CS 380-GPU and GPGPU Programming Lecture 27: GPU Prefix Sum (Pt. 2); Tensor Core Programming

Markus Hadwiger, KAUST

Reading Assignment \#14 (until Dec 4)

Don't forget reading assignment \#13! (reduction and prefix sum)
Read (required):

- Warp Shuffle Functions
- CUDA Programming Guide 11.8, Appendix B. 22
- CUDA Cooperative Groups
- CUDA Programming Guide 11.8, Appendix C
- https://developer.nvidia.com/blog/cooperative-groups/
- Programming Tensor Cores
- CUDA Programming Guide 11.8, Appendix B. 24 (Warp matrix functions)
- https://developer.nvidia.com/blog/programming-tensor-cores-cuda-9/

Read (optional):

- Guy E. Blelloch: Prefix Sums and their Applications
- https://www.cs.cmu.edu/~guyb/papers/Ble93.pdf/
- CUDA Warp-Level Primitives
- https://developer.nvidia.com/blog/using-cuda-warp-level-primitives/
- Warp-aggregated atomics
- https://developer.nvidia.com/blog/
cuda-pro-tip-optimized-filtering-warp-aggregated-atomics/

Next Lectures

Quiz \#3 (only quiz, no lecture): Wed, Dec 7 (regular time)

Semester project presentations: Mon, Dec 12 16:00

Quiz \#3: Dec 7

Organization

- First 30 min of lecture (but this time, there'll only be the quiz)
- No material (book, notes, ...) allowed

Content of questions

- Lectures (both actual lectures and slides)
- Reading assignments
- Programming assignments (algorithms, methods)
- Solve short practical examples

Work Efficiency

Guy E. Blelloch and Bruce M. Maggs:
Parallel Algorithms, 2004 (https://www.cs.cmu.edu/~guyb/papers/bM04.pdf)

```
In designing a parallel algorithm, it is more important to make it efficient than to make it
asymptotically fast. The efficiency of an algorithm is determined by the total number of
operations, or work that it performs. On a sequential machine, an algorithm's work is the
same as its time. On a parallel machine, the work is simply the processor-time product.
Hence, an algorithm that takes time t on a P-processor machine performs work W = Pt. In
either case, the work roughly captures the actual cost to perform the computation, assuming
that the cost of a parallel machine is proportional to the number of processors in the
machine.
We call an algorithm work-efficient (or just efficient) if it performs the same amount of
work, to within a constant factor, as the fastest known sequential algorithm.
For example, a parallel algorithm that sorts n keys in O( sqrt(n) log(n) ) time using sqrt(n)
processors is efficient since the work, O( n log(n) ), is as good as any (comparison-based)
sequential algorithm.
However, a sorting algorithm that runs in O( log(n) ) time using n^2 processors is not
efficient.
The first algorithm is better than the second - even though it is slower - because its work,
or cost, is smaller. Of course, given two parallel algorithms that perform the same amount of
work, the faster one is generally better.
```


GPU Reduction

- Parallel reduction is a basic parallel programming primitive; see reduction operation on a stream, e.g., in Brook for GPUs

Typical Parallel Programming Pattern

- log(n) steps

[^0]
Vector Reduction

A better implementation

Thread 0

GPU Parallel Prefix Sum

- Basic parallel programming primitive; parallelize inherently sequential operations

Parallel Prefix Sum (Scan)

- Definition:

The all-prefix-sums operation takes a binary associative operator \oplus with identity I, and an array of n elements

$$
\left[a_{0}, a_{1}, \ldots, a_{n-1}\right]
$$

and returns the ordered set

$$
\left[I, a_{0},\left(a_{0} \oplus a_{1}\right), \ldots,\left(a_{0} \oplus a_{1} \oplus \ldots \oplus a_{n-2}\right)\right] .
$$

- Example:
if \oplus is addition, then scan on the set
[31704163]
returns the set
[0 0411111516 22] (next element would be 25)
(From Blelloch, 1990, "Prefix
Parallel08 - Control Flow

Kogge-Stone Scan

Circuit family

A Parallel Algorithm for the Efficient Solution of a General Class of Recurrence Equations, Kogge and Stone, 1973

See "carry lookahead" adders vs. "ripple carry" adders

$O(n \log n)$ Scan

- Step efficient (log n steps)
- Not work efficient (n log n work)
- Requires barriers at each step (WAR dependencies)

Courtesy John Owens

Hillis-Steele Scan Implementation

No WAR conflicts, $O(2 N)$ storage

A First-Attempt Parallel Scan Algorithm

Each thread reads one value from the input array in device memory into shared memory array T0. Thread 0 writes 0 into shared memory array.

1. Read input from device memory to shared memory. Set first element to zero and shift others right by one.

A First-Attempt Parallel Scan Algorithm

1. (previous slide)
2. Iterate $\log (\mathrm{n})$
times: Threads stride to n : Add pairs of elements stride elements apart. Double stride at each iteration. (note must double buffer shared mem arrays)
```
Iteration #1
    Stride = 1
```

- Active threads: stride to $n-1$ (n-stride threads)
- Thread j adds elements j and j-stride from T0 and writes result into shared memory buffer T1 (ping-pong)

A First-Attempt Parallel Scan Algorithm

$$
\begin{gathered}
\text { Iteration \#2 } \\
\text { Stride }=2
\end{gathered}
$$

1. Read input from device memory to shared memory. Set first element to zero and shift others right by one.
2. Iterate $\log (n)$ times: Threads stride to n : Add pairs of elements stride elements apart. Double stride at each iteration. (note must double buffer shared mem arrays)

A First-Attempt Parallel Scan Algorithm


```
Iteration #3
    Stride = 4
```

1. Read input from device memory to shared memory. Set first element to zero and shift others right by one.
2. Iterate $\log (n)$ times: Threads stride to n : Add pairs of elements stride elements apart. Double stride at each iteration. (note must double buffer shared mem arrays)

A First-Attempt Parallel Scan Algorithm

1. Read input from device memory to shared memory. Set first element to zero and shift others right by one.
2. Iterate $\log (n)$ times: Threads stride to n : Add pairs of elements stride elements apart. Double stride at each iteration. (note must double buffer shared mem arrays)
3. Write output to device memory.

Work Efficiency Considerations

- The first-attempt Scan executes log(n) parallel iterations
- Total adds: $\mathrm{n}^{*}(\log (\mathrm{n})-1)+1 \rightarrow \mathrm{O}\left(\mathrm{n}^{*} \log (\mathrm{n})\right)$ work
- This scan algorithm is not very work efficient
- Sequential scan algorithm does n adds
- A factor of $\log (n)$ hurts: $20 x$ for $10^{\wedge} 6$ elements!
- A parallel algorithm can be slow when execution resources are saturated due to low work efficiency

Balanced Trees

- For improving efficiency
- A common parallel algorithm pattern:
- Build a balanced binary tree on the input data and sweep it to and from the root
- Tree is not an actual data structure, but a concept to determine what each thread does at each step
- For scan:
- Traverse down from leaves to root building partial sums at internal nodes in the tree
- Root holds sum of all leaves
- Traverse back up the tree building the scan from the partial sums

Typical Parallel Programming Pattern

- $2 \log (n)$ steps

Typical Parallel Programming Pattern

- $2 \log (\mathrm{n})$ steps

Brent Kung Scan

Circuit family

A Regular Layout for Parallel Adders, Brent and Kung, 1982

$O(n)$ Scan [Blelloch]

- Work efficient ($O(n)$ work)
- Bank conflicts, and lots of ‘em

Build the Sum Tree

T	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{7}$	$\mathbf{0}$	$\mathbf{4}$	$\mathbf{1}$	6	3

Assume array is already in shared memory

Build the Sum Tree

[^1]
Build the Sum Tree

Each \oplus corresponds to a single thread.

