
CS 380 - GPU and GPGPU Programming
Lecture 1: Introduction

Markus Hadwiger, KAUST
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Lecture Overview

Goals

• Learn GPU architecture and programming; both for graphics and for compute (GPGPU)

• Shading languages (GLSL, HLSL, MSL, Cg), compute APIs (CUDA, OpenCL, DirectCompute)

Time and location

• Monday + Thursday, 10:00 – 11:30, Room 3120, Bldg. 9

Webpage: https://vccvisualization.org/CS380_GPU_and_GPGPU_Programming/

Contact:

• Markus Hadwiger: markus.hadwiger@kaust.edu.sa

• Peter Rautek (main contact assignments): peter.rautek@kaust.edu.sa

• Julio Rey Ramirez (programming questions): julio.reyramirez@kaust.edu.sa

• Reem Alghamdi (programming questions): reem.alghamdi@kaust.edu.sa

Prerequisites:

C/C++ programming (!), basic computer graphics, basic linear algebra
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Lecture Structure

Lectures

• Part 1: GPU Basics and Architecture (both: graphics, compute)

• Part 2: GPUs for Compute

• Part 3: GPUs for Graphics

Some lectures might be on research papers (both seminal and current)

Assignments

• 5 programming assignments

• Weekly reading assignments (required; also some optional)

Quizzes

• 4 quizzes, throughout the semester, 30 min each; announced at least a week in advance

• From lectures and (required) reading assignments

Semester project + final presentations, but no mid-term/final exam!

Grading: 40% programming assignments; 30% semester project; 30% quizzes
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Resources (1)

Textbooks

• GPUs for Graphics: OpenGL 4 Shading Language Cookbook, 2nd or 3rd ed.

• GPU Computing / GPGPU: Programming Massively Parallel Processors, 4th ed.

4th ed.3rd ed.
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3rd ed.2nd ed.
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Resources (2)

https://vccvisualization.org/CS380_GPU_and_GPGPU_Programming/

• OpenGL (4.6): www.opengl.org

www.khronos.org/files/opengl46-quick-reference-card.pdf

• CUDA (12.6): developer.nvidia.com/cuda-toolkit/

• Vulkan (1.3): www.vulkan.org

• OpenCL (3.0): www.khronos.org/opencl/

Very nice resources for examples:

• GPU Gems books 1-3 (available online)

• GPU Computing Gems, Vol. 1 + 2 (Emerald/Jade edition)

• Ray Tracing Gems (2019) and Ray Tracing Gems II (2021)
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Resources (3)

Learn OpenGL

Nice recent introduction to OpenGL

Webpage:

https://learnopengl.com/

Free book as pdf:

https://learnopengl.com/book/book_pdf.pdf
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Resources (4)

OpenGL Programming Guide (red book)

http://www.opengl-redbook.com/

Computer graphics and OpenGL

Current edition: 9th

OpenGL 4.5 (with SPIR-V)
contains extended chapters on GLSL

Available in the KAUST library
also electronically
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Resources (5)

OpenGL Shading Language (orange book)

Current edition: 3rd

OpenGL 3.1, GLSL 1.4
no geometry shaders

(outdated in several aspects,
but the basics are still very nice!)

Available in the KAUST library
also electronically
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Resources (6)

CUDA by Example: An Introduction to General-Purpose GPU 
Programming, Jason Sanders, Edward Kandrot

See reference section
of KAUST library
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Resources (7)

YouTube lecture series on Vulkan:
https://youtu.be/tLwbj9qys18
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Syllabus (1)

GPU Basics and Architecture
(~September, early October)

• Introduction

• GPU architecture

• How compute/shader cores work

• GPU shading and GPU compute APIs

– General concepts and overview

– Learn syntax details on your own !

– CUDA book

– GLSL book

– Vulkan tutorial

– online resources, ...



NVIDIA Architectures (since first CUDA GPU)

Tesla [CC 1.x]: 2007-2009

• G80, G9x: 2007 (Geforce 8800, ...)
GT200: 2008/2009 (GTX 280, ...)

Fermi [CC 2.x]: 2010 (2011, 2012, 2013, …)

• GF100, ... (GTX 480, ...)
GF104, ... (GTX 460, ...)
GF110, ... (GTX 580, ...)

Kepler [CC 3.x]: 2012 (2013, 2014, 2016, …)

• GK104, ... (GTX 680, ...)
GK110, ... (GTX 780, GTX Titan, ...)

Maxwell [CC 5.x]: 2015

• GM107, ... (GTX 750Ti, ...)
GM204, ... (GTX 980, Titan X, ...)

Pascal [CC 6.x]: 2016 (2017, 2018, 2021, 2022, …)

• GP100 (Tesla P100, ...)

