

CS 380 - GPU and GPGPU Programming Lecture 27: GPU Prefix Sum (Pt. 2); Tensor Core Programming

Markus Hadwiger, KAUST

Reading Assignment #14 (until Dec 4)

Don't forget reading assignment #13! (reduction and prefix sum)

Read (required):

- Warp Shuffle Functions
 - CUDA Programming Guide 11.8, Appendix B.22
- CUDA Cooperative Groups
 - CUDA Programming Guide 11.8, Appendix C
 - https://developer.nvidia.com/blog/cooperative-groups/
- Programming Tensor Cores
 - CUDA Programming Guide 11.8, Appendix B.24 (Warp matrix functions)
 - https://developer.nvidia.com/blog/programming-tensor-cores-cuda-9/

Read (optional):

- Guy E. Blelloch: Prefix Sums and their Applications
 - https://www.cs.cmu.edu/~guyb/papers/Ble93.pdf/
- CUDA Warp-Level Primitives
 - https://developer.nvidia.com/blog/using-cuda-warp-level-primitives/
- Warp-aggregated atomics
 - https://developer.nvidia.com/blog/
 - cuda-pro-tip-optimized-filtering-warp-aggregated-atomics/

Next Lectures

Quiz #3 (only quiz, no lecture):

Wed, Dec 7 (regular time)

Semester project presentations: Mon, Dec 12 16:00

Quiz #3: Dec 7

Organization

- First 30 min of lecture (but this time, there'll only be the quiz)
- No material (book, notes, ...) allowed

Content of questions

- Lectures (both actual lectures and slides)
- Reading assignments
- Programming assignments (algorithms, methods)
- Solve short practical examples

Work Efficiency

Guy E. Blelloch and Bruce M. Maggs: Parallel Algorithms, 2004 (https://www.cs.cmu.edu/~guyb/papers/BM04.pdf)

In designing a parallel algorithm, it is more important to make it efficient than to make it asymptotically fast. The efficiency of an algorithm is determined by the total number of operations, or work that it performs. On a sequential machine, an algorithm's work is the same as its time. On a parallel machine, the work is simply the processor-time product. Hence, an algorithm that takes time t on a P-processor machine performs work W = Pt. In either case, the work roughly captures the actual cost to perform the computation, assuming that the cost of a parallel machine is proportional to the number of processors in the machine.

We call an algorithm work-efficient (or just efficient) if it performs the same amount of work, to within a constant factor, as the fastest known sequential algorithm.

For example, a parallel algorithm that sorts n keys in O(sqrt(n) log(n)) time using sqrt(n) processors is efficient since the work, O(n log(n)), is as good as any (comparison-based) sequential algorithm.

However, a sorting algorithm that runs in O(log(n)) time using n² processors is not efficient.

The first algorithm is better than the second - even though it is slower - because its work, or cost, is smaller. Of course, given two parallel algorithms that perform the same amount of work, the faster one is generally better.

GPU Reduction

• Parallel reduction is a basic parallel programming primitive; see reduction operation on a stream, e.g., in Brook for GPUs

Typical Parallel Programming Pattern

log(n) steps

Helpful fact for counting nodes of full binary trees: If there are N leaf nodes, there will be N-1 non-leaf nodes

Parallel08 – Control Flow

Vector Reduction

Parallel08 - Control Flow

A better implementation

Parallel08 – Control Flow

GPU Parallel Prefix Sum

• Basic parallel programming primitive; parallelize inherently sequential operations

Parallel Prefix Sum (Scan)

• Definition:

The all-prefix-sums operation takes a binary associative operator \oplus with identity *I*, and an array of n elements

and returns the ordered set

$$[I, a_0, (a_0 \oplus a_1), \ldots, (a_0 \oplus a_1 \oplus \ldots \oplus a_{n-2})].$$

Exclusive scan: last input element is not included in the result

Example: if \oplus is addition, then scan on the set

[3 1 7 0 4 1 6 3]

returns the set

[0 3 4 11 11 15 16 22] (next element would be 25)

(From Blelloch, 1990, "Prefix Sums and Their Applications)

Parallel08 – Control Flow

٠

Courtesy John Owens

A Parallel Algorithm for the Efficient Solution of a General Class of Recurrence Equations, Kogge and Stone, 1973

See "carry lookahead" adders vs. "ripple carry" adders

Courtesy John Owens

O(n log n) Scan

- Step efficient (log *n* steps)
- Not work efficient (*n* log *n* work)
- Requires barriers at each step (WAR dependencies)

Courtesy John Owens Hillis-Steele Scan Implementation

No WAR conflicts, O(2N) storage

Each thread reads one value from the input array in device memory into shared memory array T0. Thread 0 writes 0 into shared memory array. 1. Read input from device memory to shared memory. Set first element to zero and shift others right by one.

- 1. (previous slide)
- Iterate log(n) times: Threads stride to n: Add pairs of elements stride elements apart. Double stride at each iteration. (note must double buffer shared mem arrays)

Iteration #1
Stride = 1

Active threads: *stride* to *n*-1 (*n*-*stride* threads)
Thread *j* adds elements *j* and *j*-*stride* from T0 and writes result into shared memory buffer T1 (ping-pong)

Parallel08 – Control Flow

- Read input from device memory to shared memory. Set first element to zero and shift others right by one.
- Iterate log(n) times: Threads stride to n: Add pairs of elements stride elements apart. Double stride at each iteration. (note must double buffer shared mem arrays)

Iteration #3	
Stride = 4	

- Read input from device memory to shared memory. Set first element to zero and shift others right by one.
- Iterate log(n) times: Threads stride to n: Add pairs of elements stride elements apart. Double stride at each iteration. (note must double buffer shared mem arrays)

- Read input from device memory to shared memory. Set first element to zero and shift others right by one.
- Iterate log(n) times: Threads stride to n: Add pairs of elements stride elements apart. Double stride at each iteration. (note must double buffer shared mem arrays)
- 3. Write output to device memory.

Work Efficiency Considerations

- The first-attempt Scan executes log(n) parallel iterations
 - − Total adds: $n * (log(n) 1) + 1 \rightarrow O(n*log(n))$ work
- This scan algorithm is not very work efficient
 - Sequential scan algorithm does *n* adds
 - A factor of log(n) hurts: 20x for 10^6 elements!
- A parallel algorithm can be slow when execution resources are saturated due to low work efficiency

Balanced Trees

- For improving efficiency
- A common parallel algorithm pattern:
 - Build a balanced binary tree on the input data and sweep it to and from the root
 - Tree is not an actual data structure, but a concept to determine what each thread does at each step
- For scan:
 - Traverse down from leaves to root building partial sums at internal nodes in the tree
 - Root holds sum of all leaves
 - Traverse back up the tree building the scan from the partial sums

Typical Parallel Programming Pattern

• 2 log(n) steps

Typical Parallel Programming Pattern

• 2 log(n) steps

Parallel08 - Control Flow

Courtesy John Owens

Brent Kung Scan

A Regular Layout for Parallel Adders, Brent and Kung, 1982

O(n) Scan [Blelloch]

Courtesy John Owens

T 3 1 7 0 4 1 6 3

Assume array is already in shared memory

Iteration 1, *n*/2 threads

Each \bigoplus corresponds to a single thread.

Iterate log(n) times. Each thread adds value stride / 2 elements away to its own value.

Parallel08 – Control Flow

Each \bigoplus corresponds to a single thread.

Iterate log(n) times. Each thread adds value *stride* / 2 elements away to its own value.

Iterate log(n) times. Each thread adds value *stride* / 2 elements away to its own value.

Note that this algorithm operates in-place: no need for double buffering

Parallel08 - Control Flow

Down-Sweep Variant 1: Exclusive Scan

T 3 4	7 11	4 5	6	0
-------	------	-----	---	---

We now have an array of partial sums. Since this is an exclusive scan, set the last element to zero. It will propagate back to the first element.

Parallel08 – Control Flow

T 3 4	7	11	4	5	6	0
-------	---	----	---	---	---	---

Each \bigoplus corresponds to a single thread.

Iterate log(n) times. Each thread adds value *stride / 2* elements away to its own value. and sets the value *stride* elements away to its own *previous* value.

Parallel08 - Control Flow

Each \bigoplus corresponds to a single thread.

Iterate log(n) times. Each thread adds value *stride / 2* elements away to its own value. and sets the value *stride / 2* elements away to its own *previous* value.

Total work: 2 * (n-1) adds = O(n) Work

Work Efficient!

Parallel08 – Control Flow

Down-Sweep Variant 2: Inlusive Scan

Т	3	4	7	11	4	5	6	25
---	---	---	---	----	---	---	---	----

We now have an array of partial sums. Let's propagate the sums back.

Each \bigoplus corresponds to a single thread.

Iterate log(n) times. Each thread adds value *stride / 2* elements away to its own value. First element adds zero.

Parallel08 – Control Flow

Build Scan From Partial Sums

Each \bigoplus corresponds to a single thread.

Iterate log(n) times. Each thread adds value *stride / 2* elements away to its own value. First element adds zero.

Parallel08 - Control Flow

Hendrik Lensch and Robert Strzodka

Build Scan From Partial Sums

Total work:
$$< 2 * (n-1)$$
 adds = $O(n)$ Work Efficient!

Parallel08 – Control Flow

Hendrik Lensch and Robert Strzodka

Bank Conflicts in Scan - Non-power-of-two -

Parallel08 – Control Flow

Hendrik Lensch and Robert Strzodka

Initial Bank Conflicts on Load

- Each thread loads two shared mem data elements
- Tempting to interleave the loads
 temp[2*thid] = g_idata[2*thid];
 temp[2*thid+1] = g_idata[2*thid+1];
- Threads:(0,1,2,...,8,9,10,...)→banks:(0,2,4,...,0,2,4,...)
- Better to load one element from each half of the array

temp[thid] = $g_idata[thid];$ temp[thid + (n/2)] = $g_idata[thid + <math>(n/2)$];

- When we build the sums, each thread reads two shared memory locations and writes one:
- Th(0,8) access bank 0

Parallel08 – Control Flow

- When we build the sums, each thread reads two shared memory locations and writes one:
- Th(1,9) access bank 2, etc.

• 2nd iteration: even worse!

 4-way bank conflicts; for example: Th(0,4,8,12) access bank 1, Th(1,5,9,13) access Bank 5, etc.

Parallel08 – Control Flow

Scan Bank Conflicts (1)

• A full binary tree with 64 leaf nodes:

Scale (s)	Thre	ad a	ddre	sses	;																											
1	0	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50	52	54	56	58	60	62
2	0	4	8	12	16	20	24	28	32	36	40	44	48	52	56	60																
4	0	8	16	24	32	40	48	56																								
8	0	16	32	48																												
16	0	32																														
32	0																															
Conflicts	Ban	ks																														
2-way	0	2	4	6	8	10	12	14	0	2	4	6	8	10	12	14	0	2	4	6	8	10	12	14	0	2	4	6	8	10	12	14
4-way	0	4	8	12	0	4	8	12	0	4	8	12	0	4	8	12																
4-way	0	8	0	8	0	8	0	8																								
4-way	0	0	0	0																												
2-way	0	0																														
None	0																															

• Multiple 2-and 4-way bank conflicts

• Shared memory cost for whole tree

- 1 32-thread warp = 6 cycles per thread w/o conflicts
 - Counting 2 shared mem reads and one write (s[a] += s[b])
- 6 * (2+4+4+2+1) = 102 cycles
- 36 cycles if there were no bank conflicts (6 * 6)

Scan Bank Conflicts (2)

- It's much worse with bigger trees!
- A full binary tree with 128 leaf nodes
 - Only the last 6 iterations shown (root and 5 levels below)

Scale (s)	Thre	ad a	ddre	sses	5																											
2	0	4	8	12	16	20	24	28	32	36	40	44	48	52	56	60	64	68	72	76	80	84	88	92	96	100	104	108	112	116	120	122
4	0	8	16	24	32	40	48	56	64	72	80	88	96	104	112	120																
8	0	16	32	48	64	80	96	112																								
16	0	32	64	96																												
32	0	64																														
64	0																															
Conflicts	Ban	ks																														
4-way	0	4	8	12	0	4	8	12	0	4	8	12	0	4	8	12	0	4	8	12	0	4	8	12	0	4	8	12	0	4	8	10
8-way	0	8	0	8	0	8	0	8	0	8	0	8	0	8	0	8																
8-way	0	0	0	0	0	0	0	0																								
4-way	0	0	0	0																												
2-way	0	0																														
None	0																															

• Cost for whole tree:

- 12*2 + 6*(4+8+8+4+2+1) = 186 cycles
- 48 cycles if there were no bank conflicts! 12*1 + (6*6)

- We can use padding to prevent bank conflicts
 - Just add a word of padding every 16 words:
- No more conflicts!
 32 for full warps!

Now, within a 16-thread half-warp, all threads access different banks. 32-thread full warp! (Note that only arrows with the same color happen simultaneously.)

Use Padding to Reduce Conflicts

- This is a simple modification to the last exercise
- After you compute a shared mem address like this:

Address = stride * thid;

• Add padding like this:

Address += (Address >> 4); // divide by NUM BANKS

- This removes most bank conflicts
 - Not all, in the case of deep trees

Insert padding every NUM_BANKS elements

```
const int LOG_NUM_BANKS = 4; // 16 banks
int tid = threadIdx.x;
int s = 1;
// Traversal from leaves up to root
for (d = n>>1; d > 0; d >>= 1)
{
    if (thid <= d)
    {
        int a = s*(2*tid); int b = s*(2*tid+1)
        a += (a >> LOG_NUM_BANKS); // insert pad word
        b += (b >> LOG_NUM_BANKS); // insert pad word
        shared[a] += shared[b];
    }
}
```

• A full binary tree with 64 leaf nodes

Leaf Nodes	Scale (s)	Thre	ad a	ddre	sses	5																										
64	1	0	2	4	6	8	10	12	14	17	19	21	23	25	27	29	31	34	36	38	40	42	44	46	48	51	53	55	57	59	61	63
	2	0	4	8	12	17	21	25	29	34	38	42	46	51	55	59	63															
	4	0	8	17	25	34	42	51	59																							
	8	0	17	34	51																											
	16	0	34												= Pa	addir	ng in	serte	ed													
	32	0																														
	Conflicts	Ban	ks																													
	None	0	2	4	6	8	10	12	14	1	3	5	- 7 -	9	11	13	15	2	4	6	8	10	12	14	0	3	5	7	9	11	13	15
	None	0	4	8	12	1	5	9	13	2	6	10	14	3	7	11	15															
	None	0	8	1	9	2	10	3	11																							
	None	0	1	2	3																											
	None	0	2																													
	None	0																														

• No more bank conflicts!

