
CS 380 - GPU and GPGPU Programming
Lecture 16: CUDA Memories, Pt. 2

Markus Hadwiger, KAUST

2

Reading Assignment #6 (until Oct 14)

Read (required):

• Programming Massively Parallel Processors book (4th edition),
Chapter 5 (Memory architecture and data locality)

Read (optional):

• Programming Massively Parallel Processors book (4th edition),
Chapter 20 (An introduction to CUDA streams)

• Programming Massively Parallel Processors book (4th edition),
Chapter 21 (CUDA dynamic parallelism)

3

Reading Assignment #7 (until Oct 21)

Read (required):

• Programming Massively Parallel Processors book (4th edition),
Chapter 6 (Performance considerations)

Read (optional):

• Inline PTX Assembly in CUDA: Inline_PTX_Assembly.pdf

• Dissecting GPU Architectures through Microbenchmarking:

Volta: https://arxiv.org/abs/1804.06826

Turing: https://arxiv.org/abs/1903.07486

https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/
s9839-discovering-the-turing-t4-gpu-architecture-with-microbenchmarks.pdf

Ampere: https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s33322/

4

Next Lectures

no lecture on Oct 14 ! (fall semester break)

Lecture 17: Tue, Oct 15: Vulkan tutorial (room 3128, 14:30-15:45)

Lecture 18: Thu, Oct 17: Quiz #2 (only quiz; room 3128, 10:00)

Lecture 19: Mon, Oct 21

Lecture 20: Tue, Oct 22 (make-up lecture; 14:30 – 15:45)

Lecture 21: Thu, Oct 24

Example: Matrix Multiplication

5

__global__ void MatrixMul(float *matA, float *matB, float *matC, int w)
{

__shared__ float blockA[BLOCK_SIZE][BLOCK_SIZE];
__shared__ float blockB[BLOCK_SIZE][BLOCK_SIZE];

int bx = blockIdx.x; int tx = threadIdx.x;
int by = blockIdx.y; int ty = threadIdx.y;

int col = bx * BLOCK_SIZE + tx;
int row = by * BLOCK_SIZE + ty;

float out = 0.0f;
for (int m = 0; m < w / BLOCK_SIZE; m++) {

blockA[ty][tx] = matA[row * w + m * BLOCK_SIZE + tx];
blockB[ty][tx] = matB[col + (m * BLOCK_SIZE + ty) * w];
__syncthreads();

for (int k = 0; k < BLOCK_SIZE; k++) {
out += blockA[ty][k] * blockB[k][tx];

}
__syncthreads();

}

matC[row * w + col] = out;
}

Caveat: for brevity, this code assumes matrix sizes
are a multiple of the block size (either because
they really are, or because padding is used;
otherwise guard code would need to be added)

Example: Matrix Multiplication

6

__global__ void MatrixMul(float *matA, float *matB, float *matC, int w)
{

__shared__ float blockA[BLOCK_SIZE][BLOCK_SIZE];
__shared__ float blockB[BLOCK_SIZE][BLOCK_SIZE];

int bx = blockIdx.x; int tx = threadIdx.x;
int by = blockIdx.y; int ty = threadIdx.y;

int col = bx * BLOCK_SIZE + tx;
int row = by * BLOCK_SIZE + ty;

float out = 0.0f;
for (int m = 0; m < w / BLOCK_SIZE; m++) {

blockA[ty][tx] = matA[row * w + m * BLOCK_SIZE + tx];
blockB[ty][tx] = matB[col + (m * BLOCK_SIZE + ty) * w];
__syncthreads();

for (int k = 0; k < BLOCK_SIZE; k++) {
out += blockA[ty][k] * blockB[k][tx];

}
__syncthreads();

}

matC[row * w + col] = out;
}

Caveat: for brevity, this code assumes matrix sizes
are a multiple of the block size (either because
they really are, or because padding is used;
otherwise guard code would need to be added)

here: no bank conflicts (using row-major order);
but in general be careful with block sizes!

CUDA Memory:
Shared Memory
CUDA Memory:
Shared Memory

Memory and Cache Types

Global memory

• [Device] L2 cache

• [SM] L1 cache (shared mem carved out; or L1 shared with tex cache)

• [SM/TPC] Texture cache (separate, or shared with L1 cache)

• [SM] Read-only data cache (storage might be same as tex cache)

Shared memory

• [SM] Shareable only between threads in same thread block
(Hopper/CC 9.x: also thread block clusters)

Constant memory: Constant (uniform) cache

Unified memory programming: Device/host memory sharing

Markus Hadwiger, KAUST 8

9

L1 Cache vs. Shared Memory

Different configs on Fermi and Kepler; carveout on Maxwell and newer

• More shared memory on newer GPUs (64KB, 96KB, 100KB, 164KB, ...)

Carveout from unified L1/read-only data cache

(See CUDA C Programming Guide!)

NVIDIA GH100 SM

Multiprocessor: SM (CC 9.0)

• 128 FP32 + 64 INT32 cores

• 64 FP64 cores

• 4x 4th gen tensor cores

• ++ thread block clusters, DPX insts., FP8, TMA

4 partitions inside SM

• 32 FP32 + 16 INT32 cores

• 16 FP64 cores

• 8x LD/ST units; 4 SFUs each

• 1x 4th gen tensor core each

• Each has: warp scheduler,
dispatch unit, 16K register file

Markus Hadwiger, KAUST 10

Compute Capab. 9.x (Hopper, Part 2)

Markus Hadwiger, KAUST 11

later: use carveout

use cudaFuncSetAttribute()

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

16

Parallel Memory Architecture

• In a parallel machine, many threads access memory
– Therefore, memory is divided into banks

– Essential to achieve high bandwidth

• Each bank can service one address per cycle
– A memory can service as many simultaneous

accesses as it has banks

• Multiple simultaneous accesses to a bank
result in a bank conflict
– Conflicting accesses are serialized

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Memory Banks

Fermi/Kepler/Maxwell
and newer:

32 banks

default:
4B / bank

Kepler or newer:
configurable
to 8B / bank

17

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

20

Bank Addressing Examples

• No Bank Conflicts
– Linear addressing

stride == 1

• No Bank Conflicts
– Random 1:1 Permutation

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

21

Bank Addressing Examples

• 2-way Bank Conflicts
– Linear addressing

stride == 2

• 8-way Bank Conflicts
– Linear addressing

stride == 8

Thread 11
Thread 10
Thread 9
Thread 8

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2
Bank 1
Bank 0

x8

x8

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

22

How addresses map to banks on G80

• Each bank has a bandwidth of 32 bits per clock cycle

• Successive 32-bit words are assigned to successive
banks

• G80 has 16 banks
– So bank = address % 16

– Same as the size of a half-warp
• No bank conflicts between different half-warps, only within a

single half-warp

Fermi and newer have 32 banks,
considers full warps instead of half warps!

full warps instead of half warps on Fermi and newer!

not true on Fermi, because of multi-cast!

not true on Fermi, because of multi-cast!

multi-cast on Fermi and newer!

read (LD) from shared memory

stride for read (LD)
= 32

each of the 32
warps has 32-way
bank conflicts!

0 2

31

read (LD) from shared memory

stride for read (LD)
= 33

none of the 32
warps has bank
conflicts!

[TILE+1];

No bank conflicts anymore

Thank you.

