
CS 380 - GPU and GPGPU Programming
Lecture 7: GPU Architecture, Pt. 5

Markus Hadwiger, KAUST

2

Reading Assignment #4 (until Sep 26)

Read (required):

• Get an overview of NVIDIA Ampere (GA102) white paper:
https://www.nvidia.com/content/PDF/

nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf

• Get an overview of NVIDIA Ampere (A100) Tensor Core GPU white paper:
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/

nvidia-ampere-architecture-whitepaper.pdf

• Get an overview of NVIDIA Hopper (H100) Tensor Core GPU white paper:
https://resources.nvidia.com/en-us-tensor-core

Read (optional):

• Look at the “Tuning Guides“ for different architectures in the CUDA SDK

• PTX Instruction Set Architecture (8.5): https://docs.nvidia.com/cuda/parallel-thread-execution/
Read Chapters 1 – 3; get an overview of Chapter 9;
browse through the other chapters to get a feeling for what PTX looks like

• CUDA SASS ISA (12.6), Chap. 6: https://docs.nvidia.com/cuda/pdf/CUDA_Binary_Utilities.pdf

3

Next Lectures

Lecture 8: Tue, Sep 17 (make-up lecture; 14:30 – 15:45)

Lecture 9: Thu, Sep 19

no lecture on Sep 23 !

Lecture 10: Thu, Sep 26 (Quiz #1)

4

Quiz #1: Sep 26

Organization

• First 30 min of lecture

• No material (book, notes, ...) allowed

Content of questions

• Lectures (both actual lectures and slides)

• Reading assignments

• Programming assignments (algorithms, methods)

• Solve short practical examples

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Idea #1: Slim down

ALU
(Execute)

Fetch/
Decode

Execution
Context

Idea #1:

Remove components that
help a single instruction
stream run fast (i.e., that
reduce latency of a single
instruction stream)

5

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Idea #2: Add ALUs (sharing inst. stream)

Idea #2:

Amortize cost/complexity of
managing an instruction
stream across many ALUs

SIMD processing

(or SIMT, SPMD)

6

Fetch/
Decode

Ctx Ctx Ctx Ctx

Ctx Ctx Ctx Ctx

Shared Ctx Data

ALU 1 ALU 2 ALU 3 ALU 4

ALU 5 ALU 6 ALU 7 ALU 8

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Idea #3: Store multiple group contexts

Idea #3:

Interleave execution of
groups of threads

(the number of groups is not fixed,
but depends on the context storage
requirements of a given kernel!)

7

Fetch/
Decode

ALU ALU ALU ALU

ALU ALU ALU ALU

1 2

3 4

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Idea #3: Store multiple group contexts

Idea #3:

Interleave execution of
groups of threads

(the number of groups is not fixed,
but depends on the context storage
requirements of a given kernel!)

8

Fetch/
Decode

ALU ALU ALU ALU

ALU ALU ALU ALU

Fixed pool of
context storage

e.g., 64 KB

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Complete GPU

16 cores

8 mul-add [mad] ALUs per core
(8*16 = 128 total)

16 simultaneous
instruction streams

64 (4*16) concurrent (but
interleaved) instruction streams

512 (8*4*16) concurrent
fragments (resident threads)

= 256 GFLOPs (@ 1GHz)
(128 * 2 [mad] * 1G)

9

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

“Enthusiast” GPU (Some time ago :)

32 cores, 16 ALUs per core (512 total) = 1 TFLOP (@ 1 GHz)
10

NVIDIA Tesla Architecture (not the Tesla product line!),
G80: 2007, GT200: 2008/2009

• G80/G92: 8 TPCs * (2 * 8 SPs) = 128 SPs [= CUDA cores]

• GT200: 10 TPCs * (3 * 8 SPs) = 240 SPs [= CUDA cores]

• Arithmetic intensity has increased (num. of ALUs vs. texture units)

G80 / G92 GT200
Courtesy AnandTech

NVIDIA Ampere GA100 Architecture (2020)

GA 100 (A100 Tensor Core GPU) Full GPU: 128 SMs (in 8 GPCs/64 TPCs)

NVIDIA Hopper GH100 Architecture (2022)

GH 100 (H100 Tensor Core GPU) Full GPU: 144 SMs (in 8 GPCs/72 TPCs)

NVIDIA Ada Lovelace AD10x Architecture (2022)

Full AD 10x Full GPU: 144 SMs (in 12 GPCs/72 TPCs)

GPU Architecture:
Real Architectures
GPU Architecture:
Real Architectures

NVIDIA Architectures (since first CUDA GPU)

Tesla [CC 1.x]: 2007-2009

• G80, G9x: 2007 (Geforce 8800, ...)
GT200: 2008/2009 (GTX 280, ...)