- However, there are ~8 cycles overhead for addressing
 - For each s[a] += s[b] (8 cycles/iter. * 6 iter. = 48 extra cycles)
- So just barely worth the overhead on a small tree
 - 84 cycles vs. 102 with conflicts vs. 36 optimal

• A full binary tree with 128 leaf nodes

Only the last 6 iterations shown (root and 5 levels below)

Scale (s)	Tł	irea	d ad	ddres	ses																											
2	0	4	8	12	17	21	25	29	34	38	42	46	51	55	59	63	68	72	76	80	85	89	93	97	102	106	110	114	119	123	127	131
4	0	8	17	25	34	42	51	59	68	76	85	93	102	110	119	127																
8	0	17	34	51	68	85	102	119																								
16	0	34	68	102																												
32	0	68												= Pa	ddin	g ins	erte	d														
64	Ο																															
Conflicts	B	ank	s																													
None	0	4	8	12	1	5	9	13	2	6	10	14	3	7	11	15	4	8	12	0	5	9	13	1	6	10	14	2	7	11	15	3
None	0	8	1	9	2	10	3	11	4	12	5	13	6	14	7	15																
None	0	1	2	3	4	5	6	7																								
None	0	2	4	6																												
None	0	4																														
None	0																															

No more bank conflicts!

- Significant performance win:
 - 106 cycles vs. 186 with bank conflicts vs. 48 optimal

• A full binary tree with 512 leaf nodes

- Only the last 6 iterations shown (root and 5 levels below)

Scale (s)	Th	read	addre	esses																												
8	0	17	34	51			102											289	306	323	340	357	374	391	408	425	442	459	476	493	510	527
16	0				136					306	340	374	408	442	476	510																
32	0	68	136	204	272	340	408	476																								
64				408																												
128		272												= Pa	adding	inse	rted															
256	0																															
Conflicts	Ba	anks																														
None	0	1	2	3	4	5	6	- 7	8	9	10	11	12	13	14	15	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2-way	0		4	6	8	10	12	14	0	2	4	6	8	10	12	14																
2-way	0		8	12	0	4	8	12																								
2-way	0	8	0	8																												
2-way	0	Ō																														
None	0																															

- Wait, we still have bank conflicts
 - Method is not foolproof, but still much improved
 - 304 cycles vs. 570 with bank conflicts vs. 120 optimal
- But it does not pay of to optimize for the rest. Address calculations are getting too expensive

Parallel Programming requires careful planning

- of the branching behavior
- of the memory access patterns
- of the work efficiency

Vector Reduction

- branch efficient
- bank efficient

Scan Algorithm

 based in Balanced Tree principle: bottom up, top down traversal

Parallel08 – Control Flow

Programming Tensor Cores

NVIDIA Volta SM

Multiprocessor: SM (CC 7.0)

- 64 FP32 + 64 INT32 cores
- 32 FP64 cores
- 32 LD/ST units; 16 SFUs
- 8 tensor cores (FP16/FP32 mixed-precision)

4 partitions inside SM

- 16 FP32 + 16 INT32 cores each
- 8 FP64 cores each
- 8 LD/ST units; 4 SFUs each
- 2 tensor cores each
- Each has: warp scheduler, dispatch unit, register file

SM																
							L1 Instruc	tion	Cache							
		L0 lr	nstruc	tion C	ache	-					LOI	nstruc	tion C	ache		
	War	p Sch	edule	r (32 ti	hread/	clk)				Wa	rp Scl	nedule	r (32 t	hread	/clk)	
	Dis	spatcl	h Unit	(32 th	read/c	lk)				D	ispatc	h Unit	(32 th	read/o	clk)	
	Reg	ister	File (′	16,384	I x 32	-bit)				Re	gister	File (16,384	4 x 32	?-bit)	
FP64	INT	INT	FP32	FP32					FP64	INT	INT	FP32	FP32			
FP64	INT	INT	FP32	FP32					FP64	INT	INT	FP32	FP32			
FP64	INT	INT	FP32	FP32					FP64	INT	INT	FP32	FP32			
FP64	INT	INT	FP32	FP32	TEN	_	TENSOR		FP64	INT	INT	FP32	FP32		SOR	TENSOR
FP64	INT	INT	FP32	FP32	co	RE	CORE		FP64	INT	INT	FP32	FP32		ORE	CORE
FP64	INT	INT	FP32	FP32					FP64	INT	INT	FP32	FP32			
FP64	INT	INT		FP32					FP64	INT	INT		FP32			
FP64	INT	INT	FP32						FP64	INT	INT		FP32			
LD/ LD/ ST ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	SFU		LD/ LD ST ST		LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	SFU
		L0 Ir	nstruc	tion C	ache						L0 I	nstruc	tion C	ache		
	War		nstruc Iedule			<mark>clk)</mark>				Wa		nstruc <mark>1edule</mark>			/clk)	
		p Sch		r (32 tl	hread/						rp Scl		r (32 t	hread		
	Dis	p Sch spatcl	edule	r (32 tl (32 th	hread/ read/c	lk)				D	irp Scl ispatc	nedule	r (32 t (32 th	hread read/o	cik)	
FP64	Dis	p Sch spatcl	edule h Unit File ('	r (32 tl (32 th	hread/ read/c	lk)			FP64	D	irp Scl ispatc gister	nedule h Unit File (1	r (32 t (32 th	hread read/o	cik)	
FP64 FP64	Dis Reg	p Sch spatcl ister	edule h Unit File (' FP32	r (32 tl (32 th) 16,384	hread/ read/c	lk)			FP64 FP64	D Re	irp Scl ispatc gister	File (File (r (32 ti (32 th 16,384	hread read/o	cik)	
	Dis Reg	p Sch spatcl ister INT	File (* FP32	r (32 th (32 th 16,384 FP32	hread/ read/c	lk)				D Re INT	rp Sch ispatc gister	File (FP32	r (32 t (32 th 16,384 FP32	hread read/o	cik)	
FP64	Dis Reg INT INT	p Sch spatcl ister INT INT	File (* FP32	r (32 th (32 th 16,384 FP32 FP32 FP32	hread/c read/c 1 x 32	lk) -bit) SOR	TENSOR		FP64	Re INT	ispatc gister	File (FP32 FP32 FP32 FP32	r (32 th (32 th 16,384 FP32 FP32	hread read/o 4 x 32 TEN	2-bit)	TENSOR
FP64 FP64 FP64 FP64	Dis Reg INT INT INT INT INT	p Sch spatcl ister INT INT INT INT	edule h Unit File (' FP32 FP32 FP32 FP32 FP32	r (32 th (32 th 16,384 FP32 FP32 FP32 FP32 FP32	hread/c read/c I x 32	lk) -bit) SOR	TENSOR		FP64 FP64 FP64 FP64	Reg INT INT INT INT INT	rp Scl ispatc gister INT INT INT INT	File (File (FP32 FP32 FP32 FP32 FP32	r (32 th (32 th 16,384 FP32 FP32 FP32 FP32 FP32	hread read/o 4 x 32 TEN	2-bit)	TENSOR
FP64 FP64 FP64 FP64 FP64	Dis Reg INT INT INT INT INT	p Sch spatcl ister INT INT INT INT INT	FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	r (32 th (32 th (32 th 16,384 FP32 FP32 FP32 FP32 FP32 FP32	hread/c read/c 1 x 32	lk) -bit) SOR			FP64 FP64 FP64 FP64 FP64	Re I INT INT INT INT INT	INT INT INT INT INT INT INT INT	File (* FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	r (32 th (32 th 16,384 FP32 FP32 FP32 FP32 FP32 FP32	hread read/o 4 x 32 TEN	2-bit)	
FP64 FP64 FP64 FP64 FP64 FP64	Dis Reg INT INT INT INT INT INT	p Sch spatcl ister INT INT INT INT INT	File (* FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	r (32 th (32 th 16,384 FP32 FP32 FP32 FP32 FP32 FP32 FP32	hread/c read/c 1 x 32	lk) -bit) SOR			FP64 FP64 FP64 FP64 FP64 FP64	Re INT INT INT INT INT INT INT	rp Scl ispatc gister INT INT INT INT INT INT	File (File (FP32 FP32 FP32 FP32 FP32 FP32 FP32	r (32 th (32 th 16,384 FP32 FP32 FP32 FP32 FP32 FP32 FP32	hread read/o 4 x 32 TEN	2-bit)	
FP64 FP64 FP64 FP64 FP64 FP64 FP64	Dis Reg INT INT INT INT INT INT	p Sch spatcl ister INT INT INT INT INT INT	File (* FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	r (32 th (32 th 16,384 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	read/c i x 32 TEN CO	-bit)	CORE		FP64 FP64 FP64 FP64 FP64 FP64	Real INT INT INT INT INT INT INT	rp Scl ispatc jister int int int int int int int int	File (File (FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	r (32 th (32 th 16,384 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	hread read/o 4 x 32	Point Sor	CORE
FP64 FP64 FP64 FP64 FP64 FP64 FP64	Dis Reg INT INT INT INT INT INT	p Sch spatcl ister INT INT INT INT INT	File (* FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	r (32 th (32 th 16,384 FP32 FP32 FP32 FP32 FP32 FP32 FP32	hread/c read/c 1 x 32	lk) -bit) SOR			FP64 FP64 FP64 FP64 FP64 FP64	Realise Control Contro	rp Scl ispatc gister INT INT INT INT INT INT	File (File (FP32 FP32 FP32 FP32 FP32 FP32 FP32	r (32 th (32 th 16,384 FP32 FP32 FP32 FP32 FP32 FP32 FP32	hread read/o 4 x 32 TEN	2-bit)	
FP64 FP64 FP64 FP64 FP64 FP64 FP64 FP64 LD/ LD/	Dis Reg INT INT INT INT INT INT INT LD/	p Sch spatcl ister INT INT INT INT INT INT INT INT LD/	File (* FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	r (32 th (32 th 16,384 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	TEN: CO	LD/ ST	CORE		FP64 FP64 FP64 FP64 FP64 FP64 FP64 LD/ LC ST S	Re INT INT INT INT INT INT INT INT INT 27 LD/T	rp Scl ispatc jister int int int int int int int int int	File (FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	r (32 tt (32 th 16,384 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	hread read/o 4 x 32	LD/	CORE

NVIDIA Turing SM

Multiprocessor: SM (CC 7.5)

- 64 FP32 + INT32 cores
- 2 (!) FP64 cores
- 8 Turing tensor cores (FP16/32, INT4/8 mixed-precision)
- 1 RT (ray tracing) core
- 4 partitions inside SM
 - 16 FP32 + INT32 cores each
 - 4 LD/ST units; 4 SFUs each
 - 2 Turing tensor cores each
 - Each has: warp scheduler, dispatch unit, 16K register file

NVIDIA GA100 SM

Multiprocessor: SM (CC 8.0)

- 64 FP32 + 64 INT32 cores
- 32 FP64 cores
- 4 3rd gen tensor cores
- 1 2nd gen RT (ray tracing) core
- 4 partitions inside SM
 - 16 FP32 + 16 INT32 cores
 - 8 FP64 cores
 - 8 LD/ST units; 4 SFUs each
 - 1 3rd gen tensor core each
 - Each has: warp scheduler, dispatch unit, 16K register file

NVIDIA GA10x SM

Multiprocessor: SM (CC 8.6)

- 128 (64+64) FP32 + 64 INT32 cores
- 2 (!) FP64 cores
- 4 3rd gen tensor cores
- 1 2nd gen RT (ray tracing) core
- 4 partitions inside SM
 - 32 (16+16) FP32 + 16 INT32 cores
 - 4 LD/ST units; 4 SFUs each
 - 1 3rd gen tensor core each
 - Each has: warp scheduler, dispatch unit, 16K register file

NVIDIA GH100 SM

Multiprocessor: SM (CC 9.0)

- 128 FP32 + 64 INT32 cores
- 64 FP64 cores
- 4x 4th gen tensor cores
- ++ thread block clusters, DPX insts., FP8, TMA
- 4 partitions inside SM
 - 32 FP32 + 16 INT32 cores
 - 16 FP64 cores
 - 8x LD/ST units; 4 SFUs each
 - 1x 4th gen tensor core each
 - Each has: warp scheduler, dispatch unit, 16K register file

