A
= %fhd v hdUT chn fygyf (((‘)), KAUST

S

CS 380 - GPU and GPGPU Programming
Lecture 15: CUDA Memories, Pt. 1

Markus Hadwiger, KAUST |

Reading Assignment #6 (until Oct 21)

Read (required):

* Programming Massively Parallel Processors book (4th edition),
Chapter 5 (Memory architecture and data locality)

Read (optional):

* Programming Massively Parallel Processors book (4th edition),
Chapter 20 (An introduction to CUDA streams)

* Programming Massively Parallel Processors book (4th edition),
Chapter 21 (CUDA dynamic parallelism)

Code Example #2: Matrix Multiply

Example: Matrix Multiplication (3)

* Multiply matrix block-wise = Aw A
N
« Set BLOCK_SIZE for efficient hardware 3
use, e.g.,,to16oncc.txor | | ¥ E
16 or 32 oncc. 2.x + N
|
'ﬂ
. . . :. = ‘A'
* Maximize parallelism A c -
— Launch as many threads : g‘
per block as block elements R ol
— Each thread fetches one T ——— T §
I 1 [7)] £
element per block : : J =2
— Perform row * column L mcsz':f """ B & <
dot products in parallel i = | B N > R
BLOCK_SIZE BLOCK_SIZE BLOCK_SIZE
A.width B.width
l‘ B e vh'

Example: Matrix Multiplication (4)

__global void MatrixMul(float *matA, float *matB, float *matC, int w)

{
__shared float blockA[BLOCK SIZE][BLOCK SIZE];
__shared float blockB[BLOCK SIZE][BLOCK SIZE];
int bx = blockIdx.x; int tx = threadIdx.x;
int by = blockIdx.y; int ty = threadIdx.y;
int col = bx * BLOCK SIZE + tx;
int row = by * BLOCK SIZE + ty;
float out = 0.0f;
for (int m = 0; m < w / BLOCK SIZE; mt++) {
blockA[ty][tx] = matA[row * w + m * BLOCK SIZE + tx 1;
blockB[ty][tx] = matB[col + (m * BLOCK SIZE + ty) * w 1;
__syncthreads() ;
for (int k = 0; k < BLOCK SIZE; k++) {
out += blockA[ty][k] * blockB[k][tx];
}
__syncthreads() ;
} . : .
Caveat: for brevity, this code assumes matrix sizes
matC[row * w + col] = out; are a multiple of the block size (either because
} they really are, or because padding is used;
5 otherwise guard code would need to be added)

Running on a V100 (Volta) SM

Warp Selector 1 ' Warp Selector I Warp Selector ’ Warp Selector

R oES rES cED

OONNNEE OONEEEE OOEEEEE OOeEEeEEE
OCONEEEE OOEENEE OOEENEE OOeEeEeEEE
CENENEE OOEEEEE OCeEeEEEE DT .
OCONNENEE ODOEEEEE DOEEEEE OO eEEEEE
(3155 O O 515 5 N I [I I I
CONEEEE OOEEEEE OOEENEE OO e
COEEEEE OOueEEE OOEEEEE OONeeEEE
mjm] [| § Eeim] J 7] | Weimpyy] | Gl Pyl 7|

D131 ! 318 RS0 0|31 R0 0131
R R R R
y ‘ “ ; “ : “
R R ¢ G
R1 R1 R1

R Warp 4 R2 Warp 5 R2 Warp 7

Warp 6

RO RO RO RO
R1 R1 R1
R Warp 60 R2 Warp 61 R Warp 62 R Warp 63

“Shared” memory + L1 cache storage (128 KB)
528 bytes
A convolve thread block is executed by 4 warps

(4 warps x 32 threads/warp = 128 CUDA threads per block)

SM core operation each clock:
— Each sub-core selects one runnable warp (from the 16 warps in its partition)

#define THREADS_PER_BLK 128

__global__ void convolve(int N, float* input,

{

float* output)

__shared__ float support[THREADS_PER_BLK+2];
int index = blockIdx.x * blockDim.x +
threadIdx.x;

support[threadIdx.x] = input[index];
if (threadIdx.x < 2) {
support[THREADS _PER_BLK+threadIdx.x]
= input[index+THREADS_PER_BLK];
}

__syncthreads();
float result = @.6f; // thread-local
for (int i=@; i<3; i++)

result += support[threadIdx.x + i];

output[index] = result/ 3.f;

(sub-core == SM partition)

— Each sub-core runs next instruction for the CUDA threads in the warp (this instruction may apply to all or a subset of the CUDA

threads in a warp depending on divergence)

courtesy Kayvon Fatahalian

Stanford €5149, Fall 2021

Limits in CUDA Programming Guide

Compute Capability
Technical Specifications 50| 52| 53| 60| 6.1| 62| 70| 7.2| 7.5| 8.0| 8.6| 8.7| 89| 9.0

Maximum number of resident | 32 16| 128 32| 16| 128 16| 128
grids per device (Concurrent
Kernel Execution)

Maximum dimensionality of grid | 3
of thread blocks

Maximum x -dimension of a grid | 231-1
of thread blocks [thread blocks]

Maximum y- or z-dimension of a | 65535
grid of thread blocks

Maximum dimensionality of | 3
thread block

Maximum x- or y-dimensionality | 1024
of a block

Maximum z-dimension of a block | 64

Maximum number of threads per | 1024

block

Warp size 32

Maximum number of resident | 32 16| 32| 16 24 | 32

blocks per SM

Maximum number of resident | 64 32| 64 | 48 64

warps per SM

Maximum number of resident | 2048 102420481536 2048

threads per SM 7

What About Memory Performance?

(more to come later...)

Memory Layout of a Matrix in C

My, M, M,, M3,

MO,3 M1,3 M2,3 M3,3

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of lllinois, Urbana-Champaign

Memory Coalescing

* When accessing global memory, peak performance utilization
occurs when all threads 1n a half warp (full warp on Fermi+)
access continuous memory locations.

* Requirements relaxed on >=1.2 devices; L1 cache on Fermi!

