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CS 380 - GPU and GPGPU Programming
Lecture 19: CUDA Memories, Pt. 3
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Reading Assignment #8 (until Oct 28)

Read (required):

« Programming Massively Parallel Processors book, 4" edition
Chapter 10: Reduction

» Optimizing Parallel Reduction in CUDA, Mark Harris,

https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

Read (optional):

* Faster Parallel Reductions on Kepler, Justin Luitjens
https://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/



Next Lectures

Lecture 20: Tue, Oct 22 (make-up lecture; 14:30 — 15:45)
Lecture 21: Thu, Oct 24

Lecture 22: Mon, Oct 28
Lecture 23: Tue, Oct 29 (make-up lecture; 14:30 — 15:45)
Lecture 24: Thu, Oct 31



CUDA Memory:

Shared Memory




Memory and Cache Types

Global memory
 [Device] L2 cache
 [SM] L1 cache (shared mem carved out; or L1 shared with tex cache)

« [SM/TPC] Texture cache (separate, or shared with L1 cache)

« [SM] Read-only data cache (storage might be same as tex cache)

Shared memory

« [SM] Shareable only between threads in same thread block
(Hopper/CC 9.x: also thread block clusters)

Constant memory: Constant (uniform) cache

Unified memory programming: Device/host memory sharing

Markus Hadwiger, KAUST 5



Common Array Bank Conflict Patterns
1D

» Each thread loads 2 elements into shared
mem:

— 2-way-interleaved loads result in

2-way bank conflicts:
Thread O

Thread 1

int tid = threadIdx.x; c——
rea

shared[2*tid] = global[2*tid]; Thread 3

shared[2*tid+1] = global[2*tid+1]; Thread 4

» This makes sense for traditional CPU

threads, locality in cache line usage and Thread 8

reduced sharing traffic. Thread 9
— Not in shared memory usage where there is VTRl pum———
no cache line effects but banking effects Thread 11

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka



A Better Array Access Pattern

« Each thread loads one element in
every consecutive group of

blockDim elements. Thread 0

Thread 1
shared[tid] = globall[tid]; ra—
shared[tid + blockDim.x] = -

global[tid + blockDim.x];

Thread 4

Thread 5

Thread 6

Thread 7

Thread 15 Bank 15

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka



Typical Parallel Programming Pattern

* log(n) steps

v
iterations -

Helpful fact for counting nodes of full binary trees:
If there are N leaf nodes, there will be N-1 non-leaf nodes

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka



Vector Reduction

Array elements ——

VARV VERVERvVERV
or] 2 e 6] ]

L
x:

iterations
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Vector Reduction with Branch
Divergence

Thread O Thread 2 Thread 4 Thread 6 Thread 8 Thread 10

-
a4
o
INES
- .

/

ENERER

Array elements ——



A better implementation

Thread O

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka



A better implementation

» Only the last 5 iterations will have divergence

« Entire warps will be shut down as iterations progress

— For a 512-thread block, 4 iterations to shut down all but one warp in
each block

— Better resource utilization, will likely retire warps and thus blocks
faster

 Recall, no bank conflicts either

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka




CUDA Memory:

Uniforms & Textures




Memory and Cache Types

Global memory
 [Device] L2 cache
 [SM] L1 cache (shared mem carved out; or L1 shared with tex cache)

« [SM/TPC] Texture cache (separate, or shared with L1 cache)

« [SM] Read-only data cache (storage might be same as tex cache)

Shared memory

« [SM] Shareable only between threads in same thread block
(Hopper/CC 9.x: also thread block clusters)

Constant memory: Constant (uniform) cache

Unified memory programming: Device/host memory sharing

Markus Hadwiger, KAUST 14



Constants

« |Immediate address constants

* |ndexed address constants
I$

« Constants stored in DRAM, and cached L1
on chip !
- L1 per SM
« A constant value can be broadcast to all v
threads in a Warp > R
— Extremely efficient way of accessing a . v v
value that is common for all threads in a Operand Select
block! | |
L o LS SR o5 i .
device constant float gpuGammal[2] ;

M N — v

cudaMemcpyToSymbol (gpuGamma, &gamma, sizeof (float)) ;

res = gpuGamma[0] * threadIdx.x;