SM							
			L1 Instruc	tion Cach	e		
	LOI	nstruction C	ache		LO	Instruction (Cache
		heduler (32 t				cheduler (32	
		h Unit (32 th	100 m 100			ch Unit (32 tl	
		File (16,38				er File (16,38	
INT32		FP64		INT32	FP32 FP32	FP64	
INT32	FP32 FP32	FP64 FP64		INT32	FP32 FP32	FP64	
INT32		FP64		INT32	FP32 FP32	FP64	
INT32	FP32 FP32	FP64	1	INT32	FP32 FP32	FP64	
INT32	FP32 FP32	FP64		INT32	FP32 FP32	FP64	
INT32		FP64		INT32	FP32 FP32	FP64	1
INT32	FP32 FP32	FP64		INT32	FP32 FP32	FP64	
INT32	FP32 FP32	FP64	TENSOR CORE	INT32	FP32 FP32	FP64	TENSOR CORE
INT32	FP32 FP32	FP64	4 th GENERATION	INT32	FP32 FP32	FP64	4 th GENERATION
INT32	FP32 FP32	FP64		INT32	FP32 FP32	FP64	
INT32	FP32 FP32	FP64		INT32	FP32 FP32	FP64	
INT32	FP32 FP32	FP64		INT32	FP32 FP32	FP64	
INT32	FP32 FP32	FP64		INT32	FP32 FP32	FP64	
INT32	FP32 FP32	FP64		INT32	FP32 FP32	FP64	
INT32	FP32 FP32	FP64		INT32	FP32 FP32	FP64	
INT32	FP32 FP32	FP64	1	INT32	FP32 FP32	FP64	
LD/ ST	LD/ LD/ LD/ ST ST ST	LD/ LD/ ST ST	LD/ LD/ ST ST SFU	LD/ ST	LD/ LD/ LD/ ST ST ST	/ LD/ LD/ ST ST	LD/ LD/ SFU
_							
	Warp Sc Dispatc	nstruction C heduler (32 t h Unit (32 th File (16.38	hread/clk) read/clk)	F	Warp Se Dispat	Instruction (cheduler (32 ch Unit (32 th r File (16.38	thread/clk) nread/clk)
	Warp Sc Dispato Register	heduler (32 t h Unit (32 th [·] File (16,38-	hread/clk) read/clk)		Warp Se Dispat Registe	cheduler (32 ch Unit (32 tl er File (16,38	thread/clk) nread/clk)
INT32	Warp Sc Dispate Register FP32 FP32	heduler (32 t th Unit (32 th File (16,38- FP64	hread/clk) read/clk)	INT32	Warp So Dispat Registe FP32 FP32	cheduler (32 ch Unit (32 tl r File (16,38 FP64	thread/clk) nread/clk)
INT32	Warp Sc Dispate Register FP32 FP32 FP32 FP32	heduler (32 t th Unit (32 th File (16,38 FP64 FP64	hread/clk) read/clk)	INT32	Warp So Dispat Registe FP32 FP32 FP32 FP32	cheduler (32 ch Unit (32 th r File (16,38 FP64 FP64	thread/clk) nread/clk)
INT32 INT32	Warp Sc Dispate Register FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	heduler (32 t sh Unit (32 th File (16,38 FP64 FP64 FP64 FP64	hread/clk) read/clk)	INT32 INT32	Warp So Dispat Registe FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	cheduler (32 ch Unit (32 tl er File (16,38 FP64 FP64 FP64	thread/clk) nread/clk)
INT32 INT32 INT32	Warp Sci Dispato Register FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	heduler (32 t h Unit (32 th File (16,38 FP64 FP64 FP64 FP64 FP64	hread/clk) read/clk)	INT32 INT32 INT32	Warp So Dispat Registe FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	cheduler (32 ch Unit (32 th er File (16,38 FP64 FP64 FP64 FP64	thread/clk) nread/clk)
INT32 INT32	Warp Sci Dispato Register FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	heduler (32 t ch Unit (32 th File (16,38 FP64 FP64 FP64 FP64 FP64	hread/clk) read/clk)	INT32 INT32	Warp So Dispat Registe FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	cheduler (32 ch Unit (32 th er File (16,38 FP64 FP64 FP64 FP64 FP64	thread/clk) nread/clk)
INT32 INT32 INT32 INT32	Warp Sci Dispato Register FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	heduler (32 t h Unit (32 th File (16,38 FP64 FP64 FP64 FP64 FP64	hread/clk) read/clk)	INT32 INT32 INT32 INT32	Warp St Dispat Register FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	cheduler (32 ch Unit (32 th er File (16,38 FP64 FP64 FP64 FP64	thread/clk) nread/clk)
INT32 INT32 INT32 INT32 INT32	Warp Sci Dispato Register FP32 FP3	heduler (32 t ch Unit (32 th File (16,38 FP64 FP64 FP64 FP64 FP64 FP64 FP64	hread/clk) read/clk)	INT32 INT32 INT32 INT32 INT32	Warp So Dispat Registe FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	cheduler (32 ch Unit (32 th er File (16,38 FP64 FP64 FP64 FP64 FP64 FP64	thread/clk) nread/clk)
INT32 INT32 INT32 INT32 INT32 INT32	Warp Sci Dispato Register FP32 FP3	heduler (32 t ch Unit (32 th FFile (16,38- FP64 FP64 FP64 FP64 FP64 FP64 FP64	hread/clk) read/clk) 4 x 32-bit)	INT32 INT32 INT32 INT32 INT32 INT32	Warp So Dispat Register FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	cheduler (32 ch Unit (32 th er File (16,38 FP64 FP64 FP64 FP64 FP64 FP64 FP64	thread/clk) nread/clk) 14 x 32-bit)
INT32 INT32 INT32 INT32 INT32 INT32 INT32	Warp Sci Dispato Register FP32 FP3	heduler (32 t - File (16,38 - FP64 - FP64 - FP64 - FP64 - FP64 - FP64 - FP64 - FP64 - FP64 - FP64	thread/clk) read/clk) 4 x 32-bit) TENSOR CORE	INT32 INT32 INT32 INT32 INT32 INT32 INT32	Warp So Dispat Registe FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	cheduler (32 ch Unit (32 th rr File (16,38 FP64 FP64 FP64 FP64 FP64 FP64 FP64	thread/clk) iread/clk) i4 x 32-bit) TENSOR CORE
INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32	Warp Sci Dispato Register FP32	heduler (32 th File (16,38 FP64 FP64 FP64 FP64 FP64 FP64 FP64 FP64	thread/clk) read/clk) 4 x 32-bit) TENSOR CORE	INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32	Warp St Dispat	cheduler (32 ch Unit (32 th r File (16,38 FP64 FP64 FP64 FP64 FP64 FP64 FP64 FP64	thread/clk) iread/clk) i4 x 32-bit) TENSOR CORE
INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32	Warp Sci Dispato Register FP32 FP3	heduler (32 th ch Unit (32 th FFile (16,38 FP64 FP64 FP64 FP64 FP64 FP64 FP64 FP64	thread/clk) read/clk) 4 x 32-bit) TENSOR CORE	INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32	Warp St Dispat	cheduler (32 ch Unit (32 th er File (16,38 FP64 FP64 FP64 FP64 FP64 FP64 FP64 FP64	thread/clk) iread/clk) i4 x 32-bit) TENSOR CORE
INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32	Warp Sci Dispato Register FP32 FP3	heduler (32 th ch Unit (32 th FFile (16,38 FP64 FP64 FP64 FP64 FP64 FP64 FP64 FP64	thread/clk) read/clk) 4 x 32-bit) TENSOR CORE	INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32	Warp St Dispat	cheduler (32 ch Unit (32 ti er File (16,38 FP64 FP64 FP64 FP64 FP64 FP64 FP64 FP64	thread/clk) iread/clk) i4 x 32-bit) TENSOR CORE
INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32	Warp Sci Dispato Register FP32 FP3	heduler (32 t ch Unit (32 th FFile (16,38- FP64 FP64 FP64 FP64 FP64 FP64 FP64 FP64	thread/clk) read/clk) 4 x 32-bit) TENSOR CORE	INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32	Warp So Dispat Register FP32 FP32 FP32 FP32	cheduler (32 ch Unit (32 ti er File (16,38 FP64 FP64 FP64 FP64 FP64 FP64 FP64 FP64	thread/clk) iread/clk) i4 x 32-bit) TENSOR CORE
INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32	Warp Sci Dispato Dispato Register FP32	heduler (32 t ch Unit (32 th FFile (16,38- FP64 FP64 FP64 FP64 FP64 FP64 FP64 FP64	thread/clk) read/clk) 4 x 32-bit) TENSOR CORE	INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32	Warp St Dispat	cheduler (32 ch Unit (32 th r File (16,38 FP64 FP64 FP64 FP64 FP64 FP64 FP64 FP64	thread/clk) iread/clk) i4 x 32-bit) TENSOR CORE
INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32	Warp Sci Dispato Dispato Register FP32	heduler (32 th ch Unit (32 th FP64 FP64 FP64 FP64 FP64 FP64 FP64 FP64	thread/clk) read/clk) 4 x 32-bit) TENSOR CORE	INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32	Warp St Dispat	cheduler (32 ch Unit (32 th er File (16,38 FP64 FP64 FP64 FP64 FP64 FP64 FP64 FP64	thread/clk) iread/clk) i4 x 32-bit) TENSOR CORE
INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32	Warp Sci Dispato Register FP32 FP32 FP32 FP32 <td< td=""><td>heduler (32 th ch Unit (32 th FP64 FP64 FP64 FP64 FP64 FP64 FP64 FP64</td><td>thread/clk) read/clk) 4 x 32-bit) TENSOR CORE</td><td>INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32</td><td>Warp St Dispat</td><td>cheduler (32 ch Unit (32 th r File (16,38 FP64 FP64 FP64 FP64 FP64 FP64 FP64 FP64</td><td>thread/clk) iread/clk) i4 x 32-bit) TENSOR CORE</td></td<>	heduler (32 th ch Unit (32 th FP64 FP64 FP64 FP64 FP64 FP64 FP64 FP64	thread/clk) read/clk) 4 x 32-bit) TENSOR CORE	INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32	Warp St Dispat	cheduler (32 ch Unit (32 th r File (16,38 FP64 FP64 FP64 FP64 FP64 FP64 FP64 FP64	thread/clk) iread/clk) i4 x 32-bit) TENSOR CORE
INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32	Warp Sci Dispato Dispato Register FP32	heduler (32 t h Unit (32 th FFile (16,38 FP64 FP64 FP64 FP64 FP64 FP64 FP64 FP64	tread/clk) read/clk) 4 x 32-bit) 4 x 32-bit) TENSOR CORE 4 th GENERATION LD/ ST LD/ ST SFU	INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32	Warp St Dispat Register FP32 FP32<	cheduler (32 ch Unit (32 ti r File (16,38 FP64 FP64 FP64 FP64 FP64 FP64 FP64 FP64	thread/clk) read/clk) 4 x 32-bit) TENSOR CORE 4 th GENERATION
INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32	Warp Sci Dispato Dispato Register FP32	heduler (32 th ch Unit (32 th FP64 FP64 FP64 FP64 FP64 FP64 FP64 FP64	tread/clk) read/clk) 4 x 32-bit) TENSOR CORE 4 th GENERATION	INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32	Warp St Dispat Register FP32 FP32<	Cheduler (32 ch Unit (32 th r File (16,38 FP64 FP64 FP64 FP64 FP64 FP64 FP64 FP64	thread/clk) read/clk) 4 x 32-bit) TENSOR CORE 4 th GENERATION
INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32	Warp Sci Dispato Dispato Register FP32	heduler (32 th ch Unit (32 th FP64 FP64 FP64 FP64 FP64 FP64 FP64 FP64	hread/clk) read/clk) 4 x 32-bit) 4 x 32-bit) TENSOR CORE 4 th GENERATION LD/ LD/ SFU SFU TENSOR MEMO	INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32	Warp St Dispat Register FP32 FP32<	Cheduler (32 ch Unit (32 th r File (16,38 FP64 FP64 FP64 FP64 FP64 FP64 FP64 FP64	thread/clk) read/clk) 4 x 32-bit) TENSOR CORE 4 th GENERATION

NVIDIA AD102 SM

Multiprocessor: SM (CC 8.9)

- 128 (64+64) FP32 + 64 INT32 cores
- 2 (!) FP64 cores
- 4x 4th gen tensor cores
- 1x 3rd gen RT (ray tracing) core
- ++ thread block clusters, FP8, ... (?)

4 partitions inside SM

- 32 (16+16) FP32 + 16 INT32 cores
- 4x LD/ST units; 4 SFUs each
- 1x 4th gen tensor core each
- Each has: warp scheduler, dispatch unit, 16K register file

Tensor Cores

Mixed-precision, fast matrix-matrix multiply and accumulate (mma)

From this, build larger shapes (sizes), higher dimensionalities, ...

API currently only allows using larger shapes (16x16, ...) in warps (wmma)

Tensor Cores

Fused matrix multiply and accumulate

- Input matrices can be (at most) half-precision (FP16); (Ampere has more!)
- Accumulate can be FP16 or FP32; (Ampere has more!)

Ampere Tensor Cores: Mixed Precision

plus FP64 (new in Ampere; GA100 only)

plus INT4/INT8/binary data types (experimental; introduced in Turing)

Ampere Tensor Cores: Sparsity Support

Tensor Cores: More Mixed Precision Options

New in Hopper: FP8

Allocate 1 bit to either range or precision Support for multiple accumulator and output types

multiply

accumulate into

FP32 or FP16

bias/act/...

convert

FP32|FP16|BF16|FP8

matrix

FP8

matrix

FP8

matrix

TC

SM

plus other data types from before (INT4/INT8/binary, ...)

Tensor Cores: Hopper vs. Ampere

(preliminary)

	A100	A100 Sparse	H100 SXM5 ¹	H100 SXM5 ¹ Sparse	H100 SXM5 ¹ Speedup vs A100
FP8 Tensor Core	NA	NA	2000 TFLOPS	4000 TFLOPS	6.4x vs A100 FP16
FP16	78 TFLOPS	NA	120 TFLOPS	NA	1.5x
FP16 Tensor Core	312 TFLOPS	624 TFLOPS	1000 TFLOPS	2000 TFLOPS	3.2x
BF16 Tensor Core	312 TFLOPS	624 TFLOPS	1000 TFLOPS	2000 TFLOPS	3.2x
FP32	19.5 TFLOPS	NA	60 TFLOPS	NA	3.1x
TF32 Tensor Core	156 TFLOPS	312 TFLOPS	500 TFLOPS	1000 TFLOPS	3.2x
FP64	9.7 TFLOPS	NA	30 TFLOPS	NA	3.1x
FP64 Tensor Core	19.5 TFLOPS	NA	60 TFLOPS	NA	3.1x
INT8 Tensor Core	624 TOPS	1248 TOPS	2000 TFLOPS	4000 TFLOPS	3.2x

Markus Hadwiger, KAUST

Tensor Memory Accelerator (TMA)

Asynchronous transfers

Tensor Core APIs

Low-level options

- CUDA C WMMA (warp-level matrix multiply and accumulate)
- PTX wmma and mma (needed for some features) instructions
- SASS hmma instructions (not documented)

High-level options

- NVIDIA CUTLASS (template abstractions for hi-perf matrix-multiplies)
- NVIDIA cuBLAS
- NVIDIA cuDNN
- Integration into TensorFlow, ...