Not coalesced coalesced

Thread >
Thread 2=

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 10
ECE 498AL, University of lllinois, Urbana-Champaign

Memory Layout of a Matrix in C

Access
direction in

kernel code
MO,Z M1,2 M2,2 M3,2

MO,3 M1,3 M2,3 M3,3

Time Period 1 Time Period 2

T, T, T, T,||T, T, T, T,

; MO,l 1\/Il,l M2,1 M3,1 MO,Z M1,2 M2,2 M3,2 MO,3 M1,3 M2,3 M3,3

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of lllinois, Urbana-Champaign

Memory Layout of a Matrix in C

Access
direction in

kernel code
MO,Z M1,2 M2,2 M3,2

MO,3 M1,3 M2,3 M3,3

Time Period 2
: L :
Tilne Period 1
T, T, T, T,

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of lllinois, Urbana-Champaign

12

CUDA Memory

CUDA Highlights: Scatter

CUDA provides generic DRAM memory addressing

— Gather:

— And scatter: no longer limited to write one pixel

e] i

=== More programming flexibility

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

CUDA Highlights: On-Chip Shared Memory

« CUDA enables access to a parallel on-chip shared
memory for efficient inter-thread data sharing

Shared Shared

memory memory

===» Big memory bandwidth savings

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

CUDA Memory:

Overview

Kernel Memory Access

® Per-thread

«—> LEEEE On-chip
Thread

q ® Per-block

Block PEEY Shared . IC:)n-chip, small
> "
pEq Memory ast

® Per-device

: Kernel 0 PR - ESZr;zrliE;Large

Plersi;tlg;]ut across
= Memory kernel launches
e E 22222 22222 2222 € > e Kernel |/O

<SAANVIDIA.

Memory and Cache Types

Global memory
 [Device] L2 cache
 [SM] L1 cache (shared mem carved out; or L1 shared with tex cache)

« [SM/TPC] Texture cache (separate, or shared with L1 cache)

« [SM] Read-only data cache (storage might be same as tex cache)

Shared memory

« [SM] Shareable only between threads in same thread block
(Hopper/CC 9.x: also thread block clusters)

Constant memory: Constant (uniform) cache

Unified memory programming: Device/host memory sharing

Markus Hadwiger, KAUST 18

Memory Configurations and Types
for Different Compute Capabilities

Markus Hadwiger, KAUST 19

=

NVIDIA Architectures (since first CUDA GPU)

Tesla[cc 1.x5: 2007-2009 Voltacc 7.0,7.21: 2017/2018
+ G80, G9x: 2007 (Geforce 8800, ...) + GV100, ...
GT200: 2008/2009 (GTX 280, ...) (Tesla V100, Titan V, Quadro GV100, ...)
Fermi[cc 2.x): 2010 (2011, 2012, 2013, ...) Turing [cc 7.5]: 2018/2019
« GF100, ... (GTX 480, ...) « TU102, TU104, TU106, TU116, TU117, ...
GF104, ... (GTX 460, ...) (Titan RTX, RTX 2070, 2080 (Ti), GTX 1650, 1660, ...)

GF110, ... (GTX 580, ...)
Ampere [CC 8.0, 8.6, 8.7]: 2020

+ GA100, GA102, GA104, GA1Q6, ...

+ GK104, ... (GTX 680, ...) (A100, RTX 3070, 3080, 3090 (Ti), RTX A6000, ...)
GK110, ... (GTX 780, GTX Titan, ...)

Kepler[cc 3.x]: 2012 (2013, 2014, 2016, ...)

Hopper [cc 9.0], Ada Lovelace [cC 8.9]: 2022/23

+ GH100, AD102, AD103, AD104, ...

+ GM107, ... (GTX 750Ti, ...) (H100, L40, RTX 4080 (12/16 GB), 4090, RTX 6000, ...)
GM204, ... (GTX 980, Titan X, ...)

Maxwell [cc 5.x]: 2015

Blackwell [cc 10.0]: coming in 2024/25
Pascal [cc 6.x]: 2016 (2017, 2018, 2021, 2022, ...) . GB200/GB202. GB20x. .2

+ GP100 (Tesla P100, ...) (RTX 5080/5090, GB200 NVL72, HGX B100/200, ...?)

« GP10x: x=2,4,6,7,8, ...
(GTX 1060, 1070, 1080, Titan X Pascal, Titan Xp, ...)

_ see https://en.wikipedia.org/wiki/List _of Nvidia_graphics_processing units
Markus Hadwiger, KAUST and https://en.wikipedia.org/wiki/CUDA 20

Warp Scheduler _ Worp Bchedulsr || Warp Schetuler Wiarp Soheduler

Dipsich Unit Dispatch St Dimpaich Unilt Dispstch Unil DiEpatch Uit Dispacchilni Oizpacch Unit Dispatoh Unk
2 4 ks 2 £ 2 & =

Register File (65,536 x 32-bit)
4 & 2 . ! B B 4+ & - S a2 . 5

Multiprocessor: SMX (CC 3.0) M T TV R) A S

Core Cors S5FU Core Com Core Core| Cara LOVGT

192 CUDA Cores Core| Core S5FU Core Come Core Core| Core LDGT
(1 92 = 6 * 32) Core Core SFU Cora Cora Gore| Gore LT

32 LD/ST units

Corm 5FU Cora Coma Cors Core

32 SFUS Enra. SFU Cora Care Cors

Core SFU Care Care

16 texture units " F1L R I -

Gore SFU Care Care Gare

Core 5FuU Core Core Core

Two dispatch units per warp Gom| ot SFU Gonel ore Gore| Gore| wosr
SCthUler eXp|O|t ILP Core SFU Care Core| Baore| LIVET
(instruction-level parallelism) _ Gors womt sru [Gerd Eare BN B o

Cora S5FU Cora Carm Cora Cora| LIVET

Can dual-issue ALU instructions!
(“superscalar’)

Core LOST SFU Cora Core Cors Cora LINET
Textire Cathe

64 KB Shated Mumory /L1 Cache:
Unilfarm Cache

Tex

GK110 SMX

Multiprocessor: SMX (CC 3.5)

192 CUDA cores
(192 =6 * 32)

64 DP units
32 LD/ST units
32 SFUs

16 texture units

New read-only
data cache (48KB)

Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch
- B B 2 E S B

Register File (65,536 x 32-bit)

- 4+ 5 4 4 4

LwsT SFU Core [Core Core

SFU .Cﬂl-'l Care
5FU Core Core
SFU
SFU

SFU

Dispatch
B

. & E 8

LDIET

3
Core
Core
Core

Dispatch
i

4
SFU

SFU

Compute Capab. 3.x (Kepler, Part 1)

K.3.1. Architecture

An SM has a read-only constant cache that is shared by all functional units and speeds up
reads from the constant memory space, which resides in device memory.

There is an L1 cache for each SM and an L2 cache shared by all SMs. The L1 cache is used
to cache accesses to local memory, including temporary register spills. The L2 cache is used
to cache accesses to local and global memory. The cache behavior (e.g., whether reads are
cached in both L1 and L2 or in L2 only) can be partially configured on a per-access basis
using modifiers to the load or store instruction. Some devices of compute capability 3.5 and
devices of compute capability 3.7 allow opt-in to caching of global memory in both L1 and L2
via compiler options.