Memory and Cache Types

Global memory
 [Device] L2 cache
 [SM] L1 cache (shared mem carved out; or L1 shared with tex cache)

« [SM/TPC] Texture cache (separate, or shared with L1 cache)

« [SM] Read-only data cache (storage might be same as tex cache)

Shared memory

« [SM] Shareable only between threads in same thread block
(Hopper/CC 9.x: also thread block clusters)

Constant memory: Constant (uniform) cache

Unified memory programming: Device/host memory sharing

Markus Hadwiger, KAUST 16



Texture Memory

Cached, potentially exhibiting higher bandwidth if there is
locality in the texture fetches;

They are not subject to the constraints on memory access
patterns that global or constant memory reads must respect
to get good performance

The latency of addressing calculations is hidden better,
possibly improving performance for applications that perform
random accesses to the data

No penalty when accessing float4

Optional

— 8-bit and 16-bit integer input data may be optionally converted to 32-
bit floatingpoint

— Packed data may be broadcast to separate variables in a single
operation;

— values in the range [0.0, 1.0] or [-1.0, 1.0]

— texture filtering

— address modes, e.g. wrapping / texture borders
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Additional Texture Functionality

All of these are “free”
— Dedicated hardware

— Must use CUDA texture objects
» See CUDA Programming Guide for more details
» Texture objects can interoperate graphics (OpenGL, DirectX)

Out-of-bounds index handling: clamp or wrap-around
Optional interpolation
— Think: using fp indices for arrays

— Linear, bilinear, trilinear
* Interpolation weights are 9-bit

Optional format conversion
— {char, short, int, fp16} -> float

&7
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Examples of Texture Object Indexing

‘ i (2.5, 0.5)

(1.0, 1.0)

w N O

Index Wrap:

0o 1 2 3 4

0
1
2 -
3

Integer indices fall between elements

Optional interpolation:
Weights are determined by coordinate distance

Index Clamp:

w M= O

O 1 2 3 4

(5.5, 1.5)

L--J

al5]



Native Memory Layout — Data

Locality
CPU GPU
* 1D input * 2D 1nput
* 1D output e 2D output
 Other dimensions e Other dimensions with
Wlth offsets offsets
Input Input Output

Color coded locality
red (near), blue (far)

4

_ Output

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka 22



Space-Filling Curves: Morton Order (Z Order)

Map higher-dimensional space to 1D

AR
<

« Z-order: Equivalent to quadtree (octree in 3D) depth-first traversal order

0 1
0800, 0
OBRO0, 0

0 1

22

0000

0001

0010

0011

0100

0101

0110

0111

=— 1
H s

1000

1001

1010

1011

1,0

1,0

4
0,0
0,0

2

1100

1101

1110

1111

5 2 3 6 7 8 9 12 13 10 11 14 15
1, 0850, 0841, OO0, Of1, 1860, 1881, 1480, 1461, 1840, 1081, 150, 1
1, ORS0, O 1,080, O, 1880, 1881, 1880, 1881, 1880, 1881, 1880, 1

3 4 3) 6 7 8 9 10 11 12 13 14 15



1D Access

Access to linear Cuda memory
floatd* pos; cudaMalloc( (void**) &pos, x*sizeof (floatd)
Texture reference

— type
— access/filtering mode

texture< floatd, 1, cudaReadModeElementType> texPos;
Bind to linear array

cudaBindTexture (0, texPos, pos, x*sizeof (floatd))):;

cudaUnbindTexture (texPos) ;

Within kernel

floatd pal = texlDfetch( texPos, threadIdx.x)

Writing to a texture that is currently read by some
threads is undefined!!!

) ;



2D Access

« Optimized for 2D / 3D locality

texture< floatd, 2, cudaReadModeElementType> texImg;

* Requires binding to special Array memory -
special memory layout

cudaChannelFormatDesc floatTex =
cudaCreateChannelDesc<floatd>() ;

floatd* src;
cudaArray* img;
cudaMallocArray( &img, &floatTex, w, h);

cudaMemcpyToArray (img, 0, O, src, w*h*sizeof(floatd),
cudaMemcpyHostToDevice) ;

cudaBindTextureToArray( texImg, img, floatTex) ) ;

cudaUnbindTexture (texImg) ;

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka



2D Access

 Within kernel

floatd r = tex2D( texImg, x +xoff, y+yoff);

* Pros
— optimized for 2D locality (optimized memory layout / spacefilling curve)

« Cons

— |If the result of some kernel should be used as 2D texture
cudaMemcpyToArray IS required

— You cannot write to a texture which is currently read from

e CUDA “surfaces” are writeable textures!