Fermi [CC 2.x]: 2010 (2011, 2012, 2013, …)

• GF100, ... (GTX 480, ...)
GF104, ... (GTX 460, ...)
GF110, ... (GTX 580, ...)

Kepler [CC 3.x]: 2012 (2013, 2014, 2016, …)

• GK104, ... (GTX 680, ...)
GK110, ... (GTX 780, GTX Titan, ...)

Maxwell [CC 5.x]: 2015

• GM107, ... (GTX 750Ti, ...)
GM204, ... (GTX 980, Titan X, ...)

Pascal [CC 6.x]: 2016 (2017, 2018, 2021, 2022, …)

• GP100 (Tesla P100, ...)

• GP10x: x=2,4,6,7,8, ...
(GTX 1060, 1070, 1080, Titan X Pascal, Titan Xp, ...)

Markus Hadwiger, KAUST 16

Volta [CC 7.0, 7.2]: 2017/2018

• GV100, ...
(Tesla V100, Titan V, Quadro GV100, ...)

Turing [CC 7.5]: 2018/2019

• TU102, TU104, TU106, TU116, TU117, ...
(Titan RTX, RTX 2070, 2080 (Ti), GTX 1650, 1660, ...)

Ampere [CC 8.0, 8.6, 8.7]: 2020

• GA100, GA102, GA104, GA106, ...
(A100, RTX 3070, 3080, 3090 (Ti), RTX A6000, ...)

Hopper [CC 9.0], Ada Lovelace [CC 8.9]: 2022/23

• GH100, AD102, AD103, AD104, ...
(H100, L40, RTX 4080 (12/16 GB), 4090, RTX 6000, ...)

Blackwell [CC 10.0]: coming in 2024/25

• GB200/GB202, GB20x, ...?
(RTX 5080/5090, GB200 NVL72, HGX B100/200, ...?)

see https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
and https://en.wikipedia.org/wiki/CUDA

Instruction Pipelining

Most basic way to exploit instruction-level parallelism (ILP)

Problem: hazards (different solutions: bubbles, …)

Markus Hadwiger, KAUST 17

wikipedia
https://en.wikipedia.org/wiki/Instruction_pipelining
https://en.wikipedia.org/wiki/Classic_RISC_pipeline

Concepts: SM Occupancy in CUDA (TLP!)

We need to hide latencies from

• Instruction pipelining hazards (RAW – read after write, etc.)
(also: branches; behind branch, fetch instructions from different instruction stream)

• Memory access latency

First type of latency: Definitely need to hide! (it is always there)

Second type of latency: only need to hide if it does occur (of course not unusual)

Occupancy: How close are we to maximum latency hiding ability?
(how many threads are resident vs. how many could be)

See run time occupancy API, or Nsight Compute: https://docs.nvidia.com/
nsight-compute/NsightCompute/index.html#occupancy-calculator

Markus Hadwiger, KAUST 18

Concepts: Latency Hiding (Latency Tolerance)

Main goal: Avoid that instruction throughput goes below peak

ILP: Hide instruction pipeline latency of one instruction by
pipelined execution of independent instruction from same thread

TLP: Hide any latency occurring for one thread (group/warp/wavefront)
by executing a different thread (group/warp/wavefront)
as soon as current thread (group/warp/wavefront) stalls:

→ Total throughput does not go down

Markus Hadwiger, KAUST 19

(*depending on actual microarchitecture)

– TLP: pull independent, not-stalling instruction from other thread group

– ILP: pull independent instruction from same thread group (instruction stream)

– Depending on GPU: TLP often sufficient, but sometimes also need ILP

– However: If in one cycle TLP doesn’t work, ILP can jump in or vice versa*

GPUs

ILP vs. TLP on GPUs

Main observations

• Each time unit (usually one clock cycle), a new instruction without
dependencies should be dispatched to functional units (ALUs, SFUs, …)

• Instruction is a group of threads that is executing the same instruction:
CUDA warp (32 threads), wavefront (32 or 64 threads), …

• Where can this instruction come from?
• TLP: from another runnable warp (i.e., different instruction stream)

• ILP: from the same warp (i.e., the same instruction stream)

How many instructions/warps per time unit (clock cycle)?

• “Scalar” pipeline (CPI=1.0): TLP sufficient (if enough warps); can exploit ILP
(next instruction either from different warp, or from same warp)

• “Superscalar” (CPI<1.0) pipeline: dispatch more than one instruction per
cycle, (#dispatchers > #warp schedulers): need ILP!