The same on-chip memory is used for both L1 and shared memory: It can be configured
as 48 KB of shared memory and 16 KB of L1 cache or as 16 KB of shared memory
and 48 KB of L1 cache or as 32 KB of shared memory and 32 KB of L1 cache, using

cudaFuncSetCacheConfig ()/cuFuncSetCacheConfig():

Compute Capab. 3.x (Kepler, Part 2)

Note: Devices of compute capability 3.7 add an additional 64 KB of shared memory to each
of the above configurations, yielding 112 KB, 96 KB, and 80 KB shared memory per SM,
respectively. However, the maximum shared memory per thread block remains 48 KB.

Applications may query the L2 cache size by checking the 12CacheSize device property [see
Device Enumeration]. The maximum L2 cache size is 1.5 MB.

Each SM has a read-only data cache of 48 KB to speed up reads from device memory. It
accesses this cache either directly (for devices of compute capability 3.5 or 3.7), or via a
texture unit that implements the various addressing modes and data filtering mentioned in

Texture and Surface Memory. When accessed via the texture unit, the read-only data cache is
also referred to as texture cache.

Compute Capab. 3.x (Kepler, Part 3)

K.3.2. Global Memory

Global memory accesses for devices of compute capability 3.x are cached in L2 and for devices
of compute capability 3.5 or 3.7, may also be cached in the read-only data cache described in
the previous section; they are normally not cached in L1. Some devices of compute capability
3.5 and devices of compute capability 3.7 allow opt-in to caching of global memory accesses in
L1 via the -Xptxas -dlcm=ca option to nvcc.

A cache line is 128 bytes and maps to a 128 byte aligned segment in device memory. Memory
accesses that are cached in both L1 and L2 are serviced with 128-byte memory transactions,
whereas memory accesses that are cached in L2 only are serviced with 32-byte memory
transactions. Caching in L2 only can therefore reduce over-fetch, for example, in the case of
scattered memory accesses.

If the size of the words accessed by each thread is more than 4 bytes, a memory request by a
warp is first split into separate 128-byte memory requests that are issued independently:

» Two memory requests, one for each half-warp, if the size is 8 bytes,

» Four memory requests, one for each quarter-warp, if the size i1s 16 bytes.

Compute Capab. 3.x (Kepler, Part 4)

Each memory request is then broken down into cache line requests that are issued
Independently. A cache line request is serviced at the throughput of L1 or L2 cache in case of a
cache hit, or at the throughput of device memory, otherwise.

Note that threads can access any words in any order, including the same words.

If a non-atomic instruction executed by a warp writes to the same location in global memory
for more than one of the threads of the warp, only one thread performs a write and which
thread does it is undefined.

Data that is read-only for the entire lifetime of the kernel can also be cached in the read-only
data cache described in the previous section by reading it using the 1dg () function (see

Read-Only Data Cache Load Function]). When the compiler detects that the read-only condition

Is satisfied for some data, it willuse 1dg () to read it. The compiler might not always be able
to detect that the read-only condition is satisfied for some data. Marking pointers used for
loading such data with both the const and restrict qualifiers increases the likelihood
that the compiler will detect the read-only condition.

Figure 21 shows some examples of global memory accesses and corresponding memory
transactions.

Maxwell (GM) Architecture

Multiprocessor: SMM (CC 5.x)
» 128 CUDA cores
* 4 DP units; 32 LD/ST units; 32 SFUs

» 8 texture units

4 partitions inside SMM
« 32 CUDA cores each
8 LD/ST units; 8 SFUs each

» Each has its own register file,
warp scheduler, two dispatch units
(but cannot dual-issue ALU insts.!)

Shared memory and L1 cache now
separate!

* L1 cache shares with texture cache

» Shared memory is its own space

PolyMorph Engine 3.0

Tessellator

|

l

Viewport Transform

[Attribute Setup

1

Stream Output

Warp Scheduler

Dispatch Unit Dispatch Unl

+ +
Register File (16,384 x 32-bit)

Core | Core Core LD/ST
Core Core LDIST
Core Core LD/ST
Core | Core LDIST
Core
Core
Core

Core

Warp Scheduler

Dispatch Unit

£

Register File (16,384 x 32-bit)
Core | Core | Core LD/ST
Core Core Core LD/ST
Core Core Core LDIST
Core Core LD/ST
Core Core LDIST
Core LDIST

LDIST

LDIST

SFU
SFU
SFU
SFU Core
SFU Core
SFU Core
SFU Core

SFU Core

T Siiiceh

Core
Core
Core
Core
Core
SFU Core
SFU Core

SFU Core

Texture / L1 Cache

B3

Warp Scheduler

it | Dispatch Unit

Dispatch Unit
E 3

Register File (16,384 x 32-bit)

Core Core Core LD/ST SFU

Core

&+

Core

Core

Core

Core

Core

Core

Core

Core

LD/ST

LD/ST

LDIST

LD/ST

LD/ST

LDIST

LD/ST

Tex

Warp Scheduler

Dispatch Unit

Dispatch Unit
£

Register File (16,384 x 32-bit)

Core

Core

Core

Tex

Core | Core LOD/ST

Core

Core

Core

Core

Core

Core

Core

Core

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LOVST

SFU

SFU

SFU

SFU

SFU

SFU

SFU

Compute Capab. 5.x (Maxwell, Part 1)

K.4.1. Architecture

An SM has:

» aread-only constant cache that is shared by all functional units and speeds up reads from
the constant memory space, which resides in device memory,

» aunified L1/texture cache of 24 KB used to cache reads from global memory,

» 64 KB of shared memory for devices of compute capability 5.0 or 96 KB of shared memory
for devices of compute capability 59.2.

The unified L1/texture cache is also used by the texture unit that implements the various
addressing modes and data filtering mentioned in Texture and Surface Memory.

There is also an L2 cache shared by all SMs that is used to cache accesses to local or global
memory, including temporary register spills. Applications may query the L2 cache size by
checking the 12CacheSize device property (see Device Enumeration).

The cache behavior (e.g., whether reads are cached in both the unified L1/texture cache and
L2 or in L2 only) can be partially configured on a per-access basis using modifiers to the load
Instruction.

Markus Hadwiger, KAUST 28

Compute Capab. 5.x (Maxwell, Part 2)

K.4.2. Global Memory

Global memory accesses are always cached in L2 and caching in L2 behaves in the same way
as for devices of compute capability 3.x (see Global Memory].

Data that is read-only for the entire lifetime of the kernel can also be cached in the unified L1/
texture cache described in the previous section by reading it using the 1dg () function (see
Read-0Only Data Cache Load Function). When the compiler detects that the read-only condition
s satisfied for some data, it willuse 1dg () to read it. The compiler might not always be able
to detect that the read-only condition is satisfied for some data. Marking pointers used for
loading such data with both the const and restrict qualifiers increases the likelihood
that the compiler will detect the read-only condition.