CUTLASS 2.11 (November 2022) https://github.com/NVIDIA/cutlass

Warp Level Matrix Multiply Accumulate (WMMA)

CUDA C Programming Guide (11.8), Appendix B.24

namespace nvcuda::wmma (and nvcuda::wmma::experimental)

```
template<typename Use, int m, int n, int k, typename T, typename Layout=void>
    class fragment;
void load_matrix_sync(fragment<...> &a, const T* mptr, unsigned ldm);
void load_matrix_sync(fragment<...> &a, const T* mptr, unsigned ldm, layout_t
    layout);
void store_matrix_sync(T* mptr, const fragment<...> &a, unsigned ldm, layout_t
    layout);
void fill_fragment(fragment<...> &a, const T& v);
void mma_sync(fragment<...> &d, const fragment<...> &a, const fragment<...> &b, const fragment<...> &c, bool satf=false);
```

Concept of a matrix *fragment* (section of a matrix split across threads in a warp)

Dimensions m, n, k: m X k matrix_a; k X n matrix_b; m X n accumulator

Data types (**T**)

Volta/Turing/Ampere/Hopper/Ada:

wmma API splits this into fragments

Matrix A	Matrix B	Accumulator	Matrix Size (m-n-k)
half	half	float	16x16x16
half	half	float	32x8x16
half	half	float	8x32x16
half	half	half	16x16x16
half	half	half	32x8x16
half	half	half	8x32x16
unsigned char	unsigned char	int	16x16x16
unsigned char	unsigned char	int	32x8x16
unsigned char	unsigned char	int	8x32x16
signed char	signed char	int	16x16x16
signed char	signed char	int	32x8x16
signed char	signed char	int	8x32x16

Data types (T)

Alternate Floating Point support:

Ampere/Hopper/Ada only:

wmma API splits this into fragments

Matrix A	Matrix B	Accumulator	Matrix Size (m-n-k)
nv_bfloat16	nv_bfloat16	float	16x16x16
nv_bfloat16	nv_bfloat16	float	32x8x16
nv_bfloat16	nv_bfloat16	float	8x32x16
precision::tf32	precision::tf32	float	16x16x8

Double Precision Support:

Ampere/Hopper only:

Matrix A	Matrix B	Accumulator	Matrix Size (m-n-k)
double	double	double	8x8x4

Experimental support for sub-byte operations:

Turing/Ampere/Ada:

Matrix A	Matrix B	Accumulator	Matrix Size (m-n-k)
precision::u4	precision::u4	int	8x8x32
precision::s4	precision::s4	int	8x8x32
precision::b1	precision::b1	int	8x8x128

Warp Level Matrix Multiply Accumulate (WMMA)

CUDA C Programming Guide (11.8), Appendix B.24

```
#include <mma.h>
using namespace nvcuda;
global void wmma ker(half *a, half *b, float *c) {
  // Declare the fragments
  wmma::fragment<wmma::matrix a, 16, 16, 16, half, wmma::col major> a frag;
  wmma::fragment<wmma::matrix b, 16, 16, 16, half, wmma::row major> b frag;
  wmma::fragment<wmma::accumulator, 16, 16, 16, float> c frag;
   // Initialize the output to zero
  wmma::fill fragment(c frag, 0.0f);
   // Load the inputs
  wmma::load matrix sync(a frag, a, 16);
   wmma::load matrix sync(b frag, b, 16);
   // Perform the matrix multiplication
  wmma::mma sync(c frag, a frag, b frag, c frag);
   // Store the output
   wmma::store matrix sync(c, c frag, 16, wmma::mem row major);
```

Markus Hadwiger, KAUST

PTX WMMA and MMA Instructions

PTX ISA 7.8, Section 9.7.13 (120 pages)

Instruction	Sparsity	Multiplicand Data-type	Shape	PTX ISA version
wmma	Dense	Floating-pointf16	.ml6n16k16, .m8n32k16,and .m32n8k16	PTX ISA version 6.0
wmma	Dense	Alternate floating-point formatbf16	.ml6n16k16, .m8n32k16,and .m32n8k16	PTX ISA version 7.0
wmma	Dense	Alternate floating-point formattf32	.ml6nl6k8	PTX ISA version 7.0
wmma	Dense	Integeru8/.s8	.ml6n16k16, .m8n32k16,and .m32n8k16	PTX ISA version 6.3
wmma	Dense	Sub-byte integer - .u4/.s4	.m8n8k32	PTX ISA version 6.3 (preview feature)
wmma	Dense	Single-bitb1	.m8n8k128	PTX ISA version 6.3 (preview feature)

PTX ISA 7.8

Instruction	Sparsity	Multiplicand Data-type	Shape	PTX ISA version
mma	Dense	Floating-pointf64	.m8n8k4	PTX ISA version 7.0
mma	Dense	Floating-pointf16	.m8n8k4	PTX ISA version 6.4
			.m16n8k8	PTX ISA version 6.5
			.m16n8k16	PTX ISA version 7.0
mma	Dense	Alternate floating-point formatbf16	.m16n8k8 and .m16n8k16	PTX ISA version 7.0
mma	Dense	Alternate floating-point formattf32	.m16n8k4 and .m16n8k8	PTX ISA version 7.0
mma	Dense	Integeru8/.s8	.m8n8k16	PTX ISA version 6.5
			.m16n8k16 and .m16n8k32	PTX ISA version 7.0
mma	Dense	Sub-byte integer -	.m8n8k32	PTX ISA version 6.5
		.u4/.s4	.m16n8k32 and .m16n8k64	PTX ISA version 7.0
mma	Dense	Single-bitb1	.m8n8k128, .m16n8k128, and .m16n8k256	PTX ISA version 7.0
mma	Sparse	Floating-pointf16	.m16n8k16 and .m16n8k32	PTX ISA version 7.1
mma	Sparse	Alternate floating-point formatbf16	.m16n8k16 and .m16n8k32	PTX ISA version 7.1
mma	Sparse	Alternate floating-point formattf32	.m16n8k8 and .m16n8k16	PTX ISA version 7.1
mma	Sparse	Integeru8/.s8	.m16n8k32 and .m16n8k64	PTX ISA version 7.1
mma	Sparse	Sub-byte integer - .u4/.s4	.m16n8k64 and .m16n8k128	PTX ISA version 7.1

Load and store: wmma

wmma.load

Collectively load a matrix from memory for WMMA

Syntax

Floating point format .f16 loads:

```
wmma.load.a.sync.aligned.layout.shape{.ss}.atype r, [p] {, stride};
wmma.load.b.sync.aligned.layout.shape{.ss}.btype r, [p] {, stride};
wmma.load.c.sync.aligned.layout.shape{.ss}.ctype r, [p] {, stride};
.layout = {.row, .col};
.shape = {.m16n16k16, .m8n32k16, .m32n8k16};
.ss = {.global, .shared};
.atype = {.f16, .s8, .u8};
.btype = {.f16, .s8, .u8};
.ctype = {.f16, .f32, .s32};
```

Alternate floating point format .bf16 loads:

```
wmma.load.a.sync.aligned.layout.shape{.ss}.atype r, [p] {, stride}
wmma.load.b.sync.aligned.layout.shape{.ss}.btype r, [p] {, stride}
wmma.load.c.sync.aligned.layout.shape{.ss}.ctype r, [p] {, stride}
.layout = {.row, .col};
.shape = {.ml6nl6k16, .m8n32k16, .m32n8k16};
.ss = {.global, .shared};
.atype = {.bf16 };
.btype = {.bf16 };
.ctype = {.f32 };
```

Alternate floating point format .tf32 loads:

```
wmma.load.a.sync.aligned.layout.shape{.ss}.atype r, [p] {, stride}
wmma.load.b.sync.aligned.layout.shape{.ss}.btype r, [p] {, stride}
wmma.load.c.sync.aligned.layout.shape{.ss}.ctype r, [p] {, stride}
.layout = {.row, .col};
.shape = {.ml6n16k8 };
.ss = {.global, .shared};
.atype = {.tf32 };
.btype = {.tf32 };
.ctype = {.f32 };
```


Load and store: wmma

wmma.load

Collectively load a matrix from memory for WMMA

Syntax

Double precision Floating point .f64 loads:

```
wmma.load.a.sync.aligned.layout.shape{.ss}.atype r, [p] {, stride}
wmma.load.b.sync.aligned.layout.shape{.ss}.btype r, [p] {, stride}
wmma.load.c.sync.aligned.layout.shape{.ss}.ctype r, [p] {, stride}
.layout = {.row, .col};
.shape = {.m8n8k4 };
.ss = {.global, .shared};
.atype = {.f64 };
.ctype = {.f64 };
```

Sub-byte loads:

```
wmma.load.a.sync.aligned.row.shape{.ss}.atype r, [p] {, stride}
wmma.load.b.sync.aligned.col.shape{.ss}.btype r, [p] {, stride}
wmma.load.c.sync.aligned.layout.shape{.ss}.ctype r, [p] {, stride}
.layout = {.row, .col};
.shape = {.m8n8k32};
.ss = {.global, .shared};
.atype = {.s4, .u4};
.btype = {.s4, .u4};
.ctype = {.s32};
```

Single-bit loads:

```
wmma.load.a.sync.aligned.row.shape{.ss}.atype r, [p] {, stride}
wmma.load.b.sync.aligned.col.shape{.ss}.btype r, [p] {, stride}
wmma.load.c.sync.aligned.layout.shape{.ss}.ctype r, [p] {, stride}
.layout = {.row, .col};
.shape = {.m8n8k128};
.ss = {.global, .shared};
.atype = {.b1};
.btype = {.b1};
.ctype = {.s32};
```


wmma example

.global .align 32 .f16 A[256], B[256]; .global .align 32 .f32 C[256], D[256]; .reg .b32 a<8> b<8> c<8> d<8>; wmma.load.a.sync.aligned.m16n16k16.global.row.f16 {a0, a1, a2, a3, a4, a5, a6, a7}, [A]; wmma.load.b.sync.aligned.m16n16k16.global.col.f16 {b0, b1, b2, b3, b4, b5, b6, b7}, [B]; wmma.load.c.sync.aligned.m16n16k16.global.row.f32 {c0, c1, c2, c3, c4, c5, c6, c7}, [C]; wmma.mma.sync.aligned.m16n16k16.row.col.f32.f32 {d0, d1, d2, d3, d4, d5, d6, d7}, {a0, a1, a2, a3, a4, a5, a6, a7}, {b0, b1, b2, b3, b4, b5, b6, b7}, {c0, c1, c2, c3, c4, c5, c6, c7}; wmma.store.d.sync.aligned.m16n16k16.global.col.f32 [D], {d0, d1, d2, d3, d4, d5, d6, d7};

mma: fixed assigments of matrix fragments to registers in each thread of warp

9.7.13.4.2. Matrix Fragments for mma.m8n8k4 with .f64 floating point type

A warp executing mma.m8n8k4 with .f64 floating point type will compute an MMA operation of shape .m8n8k4.

Elements of the matrix are distributed across the threads in a warp so each thread of the warp holds a fragment of the matrix.

Multiplicand A:

.atype	Fragment	Elements (low to high)
.f64	A vector expression containing a single .f64 register, containing single .f64 element from the matrix A.	a0

Row\Col	0	0 1 2				
0	T0:a0	T1:a0	T2:a0	T3:a0		
1	T4:a0	T5:a0	T6:a0	T7:a0		
2				→ _		
	•					
7	T28:a0	T29:a0	T30:a0	T31:a0		

%laneid:{fragments}

mma: fixed assigments of matrix fragments to registers in each thread of warp

9.7.13.4.1. Matrix Fragments for mma.m8n8k4 with .f16 floating point type

A warp executing mma.m8n8k4 with .f16 floating point type will compute 4 MMA operations of shape .m8n8k4.

Elements of 4 matrices need to be distributed across the threads in a warp. The following table shows distribution of matrices for MMA operations.

MMA Computation	Threads participating in MMA computation
MMA computation 1	Threads with <code>%laneid</code> O-3 (low group) and 16-19 (high group)
MMA computation 2	Threads with <code>%laneid 4-7</code> (low group) and 20-23 (high group)
MMA computation 3	Threads with <code>%laneid 8-11</code> (low group) and 24-27 (high group)
MMA computation 4	Threads with <code>%laneid 12-15</code> (low group) and 28-31 (high group)

Row Major:

Row\Col	0	1	2	3
0		T0:{a	D, a1, a2, a3	}
3		T3:{a0), a1, a2, a3	}
4		T16:{a	0, a1, a2, a3	}
-		1		
7		T19:{a	0, a1, a2, a3	}

MMA	computation 2	

R

low\Col	0	1	2	3
0		T4:{ a0,	a1, a2, a3}	
		Ļ		
3		T7: { a0, a	1, a2, a3 }	
4		T20: { a0,	a1, a2, a3 }	
		Ļ		
7		T23: { a0,	a1, a2, a3 }	
				0/1

Row\Col	0	1	2	3
0		T8:{ a0	, a1, a2, a3}	
		Ļ		
3		T11:{ a0	, a1, a2, a3	}
4		T24: { a0	, a1, a2, a3	}
-		Ļ		
7		T27:{ a0	, a1, a2, a3	}

MMA computation 3

MMA computation 4

Row\Col	0	1	2	3
0		T12:{ a	0, a1, a2, a3	3}
			Ļ	
3		T15:{a), a1, a2, a3	}
4		T28: { a), a1, a2, a3	}
			Ļ	
7		T31:{a), a1, a2, a3	}

%laneid:{fragments}

Multiplicand A:

.atype	Fragment	Elements (low to high)
.f16	A vector expression containing two fl_{6x2} registers, with each register containing two fl_{6} elements from the matrix A.	a0, a1, a2, a3

mma: fixed assignments of matrix fragments to registers in each thread of warp

9.7.13.4.1. Matrix Fragments for mma.m8n8k4 with .f16 floating point type

A warp executing mma.m8n8k4 with .f16 floating point type will compute 4 MMA operations of shape .m8n8k4.