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka



Texture performance

Texture :

Provides hardware accelerated filtered
sampling of data (1D, 2D, 3D)

Read-only data cache holds fetched samples
Backed up by the L2 cache

SMX vs Fermi SM :

4x filter ops per clock
4x cache capacity

Read-only
Data Cache

1

L2




Texture Cache Unlocked

SMX
Added a new path for compute I 7 3
Avoids the texture unit |
Allows a global address to be fetched and cached Tex
Eliminates texture setup |
Why use it? 2
Separate pipeline from shared/L1 Read-only
- : : Data Cache
Highest miss bandwidth
Flexible, e.g. unaligned accesses T
Managed automatically by compiler L2
“const __ restrict” indicates eligibility




CUDA Memory:

Global Memory

 Memory coalescing

« Cached memory access (L2 / L1)



Memory and Cache Types

Global memory
 [Device] L2 cache
 [SM] L1 cache (shared mem carved out; or L1 shared with tex cache)

« [SM/TPC] Texture cache (separate, or shared with L1 cache)

« [SM] Read-only data cache (storage might be same as tex cache)

Shared memory

« [SM] Shareable only between threads in same thread block
(Hopper/CC 9.x: also thread block clusters)

Constant memory: Constant (uniform) cache

Unified memory programming: Device/host memory sharing

Markus Hadwiger, KAUST 28
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Maximize Byte Use

SM

SM

SM

DRAM

* Two things to keep in mind:
— Memory accesses are per warp

— Memory is accessed in discrete
chunks
* lines/segments

* want to make sure that bytes
that travel from DRAM to SMs
get used

— For that we should understand
how memory system works

* Note: not that different from CPUs

— 86 needs SSE/AVX memory
instructions to maximize performance

33
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GPU Memory System

\

s

\—

DRAM

* All data lives in DRAM
— Global memory
— Local memory
— Textures

— Constants

34
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GPU Memory System

-
SM

\

s

\—

L2

U
5

DRAM

 All DRAM accesses go
through L2

* Including copies:
— P2P
— CPU-GPU
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TECHNOLOGY
CONFERENCE

GPU Memory System

e

\

J/

m:

s

\—

L2

SIVI-
LI
11

DRAM

" Eiumn i NN e
goes into one of 3
caches/buffers

* Programmer’s choice

e,
require explicit code
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Access Path

L1 path

— Global memory

* Memory allocated with cudaMalloc()
* Mapped CPU memory, peer GPU memory
* Globally-scoped arrays qualified with __ global

— Local memory
» allocation/access managed by compiler so we’ll ignore

* Read-only/TEX path

— Data in texture objects, CUDA arrays

— CC 3.5 and higher:
* Global memory accessed via intrinsics (or specially qualified kernel arguments)

* Constant path
— Globally-scoped arrays qualified with __constant___
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Access Via L1

* Natively supported word sizes per thread:
— 1B, 2B, 4B, 8B, 16B
* Addresses must be alighed on word-size boundary
— Accessing types of other sizes will require multiple instructions

* Accesses are processed per warp
— Threads in a warp provide 32 addresses
* Fewer if some threads are inactive

— HW converts addresses into memory transactions

* Address pattern may require multiple transactions for an instruction
* If N transactions are needed, there will be (N-1) replays of the instruction

38



Global Memory Access

Aligned accesses (sequential/non-sequential)

all recent —
compute capabilities | | | —]
-9 XTSI
Compute capability.: 2%, 3%, 5
Memory transac tions: Uncached Cached
Beware:
Uncached here means
not cached in L1 Mis-aligned accesses (sequential/non-sequential)
Addresses: %

the L2 cache is ///////////W////////W///////

always used! freecs

Compute capability: 2%, 3% 5X
Memory transac tions: Uncached Cached

X a
1x 32B at 256




Compute Capab. 3.x (Kepler, Part 1)

K.3.2. Global Memory

Global memory accesses for devices of compute capability 3.x are cached in L2 and for devices
of compute capability 3.5 or 3.7, may also be cached in the read-only data cache described in
the previous section; they are normally not cached in L1. Some devices of compute capability
3.5 and devices of compute capability 3.7 allow opt-in to caching of global memory accesses in
L1 via the -Xptxas -dlcm=ca option to nvcc.