Data that is not read-only for the entire lifetime of the kernel cannot be cached in the unified
L1/texture cache for devices of compute capability 5.0. For devices of compute capability 5.2, it
is, by default, not cached in the unified L1/texture cache, but caching may be enabled using the
following mechanisms:

Markus Hadwiger, KAUST 29

Compute Capab. 5.x (Maxwell, Part 3)

Data that is not read-only for the entire lifetime of the kernel cannot be cached in the unified
L1/texture cache for devices of compute capability 5.0. For devices of compute capability 5.2, it
is, by default, not cached in the unified L1/texture cache, but caching may be enabled using the
following mechanisms:

» Perform the read using inline assembly with the appropriate modifier as described in the
PTX reference manual;

» Compile with the -Xptxas -dlcm=ca compilation flag, in which case all reads are cached,

except reads that are performed using inline assembly with a modifier that disables
caching;

» Compile with the -Xptxas -fscm=ca compilation flag, in which case all reads are cached,
iIncluding reads that are performed using inline assembly regardless of the modifier used.

When caching is enabled using one of the three mechanisms listed above, devices of compute
capability 5.2 will cache global memory reads in the unified L1/texture cache for all kernel
launches except for the kernel launches for which thread blocks consume too much of the
SM's register file. These exceptions are reported by the profiler.

Markus Hadwiger, KAUST 30

Compute Capab. 5.x (Maxwell, Part 4)

K.4.3. Shared Memory

Shared memory has 32 banks that are organized such that successive 32-bit words map to
successive banks. Each bank has a bandwidth of 32 bits per clock cycle.

A shared memory request for a warp does not generate a bank conflict between two threads
that access any address within the same 32-bit word (even though the two addresses fall

in the same bank]. In that case, for read accesses, the word is broadcast to the requesting
threads and for write accesses, each address is written by only one of the threads (which
thread performs the write is undefined).

Figure 22 shows some examples of strided access.

Figure 23 shows some examples of memory read accesses that involve the broadcast
mechanism.

Markus Hadwiger, KAUST 31

NVIDIA Pascal GP100 SM

Multiprocessor: SM (CC 6.0)

« 64 CUDA cores e Dispatch Uk ot v o une

. Register File (32,768 x 32-bit) Register File (32,768 x 32-bit)
« 32 DP units
Core - Core Core - LD/ST
16 LD/ST units s - e
+ 16 SFUs ol

4 texture units

« 32 CUDA cores each; 16 DP units each; 8 LD/ST units each; 8 SFUs each

« Each has its own register file, warp scheduler, two dispatch units
(but cannot dual-issue ALU (single precision core) insts.!)

Instruction Buffer
Warp Scheduler

Dispatch Unit
kS

Register File (16,384 x 32-bit)

Dispatch Unit
&

NVIDIA Pascal GP104 SM

Core Core Core LD/ST

Core Core Core LD/ST

LD/ST

Core Core Core

Multiprocessor: SM (CC 6.1/6.2)
128 CUDA cores
32 LD/ST units
32 SFUs

8 texture units

Core Core Core LD/ST

Core Core Core LDIST SFU Core

LDIST

Core Core Core SFU Core

Core Core Core LD/ST SFU

Core Core LDIST SFU Core

Texture / L1 Cache

Warp Scheduler

Dispatch Unit
B3

Register File (16,384 x 32-bit)

Dispatch Unit
3+

Core Core Core Core

4 partitions inside SM
e 32 CUDA cores; 8 LD/ST units; 8 SFUs

« Each has its own register file,
warp scheduler, two dispatch units
(but cannot dual-issue ALU insts.!

Core Core Core

Core

Core Core

Core Core Core

Core Core Core

Core Core Core

Core Core SFU Core

Core Core SFU Core

Texture | L1 Cache

Dispatch Unit

Dispatch Unit

Instruction Buffer
Warp Scheduler

Dispatch Unit

& 2

Register File (16,384 x 32-bit)

Core Core Core

Core Core Core

Core Core Core

Core Core Core

Core |Core | Core LDIST

Core | Core | Core LDIST

Core Core Core

Core Core

Warp Scheduler

Dispatch Unit

3 4+

Register File (16,384 x 32-bit)

Core Core Core

Core Core Core

Core Core Core

Core Core Core

Core Core Core

Core Core Core

Core Core Core

Core Core

SFU

SFU

Compute Capab. 6.x (Pascal, Part 1)

K.9.1. Architecture
An SM has:

» aread-only constant cache that is shared by all functional units and speeds up reads from
the constant memory space, which resides in device memory,

» aunified L1/texture cache for reads from global memory of size 24 KB (6.0 and 6.2) or 48
KB (6.1),

» ashared memory of size 64 KB (6.0 and 6.2) or 96 KB (6.1).

The unified L1/texture cache is also used by the texture unit that implements the various
addressing modes and data filtering mentioned in Texture and Surface Memory.

There is also an L2 cache shared by all SMs that is used to cache accesses to local or global
memory, including temporary register spills. Applications may query the L2 cache size by
checking the 12CacheSize device property (see Device Enumeration).

The cache behavior (e.g., whether reads are cached in both the unified L1/texture cache and
L2 orin L2 only] can be partially configured on a per-access basis using modifiers to the load
instruction.

Markus Hadwiger, KAUST 34

Compute Capab. 6.x (Pascal, Part 2)

K.9.2. Global Memory

Global memory behaves the same way as in devices of compute capability 5.x (See Global

Memory].
K.9.3. Shared Memory

Shared memory behaves the same way as in devices of compute capability 5.x (See Shared

Memory).