Markus Hadwiger, KAUST 20
(CPI = clocks per instruction)

21

Example: “Scalar” GF100

Main concept here:

There is one instruction dispatcher
(dispatch unit / fetch/decode unit)

per warp scheduler
(warp selector)

Details later...
Ignore less important subtleties...
GF100 has two warp schedulers, not one,
and each 32-thread instruction is executed
over two clock cycles, not one, etc.

Caveat on NVIDIA diagrams: if two dispatchers per warp scheduler
are shown, it still doesn‘t mean that the ALU pipeline is “superscalar”
(often, the second dispatcher dispatches to a non-ALU pipeline)
... need to look at CUDA programming guide info, also given

in our tables in row “# ALU dispatch / warp sched.”

KAUST King Abdullah University of Science and Technology 22

Example: “Superscalar” ALUs in SM Architecture

Instruction throughput numbers in CUDA C Programming Guide (Chapter 8.4)

Instruction Throughput

Instruction throughput numbers in CUDA C Programming Guide (Chapter 8.4)

Instruction Throughput

Markus Hadwiger, KAUST

list continues…

see NVIDIA CUDA C Programming Guides (different versions)
performance guidelines/multiprocessor level; compute capabilities

ALU Instruction Latencies and Instructs. / SM

Markus Hadwiger, KAUST 25

8.9/9.0
(Ada/Hopper)

8.0/8.6
(Ampere)

7.x
(Volta, Turing)

6.1/6.2
(Pascal)

6.0
(Pascal)

5.x
(Maxwell)

3.x
(Kepler)

2.1
(Fermi)

2.0
(Fermi)

CC

444424422
warp sched.

/ SM

11111122 (over
2 clocks)

1 (over
2 clocks)

ALU
dispatch

/ warp sched.

4L4L4L4L2L4L8L2LL
SM busy with
warps + inst

444669112222
inst. pipe

latency (L)

161616241236
44

+ ILP
22

+ ILP
22

SM busy with
warps

see NVIDIA CUDA C Programming Guides (different versions)
performance guidelines/multiprocessor level; compute capabilities

ALU Instruction Latencies and Instructs. / SM

Markus Hadwiger, KAUST 26

8.9/9.0
(Ada/Hopper)

8.0/8.6
(Ampere)

7.x
(Volta, Turing)

6.1/6.2
(Pascal)

6.0
(Pascal)

5.x
(Maxwell)

3.x
(Kepler)

2.1
(Fermi)

2.0
(Fermi)

CC

444424422
warp sched.

/ SM

11111122 (over
2 clocks)

1 (over
2 clocks)

ALU
dispatch

/ warp sched.

4L4L4L4L2L4L8L2LL
SM busy with
warps + inst

444669112222
inst. pipe

latency (L)

161616241236
44

+ ILP
22

+ ILP
22

SM busy with
warps

IF no other stalls occur!
(i.e., except inst. pipe hazards)

see NVIDIA CUDA C Programming Guides (different versions)
performance guidelines/multiprocessor level; compute capabilities

ALU Instruction Latencies and Instructs. / SM

Markus Hadwiger, KAUST 27

8.9/9.0
(Ada/Hopper)

8.0/8.6
(Ampere)

7.x
(Volta, Turing)

6.1/6.2
(Pascal)

6.0
(Pascal)

5.x
(Maxwell)

3.x
(Kepler)

2.1
(Fermi)

2.0
(Fermi)

CC

444424422
warp sched.

/ SM

11111122 (over
2 clocks)

1 (over
2 clocks)

ALU
dispatch

/ warp sched.

4L4L4L4L2L4L8L2LL
SM busy with
warps + inst

444669112222
inst. pipe

latency (L)

161616241236
44

+ ILP
22

+ ILP
22

SM busy with
warps

IF no other stalls occur!
(i.e., except inst. pipe hazards)

“superscalar”

see NVIDIA CUDA C Programming Guides (different versions)
performance guidelines/multiprocessor level; compute capabilities

ALU Instruction Latencies and Instructs. / SM

Markus Hadwiger, KAUST 28

8.9/9.0
(Ada/Hopper)

8.0/8.6
(Ampere)

7.x
(Volta, Turing)

6.1/6.2
(Pascal)

6.0
(Pascal)

5.x
(Maxwell)

3.x
(Kepler)

2.1
(Fermi)

2.0
(Fermi)

CC

444424422
warp sched.

/ SM

11111122 (over
2 clocks)

1 (over
2 clocks)

ALU
dispatch

/ warp sched.

4L4L4L4L2L4L8L2LL
SM busy with
warps + inst

444669112222
inst. pipe

latency (L)

161616241236
44

+ ILP
22

+ ILP
22

SM busy with
warps

IF no other stalls occur!
(i.e., except inst. pipe hazards)

“superscalar”

Thank you.