[^2]
Build the Sum Tree

[^3]
Down-Sweep Variant 1: Exclusive Scan

> We now have an array of partial sums. Since this is an exclusive scan, set the last element to zero. It will propagate back to the first element.

Build Scan From Partial Sums

T	3	4	7	11	4	5	6	0

Build Scan From Partial Sums

Each \oplus corresponds to a single thread.

Iterate $\log (n)$ times. Each thread adds value stride / 2 elements away to its own value. and sets the value stride elements away to its own previous value.

Build Scan From Partial Sums

Each \oplus corresponds to a single thread.

Iterate $\log (\mathrm{n})$ times. Each thread adds value stride $/ 2$ elements away to its own value. and sets the value stride / 2 elements away to its own previous value.

Build Scan From Partial Sums

Down-Sweep Variant 2: Inlusive Scan

T	3	4	7	11	4	5	6	25

> We now have an array of partial sums. Let's propagate the sums back.

Build Scan From Partial Sums

[^4]
Build Scan From Partial Sums

Each \oplus corresponds to a single thread.

[^5]
Build Scan From Partial Sums

Bank Conflicts in Scan - Non-power-of-two -

Initial Bank Conflicts on Load

- Each thread loads two shared mem data elements
- Tempting to interleave the loads

```
temp[2*thid] = g_idata[2*thid];
temp[2*thid+1] = g_idata[2*thid+1];
```

- Threads:(0,1,2,..,8,9,10,...) \rightarrow banks:(0,2,4,.., 0,2,4,...)
- Better to load one element from each half of the array

```
temp[thid]
= g_idata[thid];
temp[thid + (n/2)] = g_idata[thid + (n/2)];
```


Bank Conflicts in the tree algorithm

- When we build the sums, each thread reads two shared memory locations and writes one:
- Th(0,8) access bank 0

Bank:

0	1	2	3	4	5	6	7					11	12	13	14	15	0	1	2	
3	1	7	0	4	1	6	3	5	8			0	3	3	1	9	4	5	7	..
0	1	2	3	4	5	6	7	8	9			11	12	13	14	15	0	1	2	...
3	4	7	7	4	5	6	9	5	13			2	3	6	1	10	4	9	7	

First iteration: 2 threads access each of 8 banks.

```
Each \oplus corresponds to a single thread.
```

Like-colored arrows represent simultaneous memory accesses

Bank Conflicts in the tree algorithm

- When we build the sums, each thread reads two shared memory locations and writes one:
- Th(1,9) access bank 2, etc.

Bank:

0	1	2	3	4	5		7	8	9	10	11	12	13	14	15		1	2	
3	1	7	0	4	1	6	3	5	8	2	0	3	3	1	9	4	5	7	
0	1	2	3	4	5	6	7	8	-	10	11	12	13	14	15	0	1	2	...
3	4	7	7	4	5	6	9	5	13	2	2	3	6	1	10	4	9	7	

First iteration: 2 threads access each of 8 banks.

```
Each \oplus corresponds to a single thread.
```

Like-colored arrows represent simultaneous memory accesses

Bank Conflicts in the tree algorithm

- $2^{\text {nd }}$ iteration: even worse!
- 4-way bank conflicts; for example:
$\operatorname{Th}(0,4,8,12)$ access bank 1 , $\operatorname{Th}(1,5,9,13)$ access Bank 5 , etc.

Bank:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	0	1	2	...
3	4	7	4	4	5	6	9	5	13	2	2	3	6	1	10	4	9	7	...
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	0	1	2	...
3	4	7	11	4	5	6	14	5	13	2	15	3	6	1	16	4	9	7	\ldots

$2^{\text {nd }}$ iteration: 4 threads access each of 4 banks

$$
\begin{aligned}
& \text { Each } \oplus \text { corresponds } \\
& \text { to a single thread. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Like-colored arrows represent } \\
& \text { simultaneous memory accesses }
\end{aligned}
$$

Scan Bank Conflicts (1)

- A full binary tree with 64 leaf nodes:

Scale (s)	Thre	ad	ddre	ses																												
1	0	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50	52	54	56	58	60	62
2	0	4	8	12	16	20	24	28	32	36	40	44	48	52	56	60																
4	0	8	16	24	32	40	48	56																								
8	0	16	32	48																												
16	0	32																														
32	0																															
Conflicts	Ban																															
2-way	0	2	4	6	8	10	12	14	0	2	4	6	8	10	12	14	0	2	4	6	8	10	12	14	0	2	4	6	8	10	12	14
4-way	0	4	8	12	0	4	8	12	0	4	8	12	0	4	8	12																
4-way	0	8	0	8	0	8	0	8																								
4-way	0	0	0	0																												
2-way	0	0																														
None	0																															

- Multiple 2-and 4-way bank conflicts
- Shared memory cost for whole tree
- 1 32-thread warp $=6$ cycles per thread w/o conflicts
- Counting 2 shared mem reads and one write (s[a] += s[b])
-6 * $(2+4+4+4+2+1)=102$ cycles
- 36 cycles if there were no bank conflicts (6 * 6)

Scan Bank Conflicts (2)

- It's much worse with bigger trees!
- A full binary tree with 128 leaf nodes
- Only the last 6 iterations shown (root and 5 levels below)

Scale (s)	Thre	ad a	ddre	ses																												
2	0	4	8	12	16	20	24	28	32	36	40	44	48	52	56	60	64	68	72	76	80	84	88	92	96	100	104	108	112	116	120	122
4	0	8	16	24	32	40	48	56	64	72	80	88	96	104	112	120																
8	0	16	32	48	64	80	96	112																								
16	0	32	64	96																												
32	0	64																														
64	0																															
Conflicts	Ban																															
4-way	0	4	8	12	0	4	8	12	0	4	8	12	0	4	8	12	0	4	8	12	0	4	8	12	0	4	8	12	0	4	8	10
8-way	0	8	0	8	0	8	0	8	0	8	0	8	0	8	0	8																
8-way	0	0	0	0	0	0	0	0																								
4-way	0	0	0	0																												
2-way	0	0																														
None	0																															

- Cost for whole tree:
- $12 * 2+6^{*}(4+8+8+4+2+1)=186$ cycles
- 48 cycles if there were no bank conflicts! $12 * 1+(6 * 6)$

Bank Conflicts in the tree algorithm

- We can use padding to prevent bank conflicts
- Just add a word of padding every 16 words:
- No more conflicts!

32 for full warps!

Bank:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	0	1	2	3		
3	1	7	0	4	1	6	3	5	8	2	0	3	3	1	9	P	4	5	7		
0	1	2	3	4	5	6	7	8	-	10	11	12	13	14	15	0	1		3	,	
3	4	7	7	4	5	6	9	5	13	2	2	3	6	1	10	P	4	9	7	..	

Now, within a 16-thread half-warp, all threads access different banks.
32-thread full warp!
(Note that only arrows with the same color happen simultaneously.)