Markus Hadwiger, KAUST 35

NVIDIA Volta SM

Multiprocessor: SM (CC 7.0)
64 FP32 + 64 INT32 cores
32 FP64 cores
32 LD/ST units; 16 SFUs

8 tensor cores
(FP16/FP32 mixed-precision)

4 partitions inside SM

* 16 FP32 + 16 INT32 cores each
8 FP64 cores each
8 LD/ST units; 4 SFUs each
2 tensor cores each

Each has: warp scheduler,
dispatch unit, register file

SM

L1 Instruction Cache

L0 Instruction Cache L0 Instruction Cache.
Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)
Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)
FP64 INT INT |FP32 FP32 FP64 INT INT [FP32 FP32
FP64 INT INT |FP32 FP32 FP64 INT INT FP32 FP32
FP64 INT INT FP32 FP32 FP64 INT INT [FP32 FP32
FP64 INT INT FP32 FP32 TENSOR TENSOR FP64 INT INT [FP32 FP32 TENSOR TENSOR
FP64 INT INT |FP32 FP32 CORE CORE FP64 INT INT FP32 FP32 CORE CORE
FP64 INT INT [FP32 FP32 FP64 INT INT FP32 FP32
FP64 INT INT FP32 FP32 FP64 INT INT |[FP32 FP32
FP64 INT INT FP32 FP32 FP64 INT INT [FP32 FP32
LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD
ST ST ST (ST ST ST ST ST SFU ST ST (ST ST ST ST ST ST SFU
L0 Instruction Cache L0 Instruction Cache
Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)
Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)
FP64 INT INT |FP32 FP32 FP64 INT INT FP32 FP32
FP64 INT INT FP32 FP32 FP64 INT INT [FP32 FP32
FP64 INT INT |FP32 FP32 FP64 INT INT [FP32 FP32
FP64 INT INT |FP32 FP32 TENSOR TENSOR FP64 INT INT FP32 FP32 TENSOR TENSOR
FP64 INT INT |FP32 FP32 CORE CORE FP64 INT INT FP32 FP32 GORE GORE
FP64 INT INT FP32 FP32 FP64 INT INT |[FP32 FP32
FP64 INT INT P32 FP32 FP64 INT INT FP32 FP32
FP64 INT INT FP32 FP32 FP64 INT INT [FP32 FP32
LD/ LD/ LD/ LD/ LD/ LD/ LD/ LDI LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD
ST ST ST ST ST ST ST ST SFU ST ST ST ST ST ST ST ST SFU

128KB L1 Data Cache / Shared Memory

Tex Tex

Tex Tex

NVIDIA Turing SM

Multiprocessor: SM (CC 7.5)
* 64 FP32 + INT32 cores
« 2 () FP64 cores

« 8 Turing tensor cores
(FP16/32, INT4/8 mixed-precision)

* 1 RT (ray tracing) core

4 partitions inside SM
* 16 FP32 + INT32 cores each
* 4 LD/ST units; 4 SFUs each
« 2 Turing tensor cores each

« Each has: warp scheduler,
dispatch unit, 16K register file

| Warp Schediler + Dispatch (32thread/clk) | |~ Warp Scheduler + Dispatch (32 thread/cik) -

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

TENSOR
CORES

TENSOR

INT32 FP32 CORES

INT32 FP32

LDIST LDIST LD/ST LD/ST SFU LD/ST LDIST LDIST LD/ST SFU

Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

TENSOR
CORES

TENSOR

INT32 FP32 CORES

INT32 FP32

LDIST LDVST LDIST LDIST SFU LDIST LDIST LO/IST LDIST SFU

96KB L1 Data Cache / Shared Memory

Tex Tex

Compute Capab. 7.x (Volta/Turing, Part 1)

K.6.1. Architecture

An SM has:

» aread-only constant cache that is shared by all functional units and speeds up reads from
the constant memory space, which resides in device memory,

» aunified data cache and shared memory with a total size of 128 KB (Volta) or 96 KB
(Turing).

Shared memory is partitioned out of unified data cache, and can be configured to various sizes
(See Shared Memory.] The remaining data cache serves as an L1 cache and is also used by
the texture unit that implements the various addressing and data filtering modes mentioned in

Texture and Surface Memory.

Markus Hadwiger, KAUST 38

AR
<

Compute Capab. 7.x (Volta/Turing, Part 2)

K.6.3. Global Memory

Global memory behaves the same way as in devices of compute capability 5.x (See Global
Memory].

K.6.4. Shared Memory

Similar to the Kepler architecture, the amount of the unified data cache reserved for shared
memory is configurable on a per kernel basis. For the Volta architecture (compute capability
7.0), the unified data cache has a size of 128 KB, and the shared memory capacity can be set
to 0, 8, 16, 32, 64 or 96 KB. For the Turing architecture (compute capability 7.5, the unified
data cache has a size of 96 KB, and the shared memory capacity can be set to either 32 KB
or 64 KB. Unlike Kepler, the driver automatically configures the shared memory capacity for
each kernel to avoid shared memory occupancy bottlenecks while also allowing concurrent
execution with already launched kernels where possible. In most cases, the driver’s default
behavior should provide optimal performance.

Markus Hadwiger, KAUST 39

Compute Capab. 7.x (Volta/Turing, Part 3)

Because the driver is not always aware of the full workload, it is sometimes useful for
applications to provide additional hints regarding the desired shared memory configuration.
For example, a kernel with little or no shared memory use may request a larger carveout in
order to encourage concurrent execution with later kernels that require more shared memory.
The new cudaFuncSetAttribute () APl allows applications to set a preferred shared memory
capacity, or carveout, as a percentage of the maximum supported shared memory capacity
(96 KB for Volta, and 64 KB for Turing).

cudaFuncSetAttribute () relaxes enforcement of the preferred shared capacity compared
to the legacy cudaFuncSetCacheConfig () APl introduced with Kepler. The legacy API treated
shared memory capacities as hard requirements for kernel launch. As a result, interleaving
kernels with different shared memory configurations would needlessly serialize launches
behind shared memory reconfigurations. With the new API, the carveout is treated as a hint.
The driver may choose a different configuration if required to execute the function or to avoid
thrashing.

Markus Hadwiger, KAUST 40

AR
<

Compute Capab. 7.x (Volta/Turing, Part 4)

// Device code
__global void MyKernel(...)

{
__shared float buffer[BLOCK DIM];
}
// Host code
int carveout = 50; // prefer shared memory capacity 50% of maximum
// Named Carveout Values:
// carveout = cudaSharedmemCarveoutDefault; // (=1)
// carveout = cudaSharedmemCarveoutMaxll; // (0)
// carveout = cudaSharedmemCarveoutMaxShared; // (100)

cudaFuncSetAttribute (MyKernel, cudaFuncAttributePreferredSharedMemoryCarveout,
carveout) ;
MyKernel <<<gridDim, BLOCK DIM>>>(...);

In addition to an integer percentage, several convenience enums are provided as listed in

the code comments above. Where a chosen integer percentage does not map exactly to a
supported capacity (SM 7.0 devices support shared capacities of 0, 8, 16, 32, b4, or 96 KBJ, the
next larger capacity is used. For instance, in the example above, 50% of the 96 KB maximum is
48 KB, which is not a supported shared memory capacity. Thus, the preference is rounded up
to 64 KB.

Compute Capab. 7.x (Volta/Turing, Part 5)

Compute capability 7.x devices allow a single thread block to address the full capacity

of shared memory: 96 KB on Volta, 64 KB on Turing. Kernels relying on shared memory
allocations over 48 KB per block are architecture-specific, as such they must use dynamic
shared memory (rather than statically sized arrays) and require an explicit opt-in using
cudaFuncSetAttribute () as follows.

