replays

— Bus utilization: 12.5%

» Warp needs 4 bytes
* 32 bytes move across the bus on a miss

addresses from a warp

32 64 96 128 1e0 192 224 256 288 320
Memory addresses

352

384

416

448
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Caching Load

* Scenario:

— Warp requests 32 scattered 4-byte words
+ Addresses fall within N cache-lines

— {N-1) replays (N transactions)

— Bus utilization: 32*4B / (N*128B)

*» Warp needs 128 bytes
» A*128 bytes move across the bus on a miss

addresses from a warp
% \ )

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448

Memory addresses
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Non-caching Load

Scenario:
— Warp requests 32 scattered 4-byte words
Addresses fall within N segments
— (N-1) replays (N transactions)
* Could be lower some segments can be arranged into a single transaction

— Bus utilization: 128 / (N*32) (4x higher than caching loads)
* Warp needs 128 bytes
* [N*32 bytes move across the bus on a miss

addresses from a warp

o 1

—

T ]

2 64 96 128 1e0 192 224 256 288 320
Memory addresses

352

384 4le 448
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Caching vs Non-caching Loads

 Compute capabilities that can hit in L1 {(CC 2.x)
— Caching loads are better if you count on hits

— Non-caching loads are better if:

* Warp address pattern is scattered
* When kernel uses lots of LMEM (register spilling)

 Compute capabilities that cannot hit in L1 {(CC 1.x, 3.0, 3.5)
— Does not matter, all loads behave like non-caching

* In general, don’t rely on GPU caches like you would on CPUs:

— 100s of threads sharing the same L1
— 1000s of threads sharing the same L2
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L1 Sizing

* Fermi and Kepler GPUs split 64 KB RAM between L1 and SMEM
— Fermi GPUs {CC 2.x): 16:48, 48:16
— Kepler GPUs {CC 3.x):16:48, 48:16, 3232

* Programmer can choose the split:
— Default: 16 KB L1, 48 KB SMEM

— Run-time API functions:
* cudaDeviceSetCacheConfig(), cudaFuncSetCacheConfig()

— Kernels that require different L1:SMEM sizing cannot run concurrently
 Making the choice:

— Large L1 can help when using lots of LMEM ({spilling registers)

— Large SMEM can help if occupancy is limited by shared memory
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‘Ll!

Read-Only Cache

* An alternative to L1 when accessing DRAM
— Also known as texture cache: all texture accesses use this cache
— CC 3.5 and higher also enable global memory accesses
* Should not be used if a kernel reads and writes to the same addresses
* Comparing to L1:

— Generally better for scattered reads than L1
* Cachingis at 32 B granularity (L1, when caching operates at 128 B granularity)
» Does not require replay for multiple transactions (L1 does)

— Higher latency than L1 reads, also tends to increase register use

 Aggregate 48 KB per SM: 4 12-KB caches
— One 12-KB cache per scheduler
* Warps assigned to a scheduler refer to only that cache
— Caches are not coherent — data replication is possible
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Read-Only Cache Operation

Always attempts to hit
Transaction size: 32 B queries

Warp addresses are converted to queries 4 threads at
a time
— Thus a minimum of 8 queries per warp

— If data within a 32-B segment is needed by multiple threads
In @ warp, segment misses at most once

Additional functionality for texture objects
— Interpolation, clamping, type conversion
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Read-Only Cache Operation

addresses from a warp 15t Query

LWL~ |
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0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
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Read-Only Cache Operation

addresses from a warp 15t Query

LWL~ |
[ 1T T ey 1 1 1T T T T T T ]

32 64 96 128 160 192 224 256 288 320 352 384 416 448

R - S
[ T T T T T T T T T T T ]

32 64 96 128 1e0 192 224 256 288 320 352 384 416 448

B0



Read-Only Cache Operation

addresses from a warp 15t Query

N - U
1T 1T 1T W T T T T T 1T 71T 71 ]

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
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Read-Only Cache Operation

addresses from a warp 15t Query

Nl
[ T T Ty 1 1T T T T T T T ]

32 64 96 128 160 192 224 256 288 320 352 384 416 448

addresses from a warp 2nd angd 3 Queries

N - U
[ T T s 1 T T 17 1T 1T T ]

32 64 96 128 1e0 192 224 256 288 320 352 384 416 448
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Read-Only Cache Operation

addresses from a warp

Nl
I I N S I I S S N

32 64 96 128 160 192 224 256 288 320 352

addresses from a warp

2" and 3 Queries

N - U
[ T T D 1 T T 1 7]

32 64 96 12 le0 192 224 256 288 320 352

Note this segment was already requested in the 1°* query:
cache hit, no redundant requests to L2

384

416

448
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