• GP10x: x=2,4,6,7,8, ...
(GTX 1060, 1070, 1080, Titan X Pascal, Titan Xp, ...)

Markus Hadwiger, KAUST 13

Volta [CC 7.0, 7.2]: 2017/2018

• GV100, ...
(Tesla V100, Titan V, Quadro GV100, ...)

Turing [CC 7.5]: 2018/2019

• TU102, TU104, TU106, TU116, TU117, ...
(Titan RTX, RTX 2070, 2080 (Ti), GTX 1650, 1660, ...)

Ampere [CC 8.0, 8.6, 8.7]: 2020

• GA100, GA102, GA104, GA106, ...
(A100, RTX 3070, 3080, 3090 (Ti), RTX A6000, ...)

Hopper [CC 9.0], Ada Lovelace [CC 8.9]: 2022/23

• GH100, AD102, AD103, AD104, ...
(H100, L40, RTX 4080 (12/16 GB), 4090, RTX 6000, ...)

Blackwell [CC 10.0]: coming in 2024/25

• GB200/GB202, GB20x, ...?
(RTX 5080/5090, GB200 NVL72, HGX B100/200, ...?)

see https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
and https://en.wikipedia.org/wiki/CUDA
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Syllabus (2)

More GPU Computing (~October)

• GPGPU, important parallel programming concepts 

• CUDA memory access

• Reduction, scan

• Linear algebra on GPUs

• Deep learning on GPUs

• Combining graphics and compute

– Display the results of computations

– Interactive systems (fluid flow, ...)
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Syllabus (3)

GPU Graphics (~November)

• GPU (virtual) texturing, filtering

• GPU (texture) memory management

• Modern game engine technologies

Semester project presentations
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Example: Fluid Simulation and Rendering

• Compute advection of fluid

– (Incompressible) Navier-Stokes solvers

– Lattice Boltzmann Method (LBM)

• Discretized domain; stored in 2D/3D textures
– Velocity, pressure

– Dye, smoke density,
vorticity, …

• Updates in multi-passes

• Render current frame

Courtesy Mark Harris
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Example: Volumetric Special Effects

• NVIDIA Demos
– Smoke, water

– Collision detection with
voxelized solid (Gargoyle)

• Ray-casting
– Smoke: direct volume rendering

– Water: level set / isosurface

Courtesy Keenan Crane
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Example: Ray Tracing

Ray tracing in hardware (ray tracing cores: ray/triangle isect, BVH)

• Microsoft DXR (DX12 Ultimate API), Vulkan, NVIDIA OptiX

• NVIDIA Turing: “World‘s First Ray Tracing GPU“ Quadro RTX, Geforce RTX

• AMD RDNA 2 (also in PS5, Xbox Series X), upcoming Intel Arc (Alchemist, 2022)

Epic Games Unreal Engine 4 with MS DXR
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Example: Particle Simulation and Rendering

• NVIDIA Particle Demo
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Example: Level-Set Computations

• Implicit surface represented by distance field

• The level-set PDE is solved to update the distance field

• Basic framework with a variety of applications
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Example: Diffusion Filtering

De-noising

• Original

• Linear isotropic

• Non-linear isotropic

• Non-linear anisotropic
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Example: Linear Algebra Operators

Vector and matrix representation and operators

• Early approach based on graphics primitives 

• Now CUDA makes this much easier (+ lots of libraries)

• Linear systems solvers

Courtesy Krüger and Westermann
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Example: Machine Learning / Deep Learning

Perfect fit for massively parallel computation

• NVIDIA Volta Architecture: Tensor Cores (mixed-prec. 4x4 matrix mult plus add)

• NVIDIA Turing and Ampere architectures: Improved tensor cores, ...

Frameworks

• TensorFlow,
PyTorch,
Caffe, 
...
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Example: GPU Data Structures

Glift: Generic, Efficient, Random-Access GPU Data Structures

• “STL“ for GPUs

• Virtual memory management

Courtesy Lefohn et al.
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Programming Assignments: Basics

5 assignments

Framework based on C/C++ and several GPU APIs 
(CUDA, Vulkan, OpenGL, OpenCL)

Organization

1. Explanation in readme, and during lecture (and Q&A sessions if required)

2. Get framework online (github+git)

3. Submit solution and report online (github+git) by submission deadline

4. Personal presentation and assessment after submission
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Programming Assignments: People

Teaching Assistants:

• Peter Rautek (peter.rautek@kaust.edu.sa)  
programming assignments, assignment presentations

• Julio Rey Ramirez (julio.reyramirez@kaust.edu.sa)  
programming questions, general help

• Reem Alghamdi (reem.alghamdi@kaust.edu.sa)  
programming questions, general help



1. Google, Stackoverflow, ChatGPT, …

2. Ask your fellow students
Discussions and explanations are encouraged
(but: copying code is not allowed!)

3. Contact us:
Peter: peter.rautek@kaust.edu.sa
Julio: julio.reyramirez@kaust.edu.sa
Reem: reem.alghamdi@kaust.edu.sa

Need Help?