// Device code
__global void MyKernel(...)
{

extern shared float buffer]|];

}

// Host code

int maxbytes = 98304; // 96 KB

cudaFuncSetAttribute (MyKernel, cudaFuncAttributeMaxDynamicSharedMemorySize,
maxbytes) ;

MyKernel <<<gridDim, blockDim, maxbytes>>>(...);

Otherwise, shared memory behaves the same way as for devices of compute capability 5.x (See
Shared Memory].

NVIDIA GA100 SM

Multiprocessor: SM (CC 8.0)
64 FP32 + 64 INT32 cores
32 FP64 cores
4 3 gen tensor cores

1 2" gen RT (ray tracing) core

4 partitions inside SM

* 16 FP32 + 16 INT32 cores
8 FP64 cores
8 LD/ST units; 4 SFUs each
1 37 gen tensor core each

Each has: warp scheduler,
dispatch unit, 16K register file

L1 Instruction Cache

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

LD/ LD/
ST sT

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP32 FPe4
FP32 FP32 FP64
FP32 FP32 FPe4
FP32 FP32 FPe4

TENSOR CORE
FP32 FP32 FPe4
FP32 FP32 FP64

FP32 FP32 FPe4

FP32 FP32 FPe4

LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

LD/ LD/
ST ST

LO Instruction Cache.
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP32 FP64
TENSOR CORE
FP32 FP32 FP64
FP32 FP32 FPG4
FP32 FP32 FP64

FP32 FP32 FP64

LD/ LD/ LDi Lo/ LD/ LD/
ST ST ST ST ST ST SFU

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

LD/ LD/
ST ST

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP32 FP64
FP32 FP32 FPe4
FP32 FP32 FP64
FP32 FP32 FPe4

TENSOR CORE
FP32 FP32 FPe4
FP32 FP32 FP64

FP32 FP32 FP64

FP32 FP32 FP64

Lo/ LD/ LD/ LD/ Lo/ LD/
ST ST ST ST ST ST SFU

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

LD/ LD/
sT ST

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP32 FPo4
FP32 FP32 FPe4

TENSOR CORE
FP32 FP32 FP64
FP32 FP32 FPe4

FP32 FP32 FP64

FP32 FP32 FPo4

LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST SFU

192KB L1 Data Cache / Shared Memory

Tex

Tex

NVIDIA GA10x SM

Multiprocessor: SM (CC 8.6)
» 128 (64+64) FP32 + 64 INT32 cores
« 2 () FP64 cores

« 4 31 gen tensor cores

« 1 2"d gen RT (ray tracing) core
4 partitions inside SM
» 32 (16+16) FP32 + 16 INT32 cores
* 4 LD/ST units; 4 SFUs each

« 1 3" gen tensor core each

« Each has: warp scheduler,
dispatch unit, 16K register file

INT32

INT32

LD/ST

LO i-Cache + Warp

Register File (16,384 x 32-bit)

LLLLL

LO i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

LD/ST

+D

* Disp (32

TENSOR
CORE

3rd Gen INT32

LLLLL

LO i-Cache + Warp Sch

LLLLL

Register File (16,384 x 32-bit)

LLLLL

(32

TENSOR

CORE
3rd Gen

+ Di

TENSOR
CORE

3rd Gen INT32

LD/ST LD/ST SFU LD/IST LD/ST

128KB L1 Data Cache / Shared Memory

Tex

LO i-Cache + Warp Schedul

LD/ST

| RTCORE |

Register File (16,384 x 32-bit)

LD/ST

tch (32 t

TENSOR

CORE
3rd Gen

SFU

NVIDIA AD102 SM

Multiprocessor: SM (CC 8.9)
» 128 (64+64) FP32 + 64 INT32 cores
« 2 (1) FP64 cores (not in diagram)
* 4x 4th gen tensor cores

« 1x 3@ gen RT (ray tracing) core

* ++ thread block clusters, FP8, ... (?)

4 partitions inside SM

» 32 (16+16) FP32 + 16 INT32 cores
* 4x LD/ST units; 4 SFUs each
« 1x 4t gen tensor core each

« Each has: warp scheduler,
dispatch unit, 16K register file

Markus Hadwiger, KAUST

SM

LD i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 o

/ FP32 GENERATION
INT32 TENSOR CORE

LD/IST Lo/sT LDiST LDIST SFU

L0 i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 AT

/ FP32 GENERATION
INT32 TENSOR CORE

LD/ST LDIST LD/ST LD/ST SFU

L0 i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 L

/ FP32 GENERATION
INT32 TENSOR CORE

LD/IST LD/ST LDiST LD/ST SFU

L0 i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 oAl

/ FP32 GENERATION
INT32 TENSOR CORE

LD/ST LDIST LD/ST LD/ST SFU

128 KB L1 Data Cache / Shared Memory

Tex

Tex

RT CORE
3rd Generation

Compute Capab. 8.x (Ampere/Ada, Part 1)

K.7.1. Architecture

An SM has:

» aread-only constant cache that is shared by all functional units and speeds up reads from
the constant memory space, which resides in device memory,

» aunified data cache and shared memory with a total size of 192 KB for devices of compute
capability 8.0 and 8.7 (1.5x Volta's 128 KB capacity) and 128 KB for devices of compute

capabilities 8.6 and 8.9.

Shared memory is partitioned out of the unified data cache, and can be configured to various
sizes (see Shared Memory section]). The remaining data cache serves as an L1 cache and is
also used by the texture unit that implements the various addressing and data filtering modes
mentioned in Texture and Surface Memory.

Markus Hadwiger, KAUST 46

Compute Capab. 8.x (Ampere/Ada, Part 2)

K.7.2. Global Memory

Global memory behaves the same way as for devices of compute capability 5.x (See Global
Memory].

K.7.3. Shared Memory

Similar to the Volta architecture, the amount of the unified data cache reserved for shared
memory is configurable on a per kernel basis. For the NVIDIA Ampere GPU architecture, the
unified data cache has a size of 192 KB for devices of compute capability 8.0 and 128 KB for
devices of compute capability 8.6 and 8.9. The shared memory capacity can be set to 0, 8, 16,
32, 64, 100, 132 or 164 KB for devices of compute capability 8.0, and to 0, 8, 16, 32, 64 or 100
KB for devices of compute capabilities 8.6 and 8.9.