Elements of 4 matrices need to be distributed across the threads in a warp. The following table shows distribution of matrices for MMA operations.

MMA Computation	Threads participating in MMA computation
MMA computation 1	Threads with ${\tt laneid}$ 0-3 (low group) and 16-19 (high group)
MMA computation 2	Threads with ${\rm laneid}$ 4-7 (low group) and 20-23 (high group)
MMA computation 3	Threads with ${\rm laneid}8{\rm -}11$ (low group) and 24-27 (high group)
MMA computation 4	Threads with <code>%laneid</code> 12-15 (low group) and 28-31 (high group)

.ctype is .f16

			MN	/A co	mputa	tion 1	L				N	/MA o	omput	ation 3			
Row\Col	0	1	2	3	4	5	6	7	Row\Col	0	1	2	3	4	5	6	7
0		то	:{c0,	c1, c2,	c3, c4,	c5, c6	, c7 }		0		TE	8:{c0,	c1, c2, c	3, c4, c	5, c6, c	7 }	
3		T3	:{c0,d	c1, c2,	c3, c4,	c5, c6	, c7 }		3		T1	1:{ c0,	c1, c2, c	3, c4, c	5, c6, c	7}	
4		T16	5:{c0,	c1, c2,	c3, c4	, c5, c6	ō, c7 }		4		Т2	4:{ c0,	c1, c2, o	c3, c4, c	5, c6, c	7}	
-																	
7		T19	9:{c0,	c1, c2,	c3, c4	, c5, c6	5, c7 }		7		T2	7:{ c0,	c1, c2, o	:3, c4, c	5, c6, c	7 }	
			MN	/A cor	mputa	tion 2						AMA c	omput	ation 4	5		
Row\Col	0	1	2	3	4	5	6	7	Row\Col	0	1	2	3	4	5	6	7
0		T4 :	:{c0,c	1, c2,	c3, c4,	c5, c6,	c7 }		0		T1	2 : { c0,	c1, c2,	c3, c4, d	5, c6,	c7 }	
									-								
3		T7:	{ c0, c	1, c2,	c3, c4,	c5, c6,	c7 }		3		T1	5:{ c0,	c1, c2,	c3, c4, c	5, c6, c	7}	
4		T20	:{c0,d	c1, c2,	c3, c4,	c5, c6	, c7 }		4		T2	8: { c0,	c1, c2,	c3, c4, c	5, c6, d	7 }	
-									-								
7		T23	1 00 1	1 (2	c3. c4.	c5. c6	c7 }		7		Т3	1:{ c0.	c1. c2.	c3, c4, c	5. (6. (7 }	

Accumulators C (or D):

.ctype / .dtype	Fragment	Elements (low to high)	
.f16	A vector expression containing four .f16x2 registers, with each register containing two .f16 elements from the matrix C (or D).	c0, c1, c2, c3, c4, c5, c6, c7	
.f32	A vector expression of eight .f32 registers.		

.ctype is .f32

MMA computation 1							
R\C	0 1	2	3	4	5	6	7
0	T0 : { c0, c1	} T2:{	c0, c1 }	T0:{0	:4, c5 }	T2 : { c	4, c5 }
1	T1 : { c0, c1	} T3:{	c0,c1}	T1:{0	:4, c5 }	T3:{c	4 , c5 }
2	T0 : { c2, c3	} T2:{	c2, c3 }	T0:{c	:6, c7 }	T2:{c	6, c7 }
3	T1:{c2,c3	} T3:{	c2 , c3 }	T1:{0	:6, c7 }	T3:{c	6 , c7 }
4	T16 : { c0, c1	} T18:{	c0, c1 }	T16:{	c4, c5 }	T18:{	c4, c5 }
5	T17 : { c0, c1	} T19:{	c0, c1}	T17:{	c4, c5 }	T19:{0	:4,c5}
6	T16:{c2,c3	T18:{	c2, c3 }	T16:{	c6, c7 }	T18:{	c6, c7 }
7	T17 : { c2, c3	T19:{	c2,c3}	T17:{	c6, c7 }	T19:{0	:6, c7}

Sparse matrices: mma.sp

9.7.13.5. Matrix multiply-accumulate operation using mma.sp instruction with sparse matrix A

This section describes warp-level mma.sp instruction with sparse matrix A. This variant of the mma operation can be used when A is a structured sparse matrix with 50% zeros in each row distributed in a shape-specific granularity. For an MxNxK sparse mma.sp operation, the MxK matrix A is packed into MxK/2 elements. For each K-wide row of matrix A, 50% elements are zeros and the remaining K/2 non-zero elements are packed in the operand representing matrix A. The mapping of these K/2 elements to the corresponding K-wide row is provided explicitly as metadata.

Load and store: mma Idmatrix

Warp-wide load matrix instruction

```
// Load a single 8x8 matrix using 64-bit addressing
.reg .b64 addr;
.reg .b32 d;
ldmatrix.sync.aligned.m8n8.x1.shared.b16 {d}, [addr];
// Load two 8x8 matrices in column-major format
.reg .b64 addr;
.reg .b32 d<2>;
ldmatrix.sync.aligned.m8n8.x2.trans.shared.b16 {d0, d1}, [addr];
// Load four 8x8 matrices
.reg .b64 addr;
.reg .b32 d<4>;
ldmatrix.sync.aligned.m8n8.x4.b16 {d0, d1, d2, d3}, [addr];
```


Raihan et al., 2019

Get SASS code from cuobjdump disassembly

Raihan et al., 2019

Get SASS code from cuobjdump disassembly

(a) Disassembled SASS instructions for Mixed precision mode

Raihan et al., 2019

Get SASS code from cuobjdump disassembly

		Cumulative
		Clock Cycles
SET1 _ HMMA.884.F16.F16.STEP0 R4, R22.reuse.T, R12.reuse.T	, R4;	12
HMMA.884.F16.F16.STEP1 R6, R22.T, R12.T, R6;		21
SET2_HMMA.884.F16.F16.STEP0 R4, R16.reuse.T, R14.reuse.T	, R4;	25
DEIZ HMMA.884.F16.F16.STEP1 R6, R16.T, R14.T, R6;		34
SET3_HMMA.884.F16.F16.STEP0 R4, R18.reuse.T, R8.reuse.T,	R4;	38
HMMA.884.F16.F16.STEP1 R6, R18.T, R8.T, R6;		47
SET4_HMMA.884.F16.F16.STEP0 R4, R2.reuse.T, R10.reuse.T,	R4;	51
LHMMA.884.F16.F16.STEP1 R6, R2.T, R10.T, R6;		64

(b) Disassembled SASS instructions for FP16 mode

Raihan et al., 2019, reverse-engineered matrix fragment assignment

Figure 8: Distribution of operand matrix elements to threads for tensor cores in the RTX 2080 (Turing).

Raihan et al., 2019, reverse-engineered Tensor core microarchitecture

Figure 13: Proposed Tensor Core Microarchitecture

DEVELOPING CUDA KERNELS TO PUSH TENSOR CORES TO THE ABSOLUTE LIMIT ON NVIDIA A100

Andrew Kerr, May 21, 2020

https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/ s21745-developing-cuda-kernels-to-push-tensor-cores-to-the-absolute-limit-onnvidia-a100.pdf

NVIDIA AMPERE ARCHITECTURE

New and Faster Tensor Core Operations

- Floating-point Tensor Core operations 8x and 16x faster than F32 CUDA Cores
- Integer Tensor Core operations 32x and 64x faster than F32 CUDA Cores
- New IEEE double-precision Tensor Cores 2x faster than F64 CUDA Cores

Additional Data Types and Mode

Bfloat16, double, Tensor Float 32

Asynchronous copy

Copy directly into shared memory - deep software pipelines

Many additional new features - see "Inside NVIDIA Ampere Architecture"

PROGRAMMING NVIDIA AMPERE ARCHITECTURE

Deep Learning and Math Libraries using Tensor Cores (with CUDA kernels under the hood)

- cuDNN, cuBLAS, cuTENSOR, cuSOLVER, cuFFT, cuSPARSE
- "CUDNN V8: New Advances in Deep Learning Acceleration" (GTC 2020 S21685)
- "How CUDA Math Libraries Can Help you Unleash the Power of the New NVIDIA A100 GPU" (GTC 2020 S21681)
- "Inside the Compilers, Libraries and Tools for Accelerated Computing" (GTC 2020 S21766)

CUDA C++ Device Code

• CUTLASS, CUDA Math API, CUB, Thrust, libcu++

💿 NVIDIA.

PROGRAMMING NVIDIA AMPERE ARCHITECTURE with CUDA C++

This is a talk for CUDA programmers

7 **© NVIDIA**

CUTLASS

CUDA C++ Templates for Deep Learning and Linear Algebra

https://github.com/NVIDIA/cutlass

CUTLASS What's new?

CUTLASS 2.2: optimal performance on NVIDIA Ampere Architecture

- Higher throughput Tensor Cores: more than 2x speedup for all data types
- New floating-point types: bfloat16, Tensor Float 32, double
- Deep software pipelines with cp.async: efficient and latency tolerant

CUTLASS 2.1

- Planar complex: complex-valued GEMMs with batching options targeting Volta and Turing Tensor Cores
- BLAS-style host side API

CUTLASS 2.0: significant refactoring using modern C++11 programming

- Efficient: particularly for Turing Tensor Cores
- Tensor Core programming model: reusable components for linear algebra kernels in CUDA
- Documentation, profiling tools, reference implementations, SDK examples, more..

https://github.com/NVIDIA/cutlass

CUTLASS PERFORMANCE ON NVIDIA AMPERE ARCHITECTURE

CUTLASS 2.2 - CUDA 11 Toolkit - NVIDIA A100

TENSOR CORES ON NVIDIA AMPERE ARCHITECTURE

WHAT ARE TENSOR CORES?

Matrix operations: D = op(A, B) + C

- Matrix multiply-add
- XOR-POPC

Input Data types: A, B

half, bfloat16, Tensor Float 32, double, int8, int4, bin1

Accumulation Data Types: C, D

half, float, int32_t, double

WHAT ARE TENSOR CORES?

Matrix operations: D = op(A, B) + C

- Matrix multiply-add
- XOR-POPC

M-by-N-by-K matrix operation

- Warp-synchronous, collective operation
- 32 threads within warp collectively hold A, B, C, and D operands

NVIDIA AMPERE ARCHITECTURE - TENSOR CORE OPERATIONS

ΡΤΧ	Data Types (A * B + C)	Shape	Speedup on NVIDIA A100 (vs F32 CUDA cores)	Speedup on Turing* (vs F32 Cores)	Speedup on Volta* (vs F32 Cores)	
mma.sync.m16n8k16 mma.sync.m16n8k8	F16 * F16 + F16 F16 * F16 + F32 BF16 * BF16 + F32	16-by-8-by-16 16-by-8-by-8	16x	8x	8x	
mma.sync.m16n8k8	TF32 * TF32 + F32	16-by-8-by-8	8x	N/A	N/A	
mma.sync.m8n8k4	F64 * F64 + F64	8-by-8-by-4	2x	N/A	N/A	
mma.sync.m16n8k32 mma.sync.m8n8k16	S8 * S8 + S32	16-by-8-by-32 8-by-8-by-16	32x	16x	N/A	
mma.sync.m16n8k64	S4 * S4 + S32	16-by-8-by-64	64x	32x	N/A	
mma.sync.m16n8k256	B1 ^ B1 + S32	16-by-8-by-256	256x	128x	N/A	

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-mma-and-friends

* Instructions with equivalent functionality for Turing and Volta differ in shape from the NVIDIA Ampere Architecture in several cases.