A cache line is 128 bytes and maps to a 128 byte aligned segment in device memory. Memory
accesses that are cached in both L1 and L2 are serviced with 128-byte memory transactions,
whereas memory accesses that are cached in L2 only are serviced with 32-byte memory
transactions. Caching in L2 only can therefore reduce over-fetch, for example, in the case of
scattered memory accesses.

If the size of the words accessed by each thread is more than 4 bytes, a memory request by a
warp is first split into separate 128-byte memory requests that are issued independently:

» Two memory requests, one for each half-warp, if the size is 8 bytes,

» Four memory requests, one for each quarter-warp, if the size i1s 16 bytes.



Compute Capab. 3.x (Kepler, Part 2)

Each memory request is then broken down into cache line requests that are issued
Independently. A cache line request is serviced at the throughput of L1 or L2 cache in case of a
cache hit, or at the throughput of device memory, otherwise.

Note that threads can access any words in any order, including the same words.

If a non-atomic instruction executed by a warp writes to the same location in global memory
for more than one of the threads of the warp, only one thread performs a write and which
thread does it is undefined.

Data that is read-only for the entire lifetime of the kernel can also be cached in the read-only
data cache described in the previous section by reading it using the  1dg () function (see

Read-Only Data Cache Load Function]). When the compiler detects that the read-only condition

Is satisfied for some data, it willuse  1dg () to read it. The compiler might not always be able
to detect that the read-only condition is satisfied for some data. Marking pointers used for
loading such data with both the const and  restrict  qualifiers increases the likelihood
that the compiler will detect the read-only condition.

Figure 21 shows some examples of global memory accesses and corresponding memory
transactions.




Compute Capab. 5.x (Maxwell, Part 1)

K.4.2. Global Memory

Global memory accesses are always cached in L2 and caching in L2 behaves in the same way
as for devices of compute capability 3.x (see Global Memory].

Data that is read-only for the entire lifetime of the kernel can also be cached in the unified L1/
texture cache described in the previous section by reading it using the  1dg () function (see
Read-0Only Data Cache Load Function). When the compiler detects that the read-only condition
s satisfied for some data, it willuse  1dg () to read it. The compiler might not always be able
to detect that the read-only condition is satisfied for some data. Marking pointers used for
loading such data with both the const and  restrict qualifiers increases the likelihood
that the compiler will detect the read-only condition.

Data that is not read-only for the entire lifetime of the kernel cannot be cached in the unified
L1/texture cache for devices of compute capability 5.0. For devices of compute capability 5.2, it
is, by default, not cached in the unified L1/texture cache, but caching may be enabled using the
following mechanisms:

Markus Hadwiger, KAUST 38



Compute Capab. 5.x (Maxwell, Part 2)

Data that is not read-only for the entire lifetime of the kernel cannot be cached in the unified
L1/texture cache for devices of compute capability 5.0. For devices of compute capability 5.2, it
is, by default, not cached in the unified L1/texture cache, but caching may be enabled using the
following mechanisms:

» Perform the read using inline assembly with the appropriate modifier as described in the
PTX reference manual;

» Compile with the -Xptxas -dlcm=ca compilation flag, in which case all reads are cached,

except reads that are performed using inline assembly with a modifier that disables
caching;

» Compile with the -Xptxas -fscm=ca compilation flag, in which case all reads are cached,
iIncluding reads that are performed using inline assembly regardless of the modifier used.