Use Padding to Reduce Conflicts

- This is a simple modification to the last exercise
- After you compute a shared mem address like this:

$$
\text { Address }=\quad \text { stride } * \text { thid; }
$$

- Add padding like this:

```
Address += (Address >> 4); // divide by NUM_BANKS
```

- This removes most bank conflicts
- Not all, in the case of deep trees

Fixing Scan Bank Conflicts

- Insert padding every NUM_BANKS elements

```
const int LOG_NUM_BANKS = 4; // 16 banks
int tid = threadIdx.x;
int s = 1;
// Traversal from leaves up to root
for (d = n>>1; d > 0; d >>= 1)
{
    if (thid <= d)
    {
            int a = s*(2*tid); int b = s*(2*tid+1)
            a += (a >> LOG_NUM_BANKS); // insert pad word
            b += (b >> LOG_NUM_BANKS); // insert pad word
            shared[a] += shared[b];
    }
}
```


Fixing Scan Bank Conflicts

- A full binary tree with 64 leaf nodes

Leaf Nodes	Scale (s)	Thre	ad	ddre	sses																											
64	1	0	2	4	6	8	10	12	14	17	19	21	23	25	27	29	31	34	36	38	40	42	44	46	48	51	53	55	57	59	61	63
	2	0	4	8	12	17	21	25	29	34	38	42	46	51	55	59	63															
	4	0	8	17	25	34	42	51	59																							
	8	0	17	34	51																											
	16	0	34												$=\mathrm{Pa}$	ddin	g in	erte														
	32	0																														
	Conflicts	Ban																														
	None	0	2	4	6	8	10	12	14	1	3	5	7	9	11	13	15	2	4	6	8	10	12	14	0	3	5	7	9	11	13	15
	None	0	4	8	12	1	5	9	13	2	6	10	14	3	7	11	15															
	None	0	8	1	9	2	10	3	11																							
	None	0	1	2	3																											
	None	0	2																													
	None	0																														

- No more bank conflicts!
- However, there are ~8 cycles overhead for addressing
- For each $\mathrm{s}[\mathrm{a}]+=\mathrm{s}[\mathrm{b}]$ (8 cycles/iter. * 6 iter. $=48$ extra cycles)
- So just barely worth the overhead on a small tree
- 84 cycles vs. 102 with conflicts vs. 36 optimal

Fixing Scan Bank Conflicts

- A full binary tree with 128 leaf nodes
- Only the last 6 iterations shown (root and 5 levels below)

Scale (s)		read	d ad	dres	ses																											
2	0	4	8	12	17	21	25	29	34	38	42	46	51	55	59	63	68	72	76	80	85	89	93	97	102	106	110	114	119	123	127	131
4	0	8	17	25	34	42	51	59	68	76	85	93	102	110	119	127																
8	0	17	34	51	68	85	102	119																								
16	0	34	68	102																												
32	0	68												$=\mathrm{Pa}$	ddin	ins	rte															
64	0																															
Conflicts		anks																														
None	0	4	8	12	1	5	9	13	2	6	10	14	3	7	11	15	4	8	12	0	5	9	13	1	6	10	14	2	7	11	15	3
None	0	8	1	9	2	10	3	11	4	12	5	13	6	14	7	15																
None	0	1	2	3	4	5	6	7																								
None	0	2	4	6																												
None	0	4																														
None	0																															

- No more bank conflicts!
- Significant performance win:
- 106 cycles vs. 186 with bank conflicts vs. 48 optimal

Fixing Scan Bank Conflicts

- A full binary tree with 512 leaf nodes
- Only the last 6 iterations shown (root and 5 levels below)

- Wait, we still have bank conflicts
- Method is not foolproof, but still much improved
- 304 cycles vs. 570 with bank conflicts vs. 120 optimal
- But it does not pay of to optimize for the rest. Address calculations are getting too expensive

Summary

- Parallel Programming requires careful planning
- of the branching behavior
- of the memory access patterns
- of the work efficiency
- Vector Reduction
- branch efficient
- bank efficient
- Scan Algorithm
- based in Balanced Tree principle:
bottom up, top down traversal

Programming Tensor Cores

NVIDIA Volta SM

Multiprocessor: SM (CC 7.0)

- 64 FP32 + 64 INT32 cores
- 32 FP64 cores
- 32 LD/ST units; 16 SFUs
- 8 tensor cores
(FP16/FP32 mixed-precision)
4 partitions inside SM
- 16 FP32 + 16 INT32 cores each
- 8 FP64 cores each
- 8 LD/ST units; 4 SFUs each
- 2 tensor cores each
- Each has: warp scheduler, dispatch unit, register file

NVIDIA Turing SM

Multiprocessor: SM (CC 7.5)

- 64 FP32 + INT32 cores
- 2 (!) FP64 cores
- 8 Turing tensor cores
(FP16/32, INT4/8 mixed-precision)
- 1 RT (ray tracing) core

4 partitions inside SM

- 16 FP32 + INT32 cores each
- 4 LD/ST units; 4 SFUs each
- 2 Turing tensor cores each
- Each has: warp scheduler, dispatch unit, 16K register file

NVIDIA GA100 SM

Multiprocessor: SM (CC 8.0)

- 64 FP32 + 64 INT32 cores
- 32 FP64 cores
- $43^{\text {rd }}$ gen tensor cores
- $12^{\text {nd }}$ gen RT (ray tracing) core

4 partitions inside SM

- 16 FP32 + 16 INT32 cores
- 8 FP64 cores
- 8 LD/ST units; 4 SFUs each
- $13^{\text {rd }}$ gen tensor core each
- Each has: warp scheduler, dispatch unit, 16K register file

NVIDIA GA10x SM

Multiprocessor: SM (CC 8.6)

- 128 (64+64) FP32 + 64 INT32 cores
- 2 (!) FP64 cores
- $43^{\text {rd }}$ gen tensor cores
- $12^{\text {nd }}$ gen RT (ray tracing) core

4 partitions inside SM

- $32_{(16+16)}$ FP32 + 16 INT32 cores
- 4 LD/ST units; 4 SFUs each
- $13^{\text {rd }}$ gen tensor core each
- Each has: warp scheduler, dispatch unit, 16K register file

NVIDIA GH100 SM

Multiprocessor: SM (CC 9.0)

- 128 FP32 + 64 INT32 cores
- 64 FP64 cores
- $4 \mathrm{x} 4^{\text {th }}$ gen tensor cores
-++ thread block clusters, DPX insts., FP8, TMA

4 partitions inside SM

- 32 FP32 + 16 INT32 cores
- 16 FP64 cores
- $8 x$ LD/ST units; 4 SFUs each
- $1 \times 4^{\text {th }}$ gen tensor core each
- Each has: warp scheduler, dispatch unit, 16K register file

[^6]| SM | |
| :---: | :---: |
| | |
| Lommatar Catam | Lontuster crate |
| (83mosem) | |
| | Reopise file 1 crsesea $\times 32$ |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | tommaterama |
| Lo Instruction Cache
 Warp Scheduler (32 thread/clk)
 Dispatch Unit (32 thread/clk) | Dismetur |
| Register File (16,384 x 32-bit) | |
| | |
| | |
| | |
| | |
| | |
| | |
| Tensor Memory Accelerator | |
| 256 KB LL Data Cache / Shared Memory | |
| ${ }_{\text {rex }} \square_{\text {rox }}^{\text {rex }}$ | tox |

NVIDIA AD102 SM

Multiprocessor: SM (CC 8.9)

- 128 (64+64) FP32 + 64 INT32 cores
- 2 (!) FP64 cores
- $4 \mathrm{x} 4^{\text {th }}$ gen tensor cores
- 1x $3^{\text {rd }}$ gen RT (ray tracing) core
-++ thread block clusters, FP8, ... (?)
4 partitions inside SM
- $32{ }_{(16+16)}$ FP32 + 16 INT32 cores
- $4 x$ LD/ST units; 4 SFUs each
- $1 x 4^{\text {th }}$ gen tensor core each
- Each has: warp scheduler, dispatch unit, 16K register file

Register File ($\mathbf{1 6 , 3 8 4 \times 3 2 \text { -bit) }) (\begin{array} { l l } { \text { - } } \end{array})}$

Tensor Cores

Mixed-precision, fast matrix-matrix multiply and accumulate (mma)

From this, build larger shapes (sizes), higher dimensionalities, ...
API currently only allows using larger shapes ($16 \times 16, \ldots$) in warps (wmma)

Tensor Cores

Fused matrix multiply and accumulate

- Input matrices can be (at most) half-precision (FP16); (Ampere has more!)
- Accumulate can be FP16 or FP32; (Ampere has more!)