An application can set the carveout, I.e., the preferred shared memory capacity, with the
cudaFuncSetAttribute ().

cudaFuncSetAttribute (kernel name, cudaFuncAttributePreferredSharedMemoryCarveout,
carveout) ;

Markus Hadwiger, KAUST 47

Compute Capab. 8.x (Ampere/Ada, Part 3)

The APl can specify the carveout either as an integer percentage of the maximum
supported shared memory capacity of 164 KB for devices of compute capability 8.0 and

100 KB for devices of compute capabilities 8.6 and 8.9 respectively, or as one of the
following values: {cudaSharedmemCarveoutDefault, cudaSharedmemCarveoutMaxLl, Or
cudaSharedmemCarveoutMaxShared. When using a percentage, the carveout is rounded
up to the nearest supported shared memory capacity. For example, for devices of compute
capability 8.0, 50% will map to a 100 KB carveout instead of an 82 KB one. Setting the
cudaFuncAttributePreferredSharedMemoryCarveout Is considered a hint by the driver:
the driver may choose a different configuration, if needed.

Devices of compute capability 8.0 allow a single thread block to address up to 163 KB

of shared memory, while devices of compute capabilities 8.6 and 8.9 allow up to 99

KB of shared memory. Kernels relying on shared memory allocations over 48 KB per

block are architecture-specific, and must use dynamic shared memory rather than
statically sized shared memory arrays. These kernels require an explicit opt-in by using
cudaFuncSetAttribute () to set the cudaFuncAttributeMaxDynamicSharedMemorySize;
see Shared Memory for the Volta architecture.

Note that the maximum amount of shared memory per thread block is smaller than the
maximum shared memory partition available per SM. The 1 KB of shared memory not made
available to a thread block is reserved for system use.

Markus Hadwiger, KAUST 48

i L1 Instruction Cache
[LO Instruction Cache] || | L0 Instruction Cache
Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
N Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)
Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP84
MU|t| rocessor: SM CC 9 O INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
p . . INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 TENSOR CORE INT32 FP32 FP32 FP64 TENSOR CORE
° 128 FP32 + 64 |NT32 cores INT32 FP32 FP32 FPs4 4™ GENERATION INT3Z FP32 FP32 EPG4 4™ GENERATION
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 |FP32 |FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
d 64 FP64 cores INT32 FP32 FP32 FP84 INT32 FP32 FP32 FP84
INT32 FP32 FP32 FP&4 INT32 FP32 FP32 EP64
th INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
* 4x 4" gen tensor cores
LD/ LD/ LD/ LD/ LD/ LD/ LDJ LD/ SFU LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU

ST ST ST ST ST ST ST ST ST ST ST ST 8T ST ST sT

» ++ thread block clusters, DPX insts., FP8, TMA

| I RERTCRR 1 | et B, |
1+ : H Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
4 pa rtltl O n S I n Sld e S M Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

32 F P32 + 1 6 I NT32 COFGS Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
16 FP64 Cores INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
. . INT32 FP32 FP32 FP64 INT32 FP32 FP32 FPB4
8X LD/ST UnItS, 4 SFUS eaCh INT32 FP32 FP32 FP84 INT32 FP32 FP32 FP84
INT32 FP32 FP32 FP64 TENSOR CORE INT32 FP32 FP32 FP64 TENSOR CORE
h INT32 FP32 FP32 FP64 4™ GENERATION INT32 FP32 FP32 FP64 4" GENERATION
1 INT32 FP32 FP32 FP84 INT32 FP32 FP32 FP84
x 4 gen tensor core each
INT32 FP32 FP32 FP&4 INT32 FP32 FP32 FP64
INT32 FP32 FPa2 FP64 INT32 FP32 FP32 FP64
Each has: warp SCthUler, INT32 FP32 FP32 FPs4 INT32 FP32 FP32 FPsa
. . . i INT32 FP32 FP32 FP84 INT32 FP32 FP32 FP64
dispatch unit, 16K register file N [Feo
LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU

ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST

Tensor Memory Accelerator
256 KB L1 Data Cache / Shared Memory
Markus Hadwiger, KAUST Tex Tex Tex Tex

Compute Capab. 9.x (Hopper, Part 1)

K.8.1. Architecture

An SM has:

» aread-only constant cache that is shared by all functional units and speeds up reads from
the constant memory space, which resides in device memory,

» aunified data cache and shared memory with a total size of 256 KB for devices of compute
capability 9.0 (1.33x NVIDIA Ampere GPU Architecture's 192 KB capacity).

Shared memory is partitioned out of the unified data cache, and can be configured to various
sizes [see Shared Memory section]. The remaining data cache serves as an L1 cache and is
also used by the texture unit that implements the various addressing and data filtering modes

mentioned in Texture and Surface Memory.

K.8.2. Global Memory

Global memory behaves the same way as for devices of compute capability 5.x (See Global
Memory].

Markus Hadwiger, KAUST 50

Compute Capab. 9.x (Hopper, Part 2)

K.8.3. Shared Memory

Similar to the NVIDIA Ampere GPU architecture, the amount of the unified data cache reserved
for shared memory is configurable on a per kernel basis. For the NVIDIA H100 Tensor Core GPU
architecture, the unified data cache has a size of 236 KB for devices of compute capability 9.0.
The shared memory capacity can be set to 0, 8, 16, 32, 64, 100, 132, 164, 196 or 228 KB.

As with the NVIDIA Ampere GPU architecture, an application can configure its preferred
shared memory capacity, i.e., the carveout. Devices of compute capability 9.0 allow

a single thread block to address up to 227 KB of shared memory. Kernels relying

on shared memory allocations over 48 KB per block are architecture-specific, and

must use dynamic shared memory rather than statically sized shared memory arrays.
These kernels require an explicit opt-in by using cudaFuncSetAttribute () to set the
cudaFuncAttributeMaxDynamicSharedMemorySize; see Shared Memory for the Volta
architecture.

Note that the maximum amount of shared memory per thread block is smaller than the
maximum shared memory partition available per SM. The 1 KB of shared memory not made
available to a thread block is reserved for system use.

Markus Hadwiger, KAUST 51

CUDA Memory:

Shared Memory

Memory and Cache Types

Global memory
 [Device] L2 cache
 [SM] L1 cache (shared mem carved out; or L1 shared with tex cache)

« [SM/TPC] Texture cache (separate, or shared with L1 cache)

« [SM] Read-only data cache (storage might be same as tex cache)

Shared memory

« [SM] Shareable only between threads in same thread block
(Hopper/CC 9.x: also thread block clusters)

Constant memory: Constant (uniform) cache

Unified memory programming: Device/host memory sharing

Markus Hadwiger, KAUST 53

L1 Cache vs. Shared Memory

Different configs on Fermi and Kepler; carveout on Maxwell and newer
* More shared memory on newer GPUs (64KB, 96KB, 100KB, 164KB, ...)
Carveout from unified L1/read-only data cache

(See CUDA C Programming Guide!)