When caching is enabled using one of the three mechanisms listed above, devices of compute
capability 5.2 will cache global memory reads in the unified L1/texture cache for all kernel
launches except for the kernel launches for which thread blocks consume too much of the
SM's register file. These exceptions are reported by the profiler.
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PTX State Spaces (1)

Memory type/access etc. organized using notion of state spaces

Table 6 State Spaces

Name Description
.reg Registers, fast.
.sreg Special registers. Read-only; pre-defined; platform-specific.
.const Shared, read-only memory.
.global Global memory, shared by all threads.
.local Local memory, private to each thread.
-param Kernel parameters, defined per-grid; or
Function or local parameters, defined per-thread.
.shared Addressable memory shared between threads in 1 CTA.
.tex Global texture memory (deprecated).
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PTX State Spaces (2)

Table 7 Properties of State Spaces

Name Addressable Initializable Access Sharing

.reg No No R/W per-thread

.sreg No No RO per-CTA

.const Yes Yes' RO per-grid

.global Yes Yes' R/W Context

.local Yes No R/W per-thread
.param (as input Yes? No RO per-grid

to kernel)

.param (used in Restricted’ No R/W per-thread
functions)

.shared Yes No R/W per-CTA

.tex No* Yes, via driver RO Context

Notes:

! Variables in .const and .global state spaces are initialized to zero by default.

2 Accessible only via the 1d.param instruction. Address may be taken via mov instruction.

3 Accessible via ld.param and st.param instructions. Device function input and return parameters may
have their address taken via mov; the parameter is then located on the stack frame and its address is in
the .local state space.

* Accessible only via the tex instruction.
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PTX Cache Operators

Table 27

Cache Operators for Memory Load Instructions

Operator

Meaning

.ca

Cache at all levels, likely to be accessed again.

The default load instruction cache operation is ld.ca, which allocates cache lines in all
levels (L1 and L2) with normal eviction policy. Global data is coherent at the L2 level,

but multiple L1 caches are not coherent for global data. If one thread stores to global
memory via one L1 cache, and a second thread loads that address via a second L1 cache
with 1d. ca, the second thread may get stale L1 cache data, rather than the data stored
by the first thread. The driver must invalidate global L1 cache lines between dependent
grids of parallel threads. Stores by the first grid program are then correctly fetched by the
second grid program issuing default 1d. ca loads cached in L1.

.cg

Cache at global level (cache in L2 and below, not L1).

Use 1d.cg to cache loads only globally, bypassing the L1 cache, and cache only in the L2
cache.

.CS

Cache streaming, likely to be accessed once.

The 1d. cs load cached streaming operation allocates global lines with evict-first policy
in L1 and L2 to limit cache pollution by temporary streaming data that may be accessed
once or twice. When 1d.cs is applied to a Local window address, it performs the 1d.1u
operation.

.1u

Last use.

The compiler/programmer may use 1d.1lu when restoring spilled registers and popping
function stack frames to avoid needless write-backs of lines that will not be used again.
The 1d. 1u instruction performs a load cached streaming operation (1d.cs) on global
addresses.

.CV

Don't cache and fetch again (consider cached system memory lines stale, fetch again).

The ld.cv load operation applied to a global System Memory address invalidates (discards)
a matching L2 line and re-fetches the line on each new load.
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SASS LD/ST Instructions

ArCh |te Ctu re-d e p . Compute Load/Store Instructions

LDC Load from Constant
LD Load from Memory
LDG Non-coherent Global Memory Load
LDL Load from Local Memory
LDS Load from Shared Memory
LDSLK Load from Shared Memory and Lock
ST Store to Memory

Kep I er. STL Store to Local Memory
STS Store to Shared Memory
STSCUL Store to Shared Memory Conditionally and Unlock
ATOM Atomic Memory Operation
RED Atomic Memory Reduction Operation
CCTL Cache Control
CCTLL Cache Control (Local)
MEMBAR Memory Barrier

(see also LDG.CI etc.)
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Compute Capab. 6.x (Pascal)

K.20.2. Global Memory

Global memory behaves the same way as in devices of compute capability 5.x (See Global
Memory).
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Compute Capab. 7.x (Volta/Turing)

K.6.3. Global Memory

Global memory behaves the same way as in devices of compute capability 5.x (See Global
Memory).
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Compute Capab. 8.x (Ampere/Ada)

K.7.2. Global Memory

Global memory behaves the same way as for devices of compute capability 5.x (See Global
Memory].
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Compute Capab. 9.x (Hopper)

K.8.2. Global Memory

Global memory behaves the same way as for devices of compute capability 5.x (See Global
Memoryl].
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