TENSOR CORE OPERATION: FUNDAMENTAL SHAPE

Warp-wide Tensor Core operation: 8-by-8-by-128b

S8 * S8 + S32

8-by-8-by-16

mma.sync.aligned (via inline PTX)

int32_t D[2]; uint32_t const A; uint32_t const B; int32_t const C[2];

64 bits

r₀

 r_1

// Example targets 8-by-8-by-16 Tensor Core operation

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-mma-and-friends

EXPANDING THE M DIMENSION

Warp-wide Tensor Core operation: 16-by-8-by-128b

F16 * F16 + F32

16-by-8-by-8

mma.sync.aligned (via inline PTX)

float D[4]; uint32_t const A[2]; uint32_t const B; float const C[4];

// Example targets 16-by-8-by-8 Tensor Core operation

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-mma-and-friends

EXPANDING THE K DIMENSION

Warp-wide Tensor Core operation: 16-by-8-by-256b

F16 * F16 + F32

mma.sync.aligned (via inline PTX)

float		D[4];
uint32_t	const	A[4];
uint32_t	const	B[2];
float	const	C[4];

// Example targets 16-by-8-by-32 Tensor Core operation

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-mma-and-friends

mma.sync.aligned (via inline PTX)

int32_t	D[4];
<pre>uint32_t const</pre>	A[4];
<pre>uint32_t const</pre>	B[2];
<pre>int32_t const</pre>	C[4];

// Example targets 16-by-8-by-32 Tensor Core operation

asm("mma.sync.aligned.m16n8k32.row.col.s32.s8.s8.s32 " " { %0, %1, %2, %3 }, " { %4, %5, %6, %7 }, " { %8, %9 }, н п.... { %10, %11, %12, %13 };" "=r"(D[0]), "=r"(D[1]), "=r"(D[2]), "=r"(D[3]) "r"(A[0]), "r"(A[1]), "r"(A[2]), "r"(A[3]), "r"(B[0]), "r"(B[1]), "r"(C[0]), "r"(C[1]), "r"(C[2]), "r"(C[3]));

HALF-PRECISION : F16 * F16 + F16

mma.sync.aligned (via inline PTX)

uint32_t D[2];	//	two	registers	needed	(VS.	four)
<pre>uint32_t const A[4];</pre>						
<pre>uint32_t const B[2];</pre>						
<pre>uint32_t const C[2];</pre>	//	two	registers	needed	(VS.	four)

// Example targets 16-by-8-by-16 Tensor Core operation

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-mma-and-friends

DOUBLE-PRECISION: F64 * F64 + F64mma.sync.aligned8-by-8-by-4(via inline PTX)

128 bits

f64₁

<pre>uint64_t D[2]; // two 64-bit accumulators uint64_t const A; // one 64-bit element for A operand uint64_t const B; // one 64-bit element for B operand uint64_t const C[2]; // two 64-bit accumulators</pre>
<pre>// Example targets 8-by-8-by-4 Tensor Core operation</pre>
asm(
"mma.sync.aligned. m8n8k4 .row.col. f64.f64.f64.f64 "
" { %0, %1}, "
"%2,"
" %3, "
" { %4, %5 }; "
:
"=l"(D[0]), "=l"(D[1])
:
"l"(A),
"1"(B),
"l"(C[0]), "l"(C[1])
);

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-mma-and-friends

CUTLASS: wraps PTX in template

m-by-n-by-k

cutlass::arch::Mma

>

/// Matrix multiply-add operation template <</pre> /// Size of the matrix product (concept: GemmShape) typename Shape, /// Number of threads participating int kThreads, /// Data type of A elements typename ElementA, /// Layout of A matrix (concept: MatrixLayout) typename LayoutA, /// Data type of B elements typename ElementB, /// Layout of B matrix (concept: MatrixLayout) typename LayoutB, /// Element type of C matrix typename ElementC, /// Layout of C matrix (concept: MatrixLayout) typename LayoutC, /// Inner product operator typename Operator struct Mma;

https://github.com/NVIDIA/cutlass/blob/master/include/cutlass/arch/mma_sm80.h

CUTLASS: wraps PTX in template

16-by-8-by-16

cutlass::arch::Mma

__global__ void kernel() {

. . .

}

// arrays containing logical elements
Array<half_t, 8> A;
Array<half_t, 4> B;
Array< float, 4> C;

// define the appropriate matrix operation
arch::Mma< GemmShape<16, 8, 16>, 32, ... > mma;

// in-place matrix multiply-accumulate
mma(C, A, B, C);

https://github.com/NVIDIA/cutlass/blob/master/include/cutlass/arch/mma_sm80.h

EFFICIENT DATA MOVEMENT FOR TENSOR CORES

HELLO WORLD: TENSOR CORES

Map each thread to coordinates of the matrix operation

Load inputs from memory

Perform the matrix operation

Store the result to memory

64 bits

}

CUDA example

```
global void tensor core example 8x8x16(
  int32_t
                *D,
  uint32 t const *A,
 uint32_t const *B,
 int32_t const *C) {
```

// Compute the coordinates of accesses to A and B matrices

```
int outer = threadIdx.x / 4;
                            // m or n dimension
int inner = threadIdx.x % 4;
                              // k dimension
```

// Compute the coordinates for the accumulator matrices int c_row = threadIdx.x / 4; int c col = 2 * (threadIdx.x % 4);

```
// Compute linear offsets into each matrix
int ab idx = outer * 4 + inner;
int cd_idx = c_row * 8 + c_col;
```

```
// Issue Tensor Core operation
asm(
  "mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 "
  " { %0, %1 }, "
       %2.
  ....
       %3.
  .....
     { %4, %5 }; "
    "=r"(D[cd_idx]), "=r"(D[cd_idx + 1])
    "r"(A[ab_idx]),
    "r"(B[ab_idx]),
    "r"(C[cd_idx]), "r"(C[cd_idx + 1])
);
```

PERFORMANCE IMPLICATIONS

Load A and B inputs from memory: 2 x 4B per thread Perform one Tensor Core operation: 2048 flops per warp

2048 flops require 256 B of loaded data

→ 8 flops/byte

NVIDIA A100 Specifications:

- 624 TFLOP/s (INT8)
- 1.6 TB/s (HBM2)
- → 400 flops/byte

8 flops/byte * 1.6 TB/s → 12 TFLOP/s

This kernel is global memory bandwidth limited.

CUDA example

```
__global__ void tensor_core_example_8x8x16(
    int32_t *D,
    uint32_t const *A,
    uint32_t const *B,
    int32_t const *C) {
```

// Compute the coordinates of accesses to A and B matrices

int outer = threadIdx.x / 4; // m or n dimension int inner = threadIdx.x % 4; // k dimension

// Compute the coordinates for the accumulator matrices
int c_row = threadIdx.x / 4;
int c_col = 2 * (threadIdx.x % 4);

// Compute linear offsets into each matrix
int ab_idx = outer * 4 + inner;
int cd_idx = c_row * 8 + c_col;

```
// Issue Tensor Core operation
asm(
    "mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 "
    " { %0, %1 }, "
    " %2, "
    " %3, "
    " %3, "
    " { %4, %5 }; "
    :
        "=r"(D[cd_idx]), "=r"(D[cd_idx + 1])
    :
        "r"(A[ab_idx]),
        "r"(B[ab_idx]),
        "r"(C[cd_idx]), "r"(C[cd_idx + 1])
);
}
```

FEEDING THE DATA PATH

Efficient storing and loading through Shared Memory

Tiled, hierarchical model: reuse data in Shared Memory and in Registers

See CUTLASS GTC 2018 talk for more details about this model.

FEEDING THE DATA PATH

Move data from Global Memory to Tensor Cores as efficiently as possible

Latency-tolerant pipeline from Global Memory

- Conflict-free Shared Memory stores
- Conflict-free Shared Memory loads

ASYNCHRONOUS COPY: EFFICIENT PIPELINES

New NVIDIA Ampere Architecture feature: cp.async

- Asynchronous copy directly from Global to Shared Memory
- See "Inside the NVIDIA Ampere Architecture" for more details (GTC 2020 S21730)

Enables efficient software pipelines

- Minimizes data movement: L2 → L1 → RF → SMEM becomes L2 → SMEM
- Saves registers: RF no longer needed to hold the results of long-latency load instructions
- Indirection: fetch several stages in advance for greater latency tolerance

FEEDING THE DATA PATH

Move data from Global Memory to Tensor Cores as efficiently as possible

- Latency-tolerant pipeline from Global Memory
- Conflict-free Shared Memory stores
- Conflict-free Shared Memory loads

GLOBAL MEMORY TO TENSOR CORES

T26 T27

T24 T25

T28 T29 T30 T31

T24 T25 T26 T27

T28

T29 T30

T31

T24 T25 T26 T27

T28 T29 T30 T31

LDMATRIX: FETCH TENSOR CORE OPERANDS

PTX instruction to load a matrix from Shared Memory

Each thread supplies a pointer to 128b row of data in Shared Memory

Each 128b row is broadcast to groups of four threads

(potentially different threads than the one supplying the pointer)

Data matches arrangement of inputs to Tensor Core operations

Shared Memory

Tensor Cores

Core ope	rations										11	15	19 1	131	17 T21	1 125	129
Shared Me						Shared Memory					Т2	т6	т10 т	14 т	18 T22	2 T26	т30
Pointe	rs					Pointers					тз	T7	т11 т	15 T	19 T23	3 T27	T31
то —	\rightarrow [Т0	T1	T2	Т3	T16 →	Т0	T1	T2	Т3		ю	T1	Τ	T2	Т	3
T1 —	\rightarrow	T4	T5	Т6	T7	T17 →	T4	T5	Т6	T7	1	4	Т5		т6	т	7
T2 —	\rightarrow	Т8	Т9	T10	T11	T18>	Т8	Т9	T10	T11	٦	8	Т9		т10	T	11
тз —	\rightarrow	T12	T13	T14	T15	T19>	T12	T13	T14	T15	т	12	T13	3	Т14	T	15
T4	→	T16	T17	T18	T19	T20>	T16	T17	T18	T19	Т	16	T17	,	T18	T	9
т5 —	\rightarrow	T20	T21	T22	T23	T21 →	T20	T21	T22	T23	т	20	T21		т22	T2	23
т6 _	→	T24	T25	T26	T27	T22>	T24	T25	T26	T27	Т	24	T25	;	T26	T2	27
T7 _	→	T28	T29	T30	T31	T23>	T28	T29	Т30	T31	Т	28	T29	,	Т30	T3	31
тв —	→ [т0	T1	T2	Т3	T24 →	Т0	T1	T2	Т3	1	0	Т1		T2	т	3
т9 _	\rightarrow	T4	T5	Т6	T7	T25>	T4	T5	T6	T7	٦	4	Т5		т6	т	7
T10 _	\rightarrow	Т8	Т9	T10	T11	T26 →	Т8	Т9	T10	T11	7	8	Т9		т10	T	1
T11 _	\rightarrow	T12	T13	T14	T15	T27 →	T12	T13	T14	T15	т	12	T13	,	т14	TI	15
T12 _	\rightarrow	T16	T17	T18	T19	T28>	T16	T17	T18	T19	т	16	т17	,	т18	T	19
T13 _	→	T20	T21	T22	T23	T29>	T20	T21	T22	T23	Т	20	T21		T22	T2	23
T14	→	T24	T25	T26	T27	T30>	T24	T25	T26	T27	Т	24	T25	;	T26	T	27
T15 _	→	T28	T29	Т30	T31	T31>	T28	T29	Т30	T31	Т	28	T29	,	T30	T3	31

T0 T4 T8 T12 T16 T20 T24

T1 T5 T9 T13 T17 T21 T25 T29

T2 T6 T10 T14 T18 T22 T26 T30

T3 T7 T11 T15 T19 T23 T27 T3:

T0 T4 T8 T12 T16 T20 T24 T28

LDMATRIX: PTX INSTRUCTION

PTX instruction to load a matrix from SMEM

Each thread supplies a pointer to 128b row of data in Shared Memory

Each 128b row is broadcast to groups of four threads

(potentially different threads than the one supplying the pointer)

Data matches arrangement of inputs to Tensor Core operations

```
// Inline PTX assembly for ldmatrix
uint32_t R[4];
uint32_t smem_ptr;
asm volatile (
   "ldmatrix.sync.aligned.x4.m8n8.shared.b16 "
   "{%0, %1, %2, %3}, [%4];
   "
   "=r"(R[0]), "=r"(R[1]), "=r"(R[2]), "=r"(R[3])
   :
   "r"(smem_ptr)
);
```


GLOBAL MEMORY TO TENSOR CORES

ldmatrix

NVIDIA AMPERE ARCHITECTURE - SHARED MEMORY BANK TIMING

Slide borrowed from: Guillaume Thomas-Collignon and Paulius Micikevicius. "Volta Architecture and performance optimization." GTC 2018. http://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf

GLOBAL MEMORY TO TENSOR CORES

Bank conflict on either store or load from Shared Memory

GLOBAL TO SHARED MEMORY

т0	T1	T2	Т3	T4	Т5	Т6	Т7
Т9	Т8	T11	Т10	T13	T12	T15	T14
T18	T19	T16	T17	T22	T23	T20	T21
T27	T26	T25	T24	T31	⊤30	T29	T28
[7
Γ							7

Phase	0:	ТØ		Τ7
Phase	1:	Т8	••	T15
Phase	2:	T16		T23
Phase	3:	T24		T31

GLOBAL TO SHARED MEMORY

GLOBAL TO SHARED MEMORY

Phase 0: T0 .. T7 Phase 1: T8 .. T15 Phase 2: T16 .. T23 Phase 3: T24 .. T31

FEEDING THE DATA PATH

Move data from Global Memory to Tensor Cores as efficiently as possible

- Latency-tolerant pipeline from Global Memory
- Conflict-free Shared Memory stores
- Conflict-free Shared Memory loads

Logical view of threadblock tile

Load Matrix from Shared Memory

т0	T16			T1	T17		
T18	T2			T19	Т3		
		T4	T20			T5	T21
		T22	Т6			T23	T7
Т8	T24			Т9	T25		
T26	T10			T27	T11		
		T12	T28			T13	T29
		Т30	T14			Т31	T15
Г							7

.