Ampere Tensor Cores: Mixed Precision

New in Ampere: TF32, BF16, FP64

plus FP64 (new in Ampere; GA100 only)
plus INT4/INT8/binary data types (experimental; introduced in Turing)

Ampere Tensor Cores: Sparsity Support

Sparse MMA instructions
2:4 structured sparsity
 data indices

Input activations

Output activations

Tensor Cores: More Mixed Precision Options

New in Hopper: FP8

	${ }_{5}$ Range Exponent e8	Precision mantissa m23
FP32	s	
	e5	m10
FP16	5-ए1]	Ш1010-
	e8	m7
BF16	s पण10\|	U11].
	e5	m2
(E5M2)	4	m3
	$5-\square$	T1-
(E4M3)		

Allocate 1 bit to either range or precision

Support for multiple accumulator and output types
plus other data types from before (INT4/INT8/binary, ...)

Tensor Cores: Hopper vs. Ampere

(preliminary)

	A100	A100 Sparse	H100 SXM5 ${ }^{1}$	H100 SXM5 Sparse	H100 SXM5 ${ }^{1}$ Speedup vs A100
FP8 Tensor Core	NA	NA	2000 TFLOPS	4000 TFLOPS	$\begin{aligned} & \text { 6.4x vs A100 } \\ & \text { FP16 } \end{aligned}$
FP16	78 TFLOPS	NA	120 TFLOPS	NA	1.5x
FP16 Tensor Core	312 TFLOPS	624 TFLOPS	1000 TFLOPS	2000 TFLOPS	3.2x
BF16 Tensor Core	312 TFLOPS	624 TFLOPS	1000 TFLOPS	2000 TFLOPS	3.2x
FP32	19.5 TFLOPS	NA	60 TFLOPS	NA	3.1x
TF32 Tensor Core	156 TFLOPS	312 TFLOPS	500 TFLOPS	1000 TFLOPS	3.2x
FP64	9.7 TFLOPS	NA	30 TFLOPS	NA	3.1x
FP64 Tensor Core	19.5 TFLOPS	NA	60 TFLOPS	NA	3.1x
INT8 Tensor Core	624 TOPS	1248 TOPS	2000 TFLOPS	4000 TFLOPS	3.2x

Tensor Memory Accelerator (TMA)

Asynchronous transfers

Tensor Core APIs

Low-level options

- CUDA C WMMA (warp-level matrix multiply and accumulate)
- PTX wmma and mma (needed for some features) instructions
- SASS hmma instructions (not documented)

High-level options

- NVIDIA CUTLASS (template abstractions for hi-perf matrix-multiplies)
- NVIDIA cuBLAS
- NVIDIA cuDNN
- Integration into TensorFlow, ...

CUDA C Warp Matrix Functions (WMMA)

Warp Level Matrix Multiply Accumulate (WMMA)
CUDA C Programming Guide (11.8), Appendix B. 24
namespace nvcuda: :wmma (and nvcuda: :wmma: :experimental)

```
template<typename Use, int m, int n, int k, typename T, typename Layout=void>
    class fragment;
void load_matrix_sync(fragment<...> &a, const T* mptr, unsigned ldm);
void load_matrix_sync(fragment<...> &a, const T* mptr, unsigned ldm, layout_t
    layout);
void store_matrix_sync(T* mptr, const fragment<...> &a, unsigned ldm, layout_t
    layout);
void fill_fragment(fragment<...> &a, const T& v);
void mma_sync(fragment<...> &d, const fragment<...> &a, const fragment<...>
    &b, const
```

Concept of a matrix fragment (section of a matrix split across threads in a warp)
Dimensionsm,n,k: mxk matrix_a; kxn matrix_b; mxn accumulator

CUDA C Warp Matrix Functions (WMMA)

Data types (T)

wmma API splits
 this into fragments

Matrix A	Matrix B	Accumulator	Matrix Size (m-n-k)
__half	__half	float	$16 \times 16 \times 16$
__half	__half	float	$32 \times 8 \times 16$
__half	__half	float	$8 \times 32 \times 16$
__half	__half	__half	$16 \times 16 \times 16$
__half	__half	__half	$32 \times 8 \times 16$
__half	__half	__half	$8 \times 32 \times 16$
unsigned char	unsigned char	int	$16 \times 16 \times 16$
unsigned char	unsigned char	int	$32 \times 8 \times 16$
unsigned char	unsigned char	int	$8 \times 32 \times 16$
signed char	signed char	int	$16 \times 16 \times 16$
signed char	signed char	int	$32 \times 8 \times 16$
signed char	signed char	int	$8 \times 32 \times 16$

CUDA C Warp Matrix Functions (WMMA)

Data types (T)
wmma API splits
this into fragments

Alternate Floating Point support:

Matrix A	Matrix B	Accumulator	Matrix Size (m-n-k)
\ldots nv_bfloat16	\ldots nv_bfloat16	float	$16 \times 16 \times 16$
\ldots nv_bfloat16	\ldots nv_bfloat16	float	$32 \times 8 \times 16$
\ldots nv_bfloat16	\ldots nv_bfloat16	float	$8 \times 32 \times 16$
precision::tf32	precision::tf32	float	$16 \times 16 \times 8$

Double Precision Support:

Matrix A	Matrix B	Accumulator	Matrix Size (m-n-k)
double	double	double	$8 \times 8 \times 4$

Experimental support for sub-byte operations:
Turing/Ampere/Ada:

Matrix A	Matrix B	Accumulator	Matrix Size $(\mathbf{m}-\mathrm{n}-\mathrm{k})$
precision::u4	precision::u4	int	$8 \times 8 \times 32$
precision::s4	precision::s4	int	$8 \times 8 \times 32$
precision::b1	precision::b1	int	$8 \times 8 \times 128$

CUDA C Warp Matrix Functions (WMMA)

Warp Level Matrix Multiply Accumulate (WMMA)
CUDA C Programming Guide (11.8), Appendix B. 24

```
#include <mma.h>
using namespace nvcuda;
__global___ void wmma_ker(half *a, half *b, float *c) {
    // Declare the fragments
    wmma::fragment<wmma::matrix_a, 16, 16, 16, half, wmma::col_major> a_frag;
    wmma::fragment<wmma::matrix_b, 16, 16, 16, half, wmma::row_major> b_frag;
    wmma::fragment<wmma::accumulator, 16, 16, 16, float> c_frag}
    // Initialize the output to zero
    wmma::fill_fragment(c_frag, 0.0f);
    // Load the inputs
    wmma::load_matrix_sync(a_frag, a, 16);
    wmma::load_matrix_sync(b_frag, b, 16);
    // Perform the matrix multiplication
    wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
    // Store the output
    wmma::store_matrix_sync(c, c_frag, 16, wmma::mem_row_major);
}
```


PTX WMMA and MMA Instructions

PTX ISA 7.8, Section 9.7.13 (120 pages)

Instruction	Sparsity	Multiplicand Data-type	Shape	PTX ISA version
wmma	Dense	Floating-point - .f16	.m16n16k16, .m8n32k16, and m32n8k16	PTX ISA version 6.0
wmma	Dense	Alternate floating-point format - .bf16	.m16n16k16, .m8n32k16, and .m32n8k16	PTX ISA version 7.0
wmma	Dense	Alternate floating-point format - .tf32	.m16n16k8	PTX ISA version 7.0
wmma	Dense	Integer - .u8/.s8	$\begin{aligned} & . m 16 n 16 k 16, \\ & . m 8 n 32 k 16, \text { and } \\ & . m 32 n 8 k 16 \end{aligned}$	PTX ISA version 6.3
wmma	Dense	Sub-byte integer .u4/.s4	.m8n8k32	PTX ISA version 6.3 (preview feature)
wmma	Dense	Single-bit - .b1	.m8n8k128	PTX ISA version 6.3 (preview feature)