GPU programming comes in different flavors:

• Compute: CUDA, OpenCL, HIP; compute API parts of Vulkan, OpenGL, etc.

• Graphics: Vulkan, OpenGL, DirectX

In this course we will:

• Learn to use compute APIs like CUDA and OpenCL
and graphics APIs like Vulkan and OpenGL

• Wrap our heads around parallelism

• Learn the differences and commonalities of graphics and compute programming

Format: 

• 5 Pre-specified programming assignments

• 1 Capstone (semester) project that you can define yourself

Playing with the GPU



Programming Assignments: Where to Start

• Source code is hosted on github.com

• Go to the github repo (Peter will send you info)

• Get a git client http://git-scm.com/downloads and clone your own repo

• Follow the readme text-file

• Do your changes in the source code for assignment 1,
commit, and push (to your own repo)

• Contact Peter Rautek if you have problems or questions 
(peter.rautek@kaust.edu.sa)

Markus Hadwiger, KAUST 29



Graphics API Tutorial

One extra session (attendance optional, but highly recommended!)

To make it easier to get started with Vulkan/OpenGL

If you already have some questions / problems when you come to 
the tutorial, that’s even better!

Markus Hadwiger, KAUST 30



Programming Assignment 1

Set up your development environment

• Visual Studio (either 2019 or 2022)
(https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=Community&rel=16)

• CUDA 12.6 (https://developer.nvidia.com/cuda-downloads)

• git (https://git-scm.com/downloads)

• Fork the CS 380 repository 
(https://bitbucket.org/rautek/cs380-2024/src/main)

• Follow the readme and start coding

Query your graphics card for its capabilities (CUDA and OpenGL)



Programming Assignment 1 – Setup

• Programming

• Query hardware capabilities 
(Vulkan, OpenGL, and CUDA)

• Instructions in readme.txt file

• Submission (via github) 

• Program

• Short report (1-2 pages, pdf), 
including short explanation of program, 
problems and solutions, how to run it,
screenshots, etc.

• Personal assessment 

• Meeting with Peter

• Max. 15 minutes, present program + source code
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Programming Assignments: Grading

• Submission complete, code working for all the required features

• Documentation complete (report, but also source code comments!)

• Personal presentation

• Optional features, coding style, clean solution

• Every day of late submission reduces points by 10%

• No direct copies from the internet or friends!
You have to understand what you program:
your explanations during the presentations will be part of the grade!
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Programming Assignments: Schedule (tentative)

Assignment #1:

• Querying the GPU (Graphics and Compute APIs) due Sep 1

Assignment #2:

• GPU Compute - Data Parallel Processing due Sep 15

Assignment #3:

• GPU Compute - Porting Sequential to Parallel Code due Oct 6

Assignment #4:

• Graphics on the GPU - Rasterization Pipeline due Oct 27

Assignment #5:

• Graphics on the GPU - Task- and Mesh-Shaders due Nov 17
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Semester / Capstone Project

• Choosing your own topic encouraged!
(we will also suggest some topics)

• Pick something that you think is really cool!

• Can be completely graphics or completely computation, or both combined

• Can be built on CS 380 frameworks, NVIDIA OpenGL SDK, CUDA SDK, ...

• Write short (1-2 pages) project proposal by end of Sep (announced later)

• Talk to us before you start writing!
(content and complexity should fit the lecture)

• Submit semester project with report (deadline: Dec 8)

• Present semester project, event in final exams week: Dec 9 (tentative!)
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Reading Assignment #1 (until Sep 2)

Read (required):

• Programming Mass. Parallel Proc. book, 4th ed., Chapter 1 (Introduction) 

• Programming Mass. Parallel Proc. book, 2nd ed., Chapter 2 (History of GPU Computing)

• OpenGL Shading Language (orange) book, Chapter 1 (Review of OpenGL Basics)

Read (optional):

• OpenGL Shading Language 4.6 (current: Aug 14, 2023) specification: Chapter 2

https://www.khronos.org/registry/OpenGL/specs/gl/GLSLangSpec.4.60.pdf

• Download OpenGL 4.6 (current: May 5, 2022) specification

https://www.khronos.org/registry/OpenGL/specs/gl/glspec46.core.pdf



Thank you.