Т0	\longrightarrow	Γ
T1	\rightarrow	
T2	\rightarrow	
Т3	\rightarrow	
T4	\longrightarrow	
T5	\rightarrow	
Т6	\longrightarrow	
T7	\longrightarrow	
Т8	\rightarrow	
Т8 Т9	\rightarrow	F
	\rightarrow	
Т9		
Т9 Т10	$ \\ $	
T9 T10 T11	${\rightarrow} {\rightarrow} }{\rightarrow} {\rightarrow} {\rightarrow} {\rightarrow} }{\rightarrow} {\rightarrow} }{\rightarrow} {\rightarrow} }{\rightarrow} \rightarrow$	
T9 T10 T11 T12		

Shared Memory Pointers

т0	T1	T2	Т3
Т4	T5	Т6	T7
Т8	Т9	T10	T11
T12	T13	T14	T15
T16	T17	T18	T19
T20	T21	T22	T23
T24	T25	T26	T27
T28	T29	T30	T31
то	T1	T2	T3
	1.1	16.77	100
T4	T5	T6	T7
Т8	Т9	T10	T11
T12	T13	T14	T15
T16	T17	T18	T19
T20	T21	T22	T23
T24	T25	T26	T27

	d Memory inters			
T16	\longrightarrow	т0	T1	[
T17	\longrightarrow	T4	T5	
T18	\longrightarrow	Т8	Т9	ľ
T19	\longrightarrow	T12	T13	
T20	\longrightarrow	T16	T17	
T21	\longrightarrow	T20	T21	
T22	\longrightarrow	T24	T25	
T23	\longrightarrow	T28	T29	
T24	\longrightarrow	то	T1	[
T25	\longrightarrow	T4	T5	ľ
T26	\rightarrow	Т8	Т9	ľ
T27	\rightarrow	T12	T13	
T28	\longrightarrow	T16	T17	
T29	\longrightarrow	T20	T21	
Т30	\longrightarrow	T24	T25	
T31	\longrightarrow	T28	T29	

		то	т4	т8	т12	т16	т20	т24	т28
		т1	т5	т9	т13	т17	т21	т25	т29
		т2	т6	т10	T14	T18	т22	т26	т30
		тз	77	т11	т15	т19	т23	т27	Т31
		то	т4	т8	т12	т16	т20	т24	т28
		т1	т5	т9	т13	т17	т21	т25	т29
		т2	т6	т10	т14	т18	т22	т26	т30
		тз	т7	т11	т15	т19	т23	т27	т31
T2	Т3		0	Т	1	Т	2	Т	3
Т6	T7	1	4	Т	5	т	6	т	7
T10	T11		8	т	9	T	10	T1	1
T14	T15	т	12	т	13	T	14	T1	5
T18	T19	т	16	т	17	T	18	T1	9
T22	T23	т	20	Т	21	T:	22	T2	3
T26	T27	Т	24	Т	25	Т	26	T2	7
T30	T31	Т	28	T	29	T:	30	Т3	1
T2	Т3		0	Т	1	Т	2	T	3
Т6	T7	1	4	т	5	т	6	т	7
T10	T11	1	8	т	9	T	10	T1	1
T14	T15	т	12	T	13	T	14	T1	5
T18	T19	т	16	T	17	T	18	Т1	9
T22	T23	Т	20	Т	21	T	22	T2	3
T26	T27	Т	24	T:	25	т	26	T2	7
T30	T31	Т	28	т	29	T	30	ТЗ	1

Logical view of threadblock tile

Load Matrix from Shared Memory

	T16			Τ1	T17		
T18	T2			T19	Т3		
		T4	T20			Т5	T21
		T22	Т6			T23	T7
Т8	T24			Т9	T25		
T26	T10			T27	T11		
		T12	T28			T13	T29
		Т30	T14			T31	T15
							7

то	\longrightarrow	
Τ1	\rightarrow	
Т2	\longrightarrow	
Т3	\longrightarrow	
T4	\rightarrow	
Т5	\rightarrow	
Т6	\longrightarrow	
Τ7	\longrightarrow	
Т8	\rightarrow	
Т8 Т9	\rightarrow	
	\rightarrow	
Т9	$\uparrow \uparrow \uparrow \uparrow$	
Т9 Т10		
T9 T10 T11		
T9 T10 T11 T12		
T9 T10 T11 T12 T13		

Shared Memory

Pointers

т0	T1	Т2	Т3
T4	T5	Т6	T7
Т8	Т9	T10	T11
T12	T13	T14	T15
T16	T17	T18	T19
T20	T21	T22	T23
T24	T25	T26	T27
T28	T29	T30	T31
то	T1	T2	Т3
T0 T4	T1 T5	T2 T6	T3 T7
	1.7	15.77	
T4	T5	T6	T7
T4 T8	T5 T9	T6 T10	T7 T11
T4 T8 T12	T5 T9 T13	T6 T10 T14	T7 T11 T15

T29 T30

T31

T28

T16	\longrightarrow	то
T17	\longrightarrow	T4
T18	\longrightarrow	Т8
T19	\longrightarrow	T12
T20	\longrightarrow	T16
T21	\longrightarrow	T20
T22	\longrightarrow	T24
T23	\longrightarrow	T28
T24	\longrightarrow	то
T25	\longrightarrow	T4
T26	\rightarrow	т8
T27	\longrightarrow	T12
T28	\longrightarrow	T16
T29	\longrightarrow	T20
Т30	\longrightarrow	T24
T31		T28

Shared Memory

Pointers

		то	т4	т8	т12	т16	т20	т24	т28
		т1	т5	т9	т13	т17	т21	т25	т29
		т2	т6	т10	т14	т18	т22	т26	т30
		тз	т7	т11	т15	т19	т23	т27	Т31
		то	т4	тв	т12	т16	т20	т24	т28
		т1	т5	т9	т13	т17	т21	т25	т29
		т2	т6	т10	т14	т18	т22	т26	т30
		тз	T7	T11	T15	т19	T23	T27	
							125	12/	131
T2	Т3		17		1	т		T.	
T2 T6	T3 T7			Т			2		3
		1	0	т	1	Т	2	T.	3
Т6	T7		TO T4	T T T	1	Т	2 6	T. T	3 7 .1
T6 T10	T7 T11	T T	70 74 78	T T T T	1 5 9	T T T:	2 6 10 14	T. T T1	3 7 .1 .5
T6 T10 T14	T7 T11 T15	T T	70 74 78 12	T T T T	-1 -5 -9 13	т т: т:	2 6 10 14	т. т т1 т1	3 7 .1 .5 .9
T6 T10 T14 T18	T7 T11 T15 T19	T T T	70 74 78 12 16	T T T. T. T.	1 5 9 13 17	Т Т: Т: Т:	2 6 10 14 18 22	т. т т1 т1 т1	3 7 .1 .5 .9
T6 T10 T14 T18 T22	T7 T11 T15 T19 T23	т Т Т Т Т	70 74 78 12 16 20	T T T T T T	1 5 9 13 17 21	T T: T: T: T;	2 6 10 14 18 22 26	T. T1 T1 T1 T1 T2	3 7 1 5 9 23
T6 T10 T14 T18 T22 T26	T7 T11 T15 T19 T23 T27		70 74 78 12 16 20 24	т т т. т. т. т.	1 5 9 13 17 21 25	T T: T: T: T: T:	2 6 10 14 18 22 26 30	T. T1 T1 T1 T1 T2 T2	3 7 1 5 9 2 3 27 31
T6 T10 T14 T18 T22 T26 T30	T7 T11 T15 T19 T23 T27 T31		70 74 78 12 16 20 24 28	т т т. т. т. т. т. т. т.	1 5 79 13 17 21 25 29	T T: T: T: T: T: T:	2 6 10 14 18 22 26 80 2	т. т т1 т1 т2 т2 т2 т3	3 7 1 5 9 23 27 31 3
T6 T10 T14 T18 T22 T26 T30 T2	T7 T11 T15 T19 T23 T27 T31 T3		70 74 78 112 116 220 224 228	т т т т. т. т. т. т. т. т.	1 5 9 13 17 21 25 29	T T: T: T: T: T: T: T:	2 6 10 14 18 22 26 30 2 2 6	T. T1 T1 T1 T2 T2 T2 T3 T.	3 7 1 5 9 23 27 81 3 7
T6 T10 T14 T18 T22 T26 T30 T2 T2 T6	T7 T11 T15 T19 T23 T27 T31 T3 T7		r0 74 78 112 116 200 224 28 70 74	т т т. т. т. т. т. т. т. т. т. т.	1 5 9 13 17 21 25 29 1 5	T T T T T T T T T T	2 6 10 14 18 22 26 30 2 2 6 10	T. T1 T1 T2 T2 T3 T. T. T.	3 7 .1 .5 .9 23 27 31 3 7 1
T6 T10 T14 T18 T22 T26 T30 T2 T2 T6 T10	T7 T11 T15 T19 T23 T27 T31 T3 T7 T11		r0 74 78 112 116 20 24 28 70 74 78	т т т т. т. т. т. т. т. т. т.	1 5 9 113 17 21 25 29 1 5 5 9	T T: T: T: T: T: T: T: T: T:	2 6 10 14 18 22 26 80 2 2 6 6 10 14	т. т1 т1 т2 т2 т2 т3 т, т т1	3 7 1 5 9 23 27 81 3 7 1 5
T6 T10 T14 T18 T22 T26 T30 T2 T6 T10 T14 T14 T14 T12 T6 T10 T14	T7 T11 T15 T19 T23 T27 T31 T3 T7 T11 T15		TO 74 78 112 116 220 224 228 70 74 78 112	т т т, т, т, т, т, т, т, т,	1 5 79 13 17 21 25 29 1 5 5 79 13	T T T T T T T T T T T	2 6 10 14 18 22 26 80 22 6 10 14 18	т. т1 т1 т2 т2 т2 т3 т. т т1 т1	3 7 1 5 9 23 27 31 3 7 1 5 9
T6 T10 T14 T18 T22 T26 T30 T2 T6 T10 T114	T7 T11 T15 T19 T23 T27 T31 T3 T7 T11 T15		70 74 78 12 16 20 24 28 70 74 78 74 78 712 16	т т т т. т. т. т. т. т. т. т. т.	1 5 9 13 17 21 25 29 1 1 5 9 13 17	T T: T: T: T: T: T: T: T: T: T:	2 6 10 14 18 22 26 30 2 2 6 10 14 18 22 2	T T T T T T T T T T T T T T	3 7 1 5 9 23 3 7 3 1 5 9 9 23

Т2 Τ1

Т5 Т6

Т9 T13 T14

T17 T21 T22

T25

T29

T1 Т2

T5 Т6

Т9

T13 T14

T17 T18

T21 T22

T25 T26

T29

Logical view of threadblock tile

Load Matrix from Shared Memory

т0	T16			T1	T17		
T18	T2			T19	Т3		
		T4	T20			T5	T21
		T22	Т6			T23	T7
Т8	T24			Т9	T25		
T26	T10			T27	T11		
		T12	T28			T13	T29
		Т30	T14			T31	T15
Г							7

то	\rightarrow
Τ1	\rightarrow
Т2	\longrightarrow
Т3	\longrightarrow
Τ4	\rightarrow
Т5	\rightarrow
Т6	\longrightarrow
Τ7	\longrightarrow
Т8	\rightarrow
Т9	\longrightarrow
T10	\longrightarrow
T11	\rightarrow
T12	>
T13	
T14	>
T15	>

Shared Memory Pointers

				_
т0	T1	T2	Т3	
T4	T5	T6	T7	
Т8	Т9	T10	T11	
T12	T13	T14	T15	-
T16	T17	T18	T19	-
T20	T21	T22	T23	
T24	T25	T26	T27	-
T28	T29	T30	T31	-
то	T1	T2		╎┖╍
TO	T1	T2	Т3	
T0 T4	T1 T5	Т6	T3 T7	
		10000	Т3	
T4	T5	Т6	T3 T7	
T4 T8	T5 T9	T6 T10	T3 T7 T11	
T4 T8 T12	T5 T9 T13	T6 T10 T14	T3 T7 T11 T15	
T4 T8 T12 T16	T5 T9 T13 T17	T6 T10 T14 T18	T3 T7 T11 T15 T19	1

	d Memory inters			
T16	\rightarrow	то	T1	T2
T17	\longrightarrow	T4	T5	Т6
T18	\longrightarrow	Т8	Т9	T10
T19	\longrightarrow	T12	T13	T14
T20	\longrightarrow	T16	T17	T18
T21	\longrightarrow	T20	T21	T22
T22	\longrightarrow	T24	T25	T26
T23	\rightarrow	T28	T29	T30
T24		то	T1	T2
T25	\rightarrow	T4	T5	Т6
T26	\rightarrow	Т8	Т9	T10
T27	\rightarrow	T12	T13	T14
T28	\rightarrow	T16	T17	T18
T29	\longrightarrow	T20	T21	T22
Т30	\rightarrow	T24	T25	T26
T31	\rightarrow	T28	T29	T30