PTX WMMA and MMA Instructions

PTX ISA 7.8

Instruction	Sparsity	Multiplicand Data-type	Shape	PTX ISA version
mma	Dense	Floating-point - .f64	.m8n8k4	PTX ISA version 7.0
mma	Dense	Floating-point - .f16	.m8n8k4	PTX ISA version 6.4
			.m16n8k8	PTX ISA version 6.5
			.m16n8k16	PTX ISA version 7.0
mma	Dense	Alternate floating-point format - .bf16	.m1 6n8k8 and .m16n8k16	PTX ISA version 7.0
mma	Dense	Alternate floating-point format - .tf32	.m1 6n8k4 and .m16n8k8	PTX ISA version 7.0
mma	Dense	Integer - .u8/.s8	.m8n8k16	PTX ISA version 6.5
			.m16n8k16 and .m16n8k32	PTX ISA version 7.0
mma	Dense	Sub-byte integer .u4/.s4	.m8n8k32	PTX ISA version 6.5
			.m16n8k32 and .m16n8k64	PTX ISA version 7.0
mma	Dense	Single-bit - .b1	.m8n8k128, .m16n8k128, and .m16n8k256	PTX ISA version 7.0
mma	Sparse	Floating-point - .f16	.m16n8k16 and .m16n8k32	PTX ISA version 7.1
mma	Sparse	Alternate floating-point format - .bf16	.m16n8k16 and .m16n8k32	PTX ISA version 7.1
mma	Sparse	Alternate floating-point format - .tf32	.m16n8k8 and .m16n8k16	PTX ISA version 7.1
mma	Sparse	Integer - .u8/.s8	.m16n8k32 and .m16n8k64	PTX ISA version 7.1
mma	Sparse	Sub-byte integer - $.44 / .54$.m16n8k64 and .m16n8k128	PTX ISA version 7.1

PTX WMMA and MMA Instructions

Load and store: wmma

wmma.load

Collectively load a matrix from memory for WMMA
Syntax
Floating point format .f16 loads:

```
wmma.load.a.sync.aligned.layout.shape{.ss}.atype r, [p] {, stride};
wmma.load.b.sync.aligned.layout.shape{.ss}.btype r, [p] {, stride};
wmma.load.c.sync.aligned.layout.shape{.ss}.ctype r, [p] {', stride};
.layout = {.row, .col};
.shape ={.m16n16k16,.m8n32k16, .m32n8k16};
.ss = {.global, .shared};
.atype = {.f16, .s8, .u8};
.btype = {.f16, .s8, .u8};
.ctype ={.f16, .f32,.s32};
```

Alternate floating point format .bf16 loads:
wmma.load.a.sync.aligned.layout.shape\{.ss\}.atyper, [p] \{, stride] wmma.load.b.sync.aligned.layout.shape\{.ss\}.btype r, [p] \{, stride wmma.load.c.sync.aligned.layout.shape\{.ss\}.ctype r, [p] \{, stride\}
.layout = \{.row, .col\};
.shape $=\{. m 16 n 16 k 16, . m 8 n 32 k 16, . m 32 n 8 k 16\}$;
.ss $=$ \{.global, .shared\};
. atype $=\{$. bf16 \};
.btype $=\{$. bf16 \};
.ctype $=\{. f 32\} ;$

Alternate floating point format .tf32 loads:
wmma.load.a.sync.aligned.layout.shape\{.ss\}.atype r, [p] \{, stride) wmma.load.b.sync.aligned.layout.shape\{.ss\}.btype r, [p] \{, stride wmma.load.c.sync.aligned.layout.shape\{.ss\}.ctype r, [p] \{, stride)
. layout $=\{$.row, .col\};

- shape $=\{. \mathrm{m} 16 \mathrm{n} 16 \mathrm{k} 8$)
.ss $=\{$. global, .shared \},
.atype $=\{. t f 32\}$;
.atype $=\{$. ff32 ;
. ctype $=\{. \mathrm{tf32}\} ;$

PTX WMMA and MMA Instructions

Load and store: wmma
 wmma.load

Collectively load a matrix from memory for WMMA
Syntax
Double precision Floating point .f64 loads:
wmma.load.a.sync.aligned.layout.shape\{.ss\}.atype r, [p] \{, stride\} wmma.load.b.sync.aligned.layout.shape\{.ss\}.btype r, [p] \{, stride wmma.load.c.sync.aligned.layout.shape\{.ss\}.ctype r, [p] \{, stride\} .layout $=\{$.row, .col\};
. Shape $=\{$. m8n8k4 \};
.ss $=$ \{.global, .shared $\}$
.atype $=\{. £ 64\}$
.btype $=\{. f 64\}$
.ctype $=\{. £ 64\}$;
Sub-byte loads:

```
wmma.load.a.sync.aligned.row.shape{.ss}.atype r, [p] {, stride]
wmma.load.b.sync.aligned.col.shape{.ss}.btype r, [p] {, stride}
wmma.load.c.sync.aligned.layout.shape{.ss}.ctype r, [p] {, stride}
.layout = {.row, .col};
.shape ={.m8n8k32};
.SS = {.global, .shared};
.atype = {.s4, .u4};
.btype ={.s4, .u4};
.ctype ={.s32};
```

Single-bit loads:

```
wmma.load.a.sync.aligned.row.shape{.ss}.atype r, [p] {, stride}
wmma.load.b.sync.aligned.col.shape{.ss}.btype r, [p] {, stride
wmma.load.c.sync.aligned.layout.shape{.ss}.ctype r, [p] {, stride}
.layout = {.row, .col};
.shape = {.m8n8k128};
.ss = {.global, .shared};
.atype = {.b1};
.btype = {.b1};
.ctype ={.s32};
```


PTX WMMA and MMA Instructions

wmma example

```
.global .align 32 .f16 A[256], B[256];
.global .align 32 .f32 C[256], D[256];
.reg .b32 a<8> b<8> c<8> d<8>;
wmma.load.a.sync.aligned.m16n16k16.global.row.f16
    {a0, a1, a2, a3, a4, a5, a6, a7}, [A];
wmma.load.b.sync.aligned.m16n16k16.global.col.f16
    {b0, b1, b2, b3, b4, b5, b6, b7}, [B];
wmma.load.c.sync.aligned.m16n16k16.global.row.f32
    {c0, c1, c2, c3, c4, c5, c6, c7}, [C];
wmma.mma.sync.aligned.m16n16k16.row.col.f32.f32
    {d0, d1, d2, d3, d4, d5, d6, d7},
    {a0, a1, a2, a3, a4, a5, a6, a7},
    {b0, b1, b2, b3, b4, b5, b6, b7},
    {c0, c1, c2, c3, c4, c5, c6, c7};
wmma.store.d.sync.aligned.m16n16k16.global.col.f32
    [D], {d0, d1, d2, d3, d4, d5, d6, d7};
```


PTX WMMA and MMA Instructions

mma: fixed assigments of matrix fragments to registers in each thread of warp

9.7.13.4.2. Matrix Fragments for mma.m8n8k4 with .f64 floating point type

A warp executing mma.m8n8k 4 with .f64 floating point type will compute an MMA operation of shape .m8n8k4

Elements of the matrix are distributed across the threads in a warp so each thread of the warp holds a fragment of the matrix.

- Multiplicand A :

.atype	Fragment	Elements (low to high)
.$f 64$	A vector expression containing a single.$f 64$ register, containing single .f64 element from the matrixA.	$a 0$

Row col	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$\mathbf{0}$	T0:a0	T1:a0	T2:a0	T3:a0
$\mathbf{1}$	T4:a0	T5:a0	T6:a0	T7:a0
$\mathbf{2}$	\longrightarrow			
\mathbf{n}				
$\mathbf{7}$	T28:a0	T29:a0	T30:a0	T31:a0

\%laneid:\{fragments\}

PTX WMMA and MMA Instructions

mma: fixed assigments of matrix fragments to registers in each thread of warp

```
9.7.13.4.1. Matrix Fragments for mma.m8n8k4 with .f16 floating
    point type
```

A warp executing mma.m8n8k4 with .f16 floating point type will compute 4 MMA operations of shape .m8n8k4.
Elements of 4 matrices need to be distributed across the threads in a warp. The following table shows distribution of matrices for MMA operations.