// Device code
L iglebal = woid MyKerneli(...)

{
shared float buffer[BLOCK DIM];

}

// Host code

int carveout = 50; // prefer shared memory capacity 50% of maximum

// Named Carveout Values:

// carveout = cudaSharedmemCarveoutDefault; (1)

// carveout = cudaSharedmemCarveoutMaxLl; If (0)

// carveout = cudaSharedmemCarveoutMaxShared; // (100)

cudaFuncSetAttribute (MyKernel, cudaFuncAttributePreferredSharedMemoryCarveout,

carveout) ;
MyKernel <<<gridDim, BLOCK DIM>>>(...);

54

i L1 Instruction Cache
[LO Instruction Cache] || | L0 Instruction Cache
Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
N Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)
Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP84
MU|t| rocessor: SM CC 9 O INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
p . . INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 TENSOR CORE INT32 FP32 FP32 FP64 TENSOR CORE
° 128 FP32 + 64 |NT32 cores INT32 FP32 FP32 FPs4 4™ GENERATION INT3Z FP32 FP32 EPG4 4™ GENERATION
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 |FP32 |FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
d 64 FP64 cores INT32 FP32 FP32 FP84 INT32 FP32 FP32 FP84
INT32 FP32 FP32 FP&4 INT32 FP32 FP32 EP64
th INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
* 4x 4" gen tensor cores
LD/ LD/ LD/ LD/ LD/ LD/ LDJ LD/ SFU LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU

ST ST ST ST ST ST ST ST ST ST ST ST 8T ST ST sT

» ++ thread block clusters, DPX insts., FP8, TMA

| I RERTCRR 1 | et B, |
1+ : H Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
4 pa rtltl O n S I n Sld e S M Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

32 F P32 + 1 6 I NT32 COFGS Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
16 FP64 Cores INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
. . INT32 FP32 FP32 FP64 INT32 FP32 FP32 FPB4
8X LD/ST UnItS, 4 SFUS eaCh INT32 FP32 FP32 FP84 INT32 FP32 FP32 FP84
INT32 FP32 FP32 FP64 TENSOR CORE INT32 FP32 FP32 FP64 TENSOR CORE
h INT32 FP32 FP32 FP64 4™ GENERATION INT32 FP32 FP32 FP64 4" GENERATION
1 INT32 FP32 FP32 FP84 INT32 FP32 FP32 FP84
x 4 gen tensor core each
INT32 FP32 FP32 FP&4 INT32 FP32 FP32 FP64
INT32 FP32 FPa2 FP64 INT32 FP32 FP32 FP64
Each has: warp SCthUler, INT32 FP32 FP32 FPs4 INT32 FP32 FP32 FPsa
. . . i INT32 FP32 FP32 FP84 INT32 FP32 FP32 FP64
dispatch unit, 16K register file N [Feo
LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU

ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST

Tensor Memory Accelerator
256 KB L1 Data Cache / Shared Memory
Markus Hadwiger, KAUST Tex Tex Tex Tex

Compute Capab. 9.x (Hopper, Part 2)

K.8.3. Shared Memory

Similar to the NVIDIA Ampere GPU architecture, the amount of the unified data cache reserved
for shared memory is configurable on a per kernel basis. For the NVIDIA H100 Tensor Core GPU
architecture, the unified data cache has a size of 236 KB for devices of compute capability 9.0.
The shared memory capacity can be set to 0, 8, 16, 32, 64, 100, 132, 164, 196 or 228 KB.

As with the NVIDIA Ampere GPU architecture, an application can configure its preferred
shared memory capacity, i.e., the carveout. Devices of compute capability 9.0 allow

a single thread block to address up to 227 KB of shared memory. Kernels relying

on shared memory allocations over 48 KB per block are architecture-specific, and

must use dynamic shared memory rather than statically sized shared memory arrays.
These kernels require an explicit opt-in by using cudaFuncSetAttribute () to set the
cudaFuncAttributeMaxDynamicSharedMemorySize; see Shared Memory for the Volta
architecture.

Note that the maximum amount of shared memory per thread block is smaller than the
maximum shared memory partition available per SM. The 1 KB of shared memory not made
available to a thread block is reserved for system use.

Markus Hadwiger, KAUST 56

Shared Memory Allocation

e 2 modes

« Static size within kernel
shared float vec[256];

 Dynamic size when calling the kernel

7 7 -
/] - m=a T n
/ (f [.i\ 1 ém“’zi% el ﬂ

int VecSize MAX THREADS * sizeof (floatd);
vecMat<<< blockGrid, threadBlock, VecSize >>>(pl, p2, ..);

;7 = - i R E
/] ~ - . . ~r = g d=T = | Ppp———— |
/7 cac | ATe = =Y Y1) W1 1)] Karne
=2C13 E\m%'r‘ cj&.fi‘«s exXT e=Lll WL %,.,il@lﬁz i%@fﬁ}i\mia%ﬁﬁﬂ:‘h

I/ Udcscla AL

extern shared float wvec]|];

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

Shared Memory

Accessible by all threads in a block JEEESEEE AL | Registers |

EEl =]

Fast compared to global memory

Low access latency
High bandwidth

Common uses:
Software managed cache
Data layout conversion

Shared Memory/L1 Sizing

Shared memory and L1 use the same 64KB

Program-configurable split:
Fermi: 48:16, 16:48
Kepler: 48:16, 16:48, 32:32

. AaNavicaQatCarch i i
CUDA API: sudaDovigseSstCacheConfigh, cudaFuncSetCagheContfigh

Large L1 can improve performance when:
Spilling registers (more lines in the cache -> fewer evictions)

Large SMEM can improve performance when:
Occupancy is limited by SMEM

Shared Memory

Uses:
Inter-thread communication within a block
Cache data to reduce redundant global memory accesses
Use it to improve global memory access patterns

Organization:
32 banks, 4-byte (or 8-byte) banks
Successive words accessed through different banks

Memory Banks

o=

Fermi/Kepler/Maxwell

and newer:

32 banks

4B / bank
Kepler or newer:

configurable

to 8B / bank

Shared Memory

Uses:
Inter-thread communication within a block
Cache data to reduce redundant global memory accesses
Use it to improve global memory access patterns

Performance:
smem accesses are issued per warp
Throughput is 4 (or 8) bytes per bank per clock per multiprocessor

serialization: if N threads of 32 access different words in the same bank,
N accesses are executed serially

multicast: N threads access the same word in one fetch

* Could be different bytes within the same word

Shared Memory Organization

Organized in 32 independent banks

Optimal access: no two words from
same bank

Separate banks per thread
Banks can multicast

Multiple words from same bank serialize