	то	т4	т8	т12	т16	т20	т24	т28
	т1	т5	т9	т13	т17	т21	т25	т29
	т2	т6	т10	Т14	T18	т22	т26	т30
	тз	77	т11	т15	т19	т23	т27	т31
	то	т4	т8	т12	т16	т20	т24	т28
	т1	т5	т9	т13	т17	т21	т25	т29
	т2	т6	т10	т14	т18	т22	т26	т30
	тз	т7	T11	T15	т19	T23	T27	T31
						123		
Т3		0		1	Т		T	
T3 T7	Т		Т			2		3
	Т	0	т т	1	т	2	T	3
T7	T T T	TO T4	T T T	1	т	2 6 10	T. T	3 7 .1
T7 T11	T T T T	70 74 78	T T T T	1 5 9	т	2 6 10	T. T T1	3 7 .1 .5
T7 T11 T15	T T T T	70 74 78 12	T T T T	-1 -5 -9 13	T T T T T	2 6 10 14	т. т т1 т1	3 7 .1 .5 .9
T7 T11 T15 T19	T T T T. T.	70 74 78 12 16	T T T. T. T.	1 5 9 13 17	T T T T T T	2 6 10 14 18	т. т т1 т1	3 7 .1 .5 .9
T7 T11 T15 T19 T23	T T T T. T. T.	70 74 78 12 16 20	T T T. T. T. T.	1 5 9 13 17 21	T T T T T T	2 6 10 14 18 22 26	T. T1 T1 T1 T1 T2	3 7 .1 .5 .9 23 27
T7 T11 T15 T19 T23 T27	т т т т. т. т. т.	70 74 78 12 16 20 24	т т т. т. т. т. т.	1 5 9 13 17 21 25	T T T T T T T T	2 6 10 14 18 22 26 30	T. T1 T1 T1 T1 T2 T2	3 7 1 5 9 2 3 27 31
T7 T11 T15 T19 T23 T27 T31		70 74 78 12 16 20 24 28	т т т. т. т. т. т. т. т.	1 5 79 13 17 21 25 29	T T T T T T Z T Z T Z	2 6 10 14 18 22 26 80 2	т. т т1 т1 т2 т2 т2 т3	3 7 5 9 23 27 31
T7 T11 T15 T19 T23 T27 T31 T3		70 74 78 112 116 20 24 28	т т т т. т. т. т. т. т. т. т.	1 5 9 13 17 21 25 29	T T T T T T T T T T	2 6 10 14 18 22 26 80 2 2 6	T. T T1 T1 T1 T2 T2 T2 T3 T.	3 7 .1 .5 .9 .3 .7 .7 .3 .3 .7 .7 .3 .7 .7
T7 T11 T15 T19 T23 T27 T31 T3 T7	T T T T T T T	r0 74 78 112 116 200 224 28 70 74	т т т. т. т. т. т. т. т. т. т.	1 5 9 13 17 21 25 29 1 5	T T T T T T T T T T T	2 6 10 14 18 22 26 80 2 2 6 10	T. T1 T1 T1 T2 T2 T3 T. T. T.	3 7 1 5 9 9 23 27 31 3 7 1
T7 T11 T15 T19 T23 T27 T31 T7 T11		r0 r4 r8 r12 r16 r20 r24 r28 r0 r4 r8	т т т т. т. т. т. т. т. т. т.	1 5 9 113 17 21 25 29 1 5 5 9	T T T T T T T T T T T T	2 6 10 14 18 22 26 80 2 2 6 10 14	т. т1 т1 т2 т2 т2 т3 т, т т т1	3 7 1 5 9 23 27 31 3 7 1 5
T7 T11 T15 T19 T23 T27 T31 T3 T3 T7 T11 T15		TO 74 78 112 116 220 224 228 70 74 78 112	т т т т, т, т, т, т, т, т,	1 5 9 13 17 21 25 29 1 5 5 9 13	T T T T T T T T T T T T	2 6 10 14 18 22 26 6 80 2 2 6 10 4 4 88	T. T1 T1 T1 T2 T2 T2 T3 T. T T1 T1	3 7 1 5 9 23 27 31 3 7 1 5 9
T7 T11 T15 T19 T23 T27 T31 T3 T7 T11 T15 T19	T T T T T T T T T T	70 74 78 12 16 20 24 28 70 74 78 74 78 712 16	т т т т. т. т. т. т. т. т. т. т. т.	1 5 9 13 17 21 25 29 1 1 5 9 13 17	T T T T T T T T T T T T T T	2 6 10 14 18 22 26 30 2 2 6 10 14 18 8 22	T. T1 T1 T1 T2 T2 T2 T2 T3 T. T T1 T1 T1 T1	3 7 1 5 9 23 7 1 3 7 1 5 9 23

Logical view of threadblock tile

Load Matrix from Shared Memory

т0	T16			T1	T17		
T18	T2			T19	Т3		
		T4	T20			Т5	T21
		T22	Т6			T23	T7
Т8	T24			Т9	T25		
T26	T10			T27	T11		
		T12	T28			T13	T29
		T30	T14			T31	T15
Γ							7

Poi	nters	
то	\rightarrow	то
Τ1	\rightarrow	T4
T2	\longrightarrow	Т8
Т3	\rightarrow	T12
T4	\rightarrow	T16
Т5	\rightarrow	T20
Т6	\rightarrow	T24
Τ7	\longrightarrow	T28
Т8	\rightarrow	то
Т9	\longrightarrow	T4
T10	\longrightarrow	Т8
T11	\rightarrow	T12
T12	\rightarrow	T16
T13	\rightarrow	T20
T14	\longrightarrow	T24
T15	\rightarrow	T28

Shared Memory

т0	T1	T2	Т3	
T4	T5	Т6	T7	
Т8	Т9	T10	T11	
T12	T13	T14	T15	
T16	T17	T18	T19	
T20	T21	T22	T23	
T24	T25	T26	T27	
T28	T29	T30	T31	
то	T1	T2	Т3	
T4	T5	T6	T7	
Т8	Т9	T10	T11	
T12	T13	T14	T15	
T16	T17	T18	T19	
T20	T21	T22	T23	
T24	T25	T26	T27	

T29 T30

T31

	d Memory inters			
T16	\rightarrow	то	T1	T2
T17	\longrightarrow	T4	T5	Т6
T18	\rightarrow	Т8	Т9	T10
T19	\longrightarrow	T12	T13	T14
T20	\longrightarrow	T16	T17	T18
T21	\longrightarrow	T20	T21	T22
T22	\rightarrow	T24	T25	T26
T23	\longrightarrow	T28	T29	T30
T24	\longrightarrow	то	T1	T2
T25	\longrightarrow	T4	T5	Т6
T26	\longrightarrow	Т8	Т9	T10
T27	\longrightarrow	T12	T13	T14
T28	\longrightarrow	T16	T17	T18
T29	\longrightarrow	T20	T21	T22
Т30	\longrightarrow	T24	T25	T26
T31	\longrightarrow	T28	T29	T30

	то	т4	т8	т12	T16	т20	T24	т28
	т1	т5	т9	т13	т17	т21	т25	т29
	т2	т6	т10	т14	T18	т22	т26	т30
	тз	т7	т11	т15	т19	т23	т27	Т31
	то	Т4	т8	т12	т16	т20	т24	т28
	т1	т5	т9	т13	т17	т21	т25	т29
	т2	т6	т10	т14	т18	т22	т26	т30
								1
	Т3	Τ7	т11	T15	119	т23	T27	T31
T3		T7 0		T15				
T3 T7	Т		Т		T19 T	2	T	3
	Т	0	Т	1	т	2		3
T7	T T T	0 4	T T T	1	т	2 6 10	T. T	3 7 .1
T7 T11	T T T T	0 4 8	T T T T	1 5 9	т	2 6 10	T. T T1	3 7 .1 .5
T7 T11 T15	T T T T T	0 4 8 12	T T T T	-1 -5 -9 13	T T T T T	2 6 10 14	т. т т1 т1	3 7 .1 .5 .9
T7 T11 T15 T19	T T T T.	0 4 8 12 16	T T T. T. T.	1 5 9 13 17	T T T T T T	2 6 10 14 18	т. т т1 т1 т1	3 7 .1 .5 .9
T7 T11 T15 T19 T23	T T T T T	0 4 8 12 16 20	T T T T T T	1 5 9 13 17 21	T T T T T T	2 6 10 14 18 22 26	T. T1 T1 T1 T1 T2	3 7 1 5 9 23
T7 T11 T15 T19 T23 T27	т т т т. т. т. т.	70 74 78 12 16 20 24	т т т т, т, т,	1 5 9 13 17 21 25	Т Т Т Т Т Т Т Т Т	2 6 10 14 18 22 26 80	T. T1 T1 T1 T1 T2 T2	3 7 1 5 9 23 27 31
T7 T11 T15 T19 T23 T27 T31		70 74 78 112 116 220 224 228	т т т. т. т. т. т. т.	1 5 79 13 17 21 25 29	T T T T T T T T T T T T	2 6 10 14 18 22 26 80 2	т. т т1 т1 т2 т2 т2 т3	3 7 1 5 9 23 27 31
T7 T11 T15 T19 T23 T27 T31 T3		r0 r4 r8 r8 r12 r0 r0	т т т т. т. т. т. т. т. т. т.	1 5 9 13 17 21 25 29	T T T T T T T T T T	2 6 10 14 18 22 26 80 2 2 6	T. T T1 T1 T1 T2 T2 T2 T3 T.	3 7 1 5 9 2 3 2 7 81 3 7
T7 T11 T15 T19 T23 T27 T31 T3 T7	T T T T. T. T. T. T. T. T.	r0 4 78 12 16 20 24 28 70 74	т т т т, т, т, т, т, т т т	1 5 9 13 17 21 25 29 1 5	T T T T T T T T T T T	2 6 10 14 18 22 26 80 2 2 6 10	T. T1 T1 T1 T2 T2 T3 T. T. T.	3 7 1 5 9 23 27 81 3 7 1
T7 T11 T15 T19 T23 T27 T31 T3 T7 T11		r0 74 78 78 712 716 720 724 70 74 74 78	т т т. т. т. т. т. т. т. т. т.	1 5 9 113 17 21 25 29 1 5 9	T T T T T T T T T T T	2 6 10 14 18 22 26 80 2 2 6 10 14	т. т1 т1 т2 т2 т2 т3 т, т т1	3 7 1 5 9 23 27 81 3 7 1 5
T7 T11 T15 T19 T23 T27 T31 T7 T11 T15		0 4 8 12 16 20 24 28 70 4 8 12	T T T T T T T T T T T	1 5 9 13 17 21 25 29 1 5 5 9 13	T T T T T T T T T T T T	2 6 10 14 18 22 26 6 80 2 2 6 10 4 4 88	T. T1 T1 T1 T2 T2 T2 T3 T. T T1 T1	3 7 1 5 9 3 27 31 3 7 1 5 9
T7 T11 T15 T19 T23 T27 T31 T3 T7 T11 T15		r0 r4 r8 r12 r16 r20 r24 r28 r0 r4 r38 r12 r37 r4 r38 r37 r4 r38 r38 r38 r38 r38 r38 r38 r38	т т т т. т. т. т. т. т. т. т.	1 5 9 13 17 21 25 29 1 1 5 9 13 17	T T T T T T T T T T T T T T	2 6 10 14 18 8 22 2 6 10 2 6 10 14 18 8 22	T. T1 T1 T1 T2 T2 T2 T2 T3 T. T T1 T1 T1 T1	3 7 .1 5 9 23 27 31 3 7 1 5 9 3

ADVANCING TO NEXT K GROUP

ADVANCING TO NEXT K GROUP

т0	T16			T1	T17		
T18	Т2			T19	Т3		
		T4	T20			Т5	T21
		T22	Т6			T23	Т7
Т8	T24			Т9	T25		
T26	T10			T27	T11		
		T12	T28			T13	T29
		Т30	T14			Т31	T15

smem_ptr = row_idx * 8 + column_idx;

			т0	T16			T1	T17
			T18	T2			T19	Т3
Т4		Т20			T5	T21		
т2:	2	Т6			T23	T7		
			Т8	T24			Т9	T25
			T26	T10			T27	T11
T1:	2	T28			T13	T29		
Т3(0	T14			T31	T15		

smem_ptr = smem_ptr ^ 2;

 Logical view of threadblock tile

 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 <t

K=16..31

Phase 0

Load Matrix from Shared Memory

T16 T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 T30 T31

		т0	T16			Τ1	T17
		T18	T2			T19	Т3
T4	T20			Т5	T21		
T22	Т6			T23	T7		
		Т8	T24			Т9	T25
		T26	T10			T27	T11
T12	T28			T13	T29		
Т30	T14			T31	T15		
Г -							7

T2 T3

T4

T0 T1

Logical view of threadblock tile

T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

Phase 1

Load Matrix from Shared Memory

T16 T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 T30 T31

		т0	T16			Τ1	T17
		T18	Т2			T19	Т3
T4	T20			Т5	T21		
T22	Т6			T23	T7		
		Т8	T24			Т9	T25
		T26	T10			T27	T11
T12	T28			T13	T29		
Т30	T14			T31	T15		
Γ							1

 Logical view of threadblock tile

 Image: Complexity of threadblo

K=16..31

Phase 2

Load Matrix from Shared Memory

T16 T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 T30 T31

		т0	T16			T1	T17
		T18	T2			T19	Т3
T4	T20			Т5	T21		
T22	Т6			T23	T7		
		Т8	T24			Т9	T25
		T26	T10			T27	T11
T12	T28			T13	T29		
Т30	T14			T31	T15		
Г -							1

 LOGICAL VIEW OF THEADBOCK TILE

 Image: Sector Sector

K=16..31

Phase 3

Load Matrix from Shared Memory

		т0	T16			Τ1	T17
		T18	T2			T19	Т3
T4	T20			Т5	T21		
T22	Т6			T23	Τ7		
		Т8	T24			Т9	T25
		T26	T10			T27	T11
T12	T28			T13	T29		
Т30	T14			T31	T15		
٢							7

CUTLASS

CUDA C++ Templates as an Optimal Abstraction Layer for Tensor Cores

- Latency-tolerant pipeline from Global Memory
- Conflict-free Shared Memory stores
- Conflict-free Shared Memory loads

CUTLASS: OPTIMAL ABSTRACTION FOR TENSOR CORES

CUTLASS: OPTIMAL ABSTRACTION FOR TENSOR CORES

<pre>using Mma = cutlass::gemm::warp::DefaultMmaTensorOp< GemmShape<64, 64, 16>, half_t, LayoutA, // GEMM A operand half_t, LayoutB, // GEMM B operand float, RowMajor // GEMM C operand</pre>			
>; // define operation			
shared ElementA smem_buffer_A[Mma::Shape::kM * GemmK]; shared ElementB smem_buffer_B[Mma::Shape::kN * GemmK];			
<pre>// Construct iterators into SMEM tiles Mma::IteratorA iter_A({smem_buffer_A, lda}, thread_id); Mma::IteratorB iter_B({smem_buffer_B, ldb}, thread_id);</pre>			
Mma::FragmentA frag_A; Mma::FragmentB frag_B; Mma::FragmentC accum;			
Mma mma;			
accum.clear();			
<pre>#pragma unroll 1 for (int k = 0; k < GemmK; k += Mma::Shape::kK) {</pre>			
<pre>iter_A.load(frag_A); // Load fragments from A and B matrices iter_B.load(frag_B);</pre>			
<pre>++iter_A; ++iter_B; // Advance along GEMM K to next tile in A</pre>			
<pre>// Compute matrix product mma(accum, frag_A, frag_B, accum); }</pre>			

Thank you.