MMA Computation	Threads participating in MMA computation
MMA computation 1	Threads with \%laneid 0-3 (low group) and 16-19 (high group)
MMA computation 2	Threads with \%laneid 4-7 (low group) and 20-23 (high group)
MMA computation 3	Threads with \%laneid 8-11 (low group) and 24-27 (high group)
MMA computation 4	Threads with \%laneid 12-15 (low group) and 28-31 (high group)

MMA computation 1				MMA computation 3			
Rowlcol	-	-	3	Rowlcol	-	$1{ }^{2}$	3
-		то : $\{\mathrm{a}, \mathrm{a} 1, \mathrm{a} 2, \mathrm{a} 3\}$		-		T8: $\{$ a0, a1, a2, a3\}	
-		,		-		,	
3		T3: $\{\mathrm{a} 0, \mathrm{a} 1, \mathrm{a} 2, \mathrm{a} 3\}$		3		T11: $\{20, a 1, a 2, a 3\}$	
4		T16: $\{\mathrm{a}, \mathrm{a} 1, \mathrm{a} 2, \mathrm{a} 3\}$		4		T24: $\{00, \mathrm{a}, \mathrm{a} 2, \mathrm{a} 3$ \}	
-		\downarrow		-		,	
,		T19: $\{00, \mathrm{a}, \mathrm{a} 2, \mathrm{a} 3\}$		7		T27: $\{$ a0, a1, a2, a3 $\}$	

- Multiplicand A:

.atype	Fragment	Elements (low to high)
. $\mathrm{f16}$	A vector expression containing two. $\mathrm{f16} \mathrm{\times 2}$ registers, with each register containing two f 16 elements from the matrix A.	$\mathrm{a} 0, \mathrm{a} 1, \mathrm{a} 2, \mathrm{a} 3$

PTX WMMA and MMA Instructions

mma: fixed assignments of matrix fragments to registers in each thread of warp

9.7.13.4.1. Matrix Fragments for mma.m8n8k4 with .f16 floating
point type

A warp executing mma.m8n8k4 with .f16 floating point type will compute 4 MMA operations of shape .m8n8k4.
Elements of 4 matrices need to be distributed across the threads in a warp. The following table shows distribution of matrices for MMA operations.

MMA Computation	Threads participating in MMA computation
MMA computation 1	Threads with 8laneid 0-3 (low group) and 16-19 (high group)
MMA computation 2	Threads with slaneid 4-7 (low group) and 20-23 (high group)
MMA computation 3	Threads with 8laneid 8-11 (low group) and 24-27 (high group)
MMA computation 4	Threads with slaneid 12-15 (low group) and 28-31 (high group)

- Accumulators C (or D):

.ctype / .dtype	Fragment	Elements (low to high)
.f16	A vector expression containing four $. f 16 \times 2$ registers, with each register containing two .f16 elements from the matrix C (or D).	$\begin{aligned} & c 0, c 1, c 2, c 3, c 4, \\ & c 5, c 6, c 7 \end{aligned}$
.f32	A vector expression of eight . $£ 32$ registers.	

- . ctype is .f32

MMA computation 1				
R\|C	- 1	${ }_{2}{ }^{3}$	45	6 ,
0	T0: $\{$ co, c1 \}	T2: $\{00, \mathrm{c} 1\}$	T0: $\{$ c4, c5 \}	T2 : $\{44, \mathrm{c} 5\}$
1	T1: $\{\mathrm{co,c1} \mathrm{\}}$	T3: $\{$ c0, c1 $\}$	$\mathrm{T} 1:\{\mathrm{c}, \mathrm{c} 5\}$	T3: $\{\mathrm{c} 4, \mathrm{c5}\}$
2	T0: $\{$ c2, c3 \}	T2 : $\{\mathrm{c} 2, \mathrm{c} 3\}$	T0: $\left\{\begin{array}{c}\text { c, c } \\ \text { c }\end{array}\right\}$	T2 : $\{\mathrm{c} 6, \mathrm{c} 7$ \}
3	T1: $\{\mathrm{c} 2, \mathrm{c} 3$ \}	T3: $\{\mathrm{c} 2, \mathrm{c3})$	$\mathrm{T} 1:\{\mathrm{c}, \mathrm{c} 7\}$	T3: $(\mathrm{c6}, \mathrm{c} 7)$
4	$\mathrm{T} 16:\{\mathrm{c}, \mathrm{c} 1\}$	T 18 : $\{\mathrm{c} 0, \mathrm{c} 1\}$	$\mathrm{T} 16:\{(4, c 5)$	T18: $\{(4, c 5\}$
5	T 17 : $(\mathrm{c}, \mathrm{c} 1\}$	$\mathrm{T} 19:(\mathrm{co}, \mathrm{c} 1)$	T17: $(44, c 5)$	T19 : $\{4,4, c 5\}$
6	T 16 : $\{\mathrm{c} 2, \mathrm{c} 3$ \}	T 18 : $\{\mathrm{c} 2, \mathrm{c} 3\}$	$\mathrm{T} 16:(c 6, c 7)$	T 18 : $\{66, \mathrm{c} 7\}$
7	T 17 : $(\mathrm{c}, \mathrm{c} 3)$	$\mathrm{T} 19:\{\mathrm{c} 2, \mathrm{c} 3)$	T17: $(66, C 7)$	T19: $\{\mathrm{c6}, \mathrm{c} 7$)

PTX WMMA and MMA Instructions

Sparse matrices: mma.sp

9.7.13.5. Matrix multiply-accumulate operation using mma. sp instruction with sparse matrix A

This section describes warp-level mma.sp instruction with sparse matrix A. This variant of the mma operation can be used when A is a structured sparse matrix with 50% zeros in each row distributed in a shape-specific granularity. For an MxNxK sparse mma.sp operation, the $M \times K$ matrix A is packed into $M x K / 2$ elements. For each K-wide row of matrix $A, 50 \%$ elements are zeros and the remaining $\mathrm{K} / 2$ non-zero elements are packed in the operand representing matrix A . The mapping of these $\mathrm{K} / 2$ elements to the corresponding K -wide row is provided explicitly as metadata.

Original Sparse Matrix

Input operands to sparse mma instruction
opd A

128 bits
metadata

8 elements 16 bits T3
T2

T0	T1	T2	T3
012101210120\|21012			

PTX WMMA and MMA Instructions

Load and store: mma Idmatrix
Warp-wide load matrix instruction

```
// Load a single 8x8 matrix using 64-bit addressing
.reg .b64 addr;
.reg .b32 d;
ldmatrix.sync.aligned.m8n8.x1.shared.b16 {d}, [addr];
// Load two 8x8 matrices in column-major format
.reg .b64 addr;
.reg .b32 d<2>;
ldmatrix.sync.aligned.m8n8.x2.trans.shared.b16 {d0, d1}, [addr];
// Load four 8x8 matrices
.reg .b64 addr;
.reg .b32 d<4>;
ldmatrix.sync.aligned.m8n8.x4.b16 {d0, d1, d2, d3}, [addr];
```


PTX WMMA to SASS

Raihan et al., 2019

Get SASS code from cuobjdump disassembly

PTX WMMA to SASS

Raihan et al., 2019

Get SASS code from cuobjdump disassembly

Cumulative Clock Cycles

SET1	$\left\{\begin{array}{l}\text { HMMA. } 884 . \mathrm{F} 32 . \mathrm{F} 32 . \text { STEP0 R8, R24.reuse.COL, R22.reuse.ROW, R8; } \\ \text { HMMA. } 884 . \mathrm{F} 32 . \mathrm{F} 32 . \text { STEP1 R10, R24.reuse.COL, R22.reuse.ROW, R10; } \\ \text { HMMA. } 884 . \mathrm{F} 32 . \mathrm{F} 32 . \text { STEP2 R4, R24.reuse.COL, R22.reuse.ROW, R4; } \\ \text { HMMA.884.F32.F32.STEP3 R6, R24.COL, R22.ROW, R6; }\end{array}\right.$	10
		12
		14
		18
SET2	HMMA.884.F32.F32.STEP0 R8, R20.reuse.COL, R18.reuse.ROW, R	20
	MA. $884 . \mathrm{F} 32 . \mathrm{F} 32$. STEP1 R10, R20.reuse.COL, R18.reuse.ROW, R	22
	MA.884.F32.F32.STEP2 R4, R20.reuse.COL, R18.reuse.ROW, R4;	24
	HMMA.884.F32.F32.STEP3 R6, R20.COL, R18.ROW, R6;	28
SET3	MA.884.F32.F32.STEP0 R8, R14.reuse.COL, R12.reuse.ROW, R8	30
	MMA.884.F32.F32.STEP1 R10, R14.reuse.COL, R12.reuse.ROW, R10	32
	MA.884.F32.F32.STEP2 R4, R14.reuse.COL, R12.reuse.ROW, R4;	34
	HMMA.884.F32.F32.STEP3 R6, R14.COL, R12.ROW, R6;	38
SET4	MMA.884.F32.F32.STEP0 R8, R16.reuse.COL, R2.reuse.ROW,	40
	MA.884.F32.F32.STEP1 R10, R16.reuse.COL, R2.reuse.ROW, R	42
	84.F32.F32.STEP2 R4, R16.reuse.COL, R2.reuse.ROW, R4	44
	HMMA.884.F32.F32.STEP3 R6, R16.COL, R2.ROW, R6;	54

(a) Disassembled SASS instructions for Mixed precision mode

PTX WMMA to SASS

Raihan et al., 2019

Get SASS code from cuobjdump disassembly

```
SET1 - HMMA.884.F16.F16.STEP0 R4, R22.reuse.T, R12.reuse.T, R4;
HMMA.884.F16.F16.STEP1 R6, R22.T, R12.T, R6;
SET2 -HMMA.884.F16.F16.STEP0 R4, R16.reuse.T, R14.reuse.T, R4;
    HMMA.884.F16.F16.STEP1 R6, R16.T, R14.T, R6;
SET3 [HMMA.884.F16.F16.STEP0 R4, R18.reuse.T, R8.reuse.T, R4;
    HMMA.884.F16.F16.STEP1 R6, R18.T, R8.T, R6;
SET4 [ llmMA.884.F16.F16.STEP0 R4, R2.reuse.T, R10.reuse.T, R4;
```

(b) Disassembled SASS instructions for FP16 mode

PTX WMMA to SASS

Raihan et al., 2019, reverse-engineered matrix fragment assignment

Figure 8: Distribution of operand matrix elements to threads for tensor cores in the RTX 2080 (Turing).

PTX WMMA to SASS

Raihan et al., 2019, reverse-engineered Tensor core microarchitecture

Figure 13: Proposed Tensor Core Microarchitecture

DEVELOPING CUDA KERNELS TO PUSH TENSOR CORES TO THE ABSOLUTE LIMIT ON NVIDIA A100

Andrew Kerr, May 21, 2020

https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/ s21745-developing-cuda-kernels-to-push-tensor-cores-to-the-absolute-limit-on-nvidia-a100.pdf

NVIDIA AMPERE ARCHITECTURE

NVIDIA A100

New and Faster Tensor Core Operations

- Floating-point Tensor Core operations $8 x$ and $16 x$ faster than F32 CUDA Cores
- Integer Tensor Core operations $32 x$ and $64 x$ faster than F32 CUDA Cores

- New IEEE double-precision Tensor Cores $2 x$ faster than F64 CUDA Cores

Additional Data Types and Mode

- Bfloat16, double, Tensor Float 32

Asynchronous copy

- Copy directly into shared memory - deep software pipelines

Many additional new features - see "Inside NVIDIA Ampere Architecture"

PROGRAMMING NVIDIA AMPERE ARCHITECTURE

Deep Learning and Math Libraries using Tensor Cores (with CUDA kernels under the hood)

- cuDNN, cuBLAS, cuTENSOR, cuSOLVER, cuFFT, cuSPARSE
- "CUDNN V8: New Advances in Deep Learning Acceleration" (GTC 2020-S21685)
- "How CUDA Math Libraries Can Help you Unleash the Power of the New NVIDIA A100 GPU" (GTC 2020 - S21681)
- "Inside the Compilers, Libraries and Tools for Accelerated Computing" (GTC 2020-S21766)

CUDA C++ Device Code
CUTLASS, CUDA Math API, CUB, Thrust, libcu++

PROGRAMMING NVIDIA AMPERE ARCHITECTURE with CUDA C++

This is a talk for CUDA programmers

CUTLASS

CUDA C++ Templates for Deep Learning and Linear Algebra

CUTLASS

What's new?

CUTLASS 2.2: optimal performance on NVIDIA Ampere Architecture

- Higher throughput Tensor Cores: more than $2 x$ speedup for all data types
- New floating-point types: bfloat16, Tensor Float 32, double
- Deep software pipelines with cp.async: efficient and latency tolerant

CUTLASS 2.1

- Planar complex: complex-valued GEMMs with batching options targeting Volta and Turing Tensor Cores
- BLAS-style host side API

CUTLASS 2.0: significant refactoring using modern $\mathrm{C}++11$ programming

- Efficient: particularly for Turing Tensor Cores
- Tensor Core programming model: reusable components for linear algebra kernels in CUDA
- Documentation, profiling tools, reference implementations, SDK examples, more..
https://github.com/NVIDIA/cutlass

CUTLASS PERFORMANCE ON NVIDIA AMPERE ARCHITECTURE

CUTLASS 2.2 - CUDA 11 Toolkit - NVIDIA A100

Mixed Precision Floating Point

0

Double Precision Floating Point

Mixed Precision Integer

WHAT ARE TENSOR CORES?

Matrix operations: $D=o p(A, B)+C$

- Matrix multiply-add
- XOR-POPC

Input Data types: A, B

- half, bfloat16, Tensor Float 32, double, int8, int4, bin1

Accumulation Data Types: C, D

- half, float, int32_t, double

WHAT ARE TENSOR CORES?

Matrix operations: $D=o p(A, B)+C$

- Matrix multiply-add
- XOR-POPC

M-by-N-by-K matrix operation

- Warp-synchronous, collective operation
" 32 threads within warp collectively hold A, B, C, and D operands

NVIDIA AMPERE ARCHITECTURE - TENSOR CORE OPERATIONS

PTX	Data Types $(A * B+C)$	Shape	Speedup on NVIDIA A100 (vs F32 CUDA cores)	Speedup on Turing* (vs F32 Cores)	Speedup on Volta* (vs F32 Cores)
mma.sync.m16n8k16 mma.sync.m16n8k8	$\begin{aligned} & \text { F16 } * \text { F16 }+ \text { F16 } \\ & \text { F16 } * \text { F16 }+ \text { F32 } \\ & \text { BF16 } * \text { BF16 + F32 } \end{aligned}$	$\begin{aligned} & \text { 16-by-8-by-16 } \\ & \text { 16-by-8-by-8 } \end{aligned}$	16x	8 x	8 x
mma.sync.m16n8k8	TF32 * TF32 + F32	16-by-8-by-8	8 x	N/A	N/A
mma.sync.m8n8k4	F64 * F64 + F64	8-by-8-by-4	2 x	N/A	N/A
mma.sync.m16n8k32 mma.sync.m8n8k16	S8 * 58 + S32	$\begin{gathered} \text { 16-by-8-by- } 32 \\ 8 \text {-by- } 8 \text {-by-16 } \end{gathered}$	32 x	16x	N/A
mma.sync.m16n8k64	S4 * S4 + S32	16-by-8-by-64	64x	32 x	N/A
mma.sync.m16n8k256	$B 1 \sim 81+S 32$	16-by-8-by-256	256x	128x	N/A

https://docs.nvidia.com/cuda/parallel-thread-execution/index.htm|\#warp-level-matrix-instructions-mma-and-friends

TENSOR CORE OPERATION: FUNDAMENTAL SHAPE

Warp-wide Tensor Core operation: 8 -by-8-by-128b

S8 * S8 + S32

8 -by-8-by-16

mma.sync.aligned (via inline PTX)

```
```

int32_t D[2];

```
```

int32_t D[2];
uint32_t const A;
uint32_t const A;
uint32_t const B;
uint32_t const B;
int32_t const C[2];
int32_t const C[2];
// Example targets 8-by-8-by-16 Tensor Core operation
// Example targets 8-by-8-by-16 Tensor Core operation
asm(
asm(
"mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 "
"mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 "
" { %0, %1 }, "
" { %0, %1 }, "
" %2, "
" %2, "
" %3, % "
" %3, % "
"=r"(D[0]), "=r"(D[1])
"=r"(D[0]), "=r"(D[1])
: "r"(A), "r"(B),
: "r"(A), "r"(B),
"r"(C[0]), "r"(C[1])
"r"(C[0]), "r"(C[1])
);

```
```

);

```
```

64 bits	
r_{0}	r_{1}

EXPANDING THE M DIMENSION

Warp-wide Tensor Core operation: 16-by-8-by-128b

F16 * F16 + F32

16-by-8-by-8

32 bits	
h_{0}	$\mathrm{~h}_{1}$

T0	T1	T2	T3	T0	T1	T2	T3
T4	T5	T6	T7	T4	T5	T6	T7
T8	T9	T10	T11	T8	T9	T10	T11
T12	T13	T14	T15	T12	T13	T14	T15
T16	T17	T18	T19	T16	T17	T18	T19
T20	T21	T22	T23	T20	T21	T22	T23
T24	T25	T26	T27	T24	T25	T26	T27
T28	T29	T30	T31	T28	T29	T30	T31
T0	T1	T2	T3	T0	T1	T2	T3
T4	T5	T6	T7	T4	T5	T6	T7
T8	T9	T10	T11	T8	T9	T10	T11
T12	T13	T14	T15	T12	T13	T14	T15
T16	T17	T18	T19	T16	T17	T18	T19
T20	T21	T22	T23	T20	T21	T22	T23
T24	T25	T26	T27	T24	T25	T26	T27
T28	T29	T30	T31	T28	T29	T30	T31

mma.sync.aligned (via inline PTX)

```
float D[4];
uint32_t const A[2];
uint32_t const B;
float const C[4];
```

```
// Example targets 16-by-8-by-8 Tensor Core operation
asm(
    "mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32 "
    " { %0, %1, %2, %3 }, "
    " { %4, %5},
    " %6,
    " { %7, %8, %9, %10 };"
    "=f"(D[0]), "=f"(D[1]), "=f"(D[2]), "=f"(D[3])
        "r"(A[0]), "r"(A[1]),
        "r"(B),
        "f"(C[0]), "f"(C[1])
);
```


EXPANDING THE K DIMENSION

Warp-wide Tensor Core operation: 16-by-8-by-256b

F16 * F16 + F32

mma.sync.aligned (via inline PTX)

```
float D[4];
uint32_t const A[4];
uint32_t const B[2];
float const C[4];
// Example targets 16-by-8-by-32 Tensor Core operation
asm(
    "mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32 "
    " { %0, %1, %2, %3 },
    " { %4, %5, %6, %7 },
    " { %8, %9 },
    " { %10, %11, %12, %13 };"
        "=f"(D[0]), "=f"(D[1]), "=f"(D[2]), "=f"(D[3])
        "r"(A[0]), "r"(A[1]), "r"(A[2]), "r"(A[3]),
        "r"(B[0]), "r"(B[1]),
        "f"(C[0]), "f"(C[1]), "f"(C[2]), "f"(C[3])
);
```


S8 * S8 + S32

mma.sync.aligned (via inline PTX)

```
int32_t D[4];
uint32_t const A[4];
uint32_t const B[2];
int32_t const C[4];
// Example targets 16-by-8-by-32 Tensor Core operation
asm(
    "mma.sync.aligned.m16n8k32.row.col.s32.s8.s8.s32 "
    " { %0, %1, %2, %3 },
    " { %4, %5, %6, %7 },
    " { %8, %9 },
    " { %10, %11, %12, %13 };"
        "=r"(D[0]), "=r"(D[1]), "=r"(D[2]), "=r"(D[3])
        "r"(A[0]), "r"(A[1]), "r"(A[2]), "r"(A[3]),
        "r"(B[0]), "r"(B[1]),
        "r"(C[0]), "r"(C[1]), "r"(C[2]), "r"(C[3])
);
```

HALF-PRECISION : F16 * F16 + F16

mma.sync.aligned (via inline PTX)

```
uint32_t D[2]; // two registers needed (vs. four)
uint32_t const A[4];
uint32_t const B[2];
uint32_t const C[2]; // two registers needed (vs. four)
// Example targets 16-by-8-by-16 Tensor Core operation
asm(
    "mma.sync.aligned.m16n8k16.row.col.f16.f16.f16.f16 "
    " { %0, %1},
    " { %2, %3, %4, %5 }, "
    " { %6, %7 },
    " { %8, %9 };
    "=r"(D[0]), "=r"(D[1])
        "r"(A[0]), "r"(A[1]), "r"(A[2]), "r"(A[3]),
        "r"(B[0]), "r"(B[1]),
        "r"(C[0]), "r"(C[1])
);
```


DOUBLE-PRECISION: F64 * F64 + F64 mma. sync.aligned (via inline PTX)

8-by-8-by-4


```
uint64_t D[2]; // two 64-bit accumulators
uint64_t const A; // one 64-bit element for A operand
uint64_t const B; // one 64-bit element for B operand
uint64_t const C[2]; // two 64-bit accumulators
// Example targets 8-by-8-by-4 Tensor Core operation
asm(
    "mma.sync.aligned.m8n8k4.row.col.f64.f64.f64.f64 "
    " { %0, %1},
    " %2,
    " %3, "
    " { %4, %5 }; "
    "=1"(D[0]), "=1"(D[1])
    " "l"(A),
    "l"(B),
        "l"(C[0]), "l"(C[1])
);
```


CUTLASS: wraps PTX in template

m-by-n-by-k

cutlass: :arch: :Mma

```
/// Matrix multiply-add operation
template <
    /// Size of the matrix product (concept: GemmShape)
    typename Shape,
    /// Number of threads participating
    int kThreads,
    /// Data type of A elements
    typename ElementA,
    /// Layout of A matrix (concept: MatrixLayout)
    typename LayoutA,
    /// Data type of B elements
    typename ElementB,
    /// Layout of B matrix (concept: MatrixLayout)
    typename LayoutB,
    /// Element type of C matrix
    typename ElementC,
    /// Layout of C matrix (concept: MatrixLayout)
    typename LayoutC,
    /// Inner product operator
    typename Operator
>
struct Mma;
```


CUTLASS: wraps PTX in template

16-by-8-by-16

cutlass: :arch: :Mma

```
__global__ void kernel() {
    // arrays containing logical elements
    Array<half_t, 8> A;
    Array<half_t, 4> B;
    Array< float, 4> C;
    // define the appropriate matrix operation
    arch::Mma< GemmShape<16, 8, 16>, 32, ... > mma;
    // in-place matrix multiply-accumulate
    mma(C, A, B, C);
}
```


HELLO WORLD: TENSOR CORES

Map each thread to coordinates of the matrix operation
Load inputs from memory
Perform the matrix operation
Store the result to memory

CUDA example

```
__global__ void tensor_core_example_8\times8\times16(
    int32_t
    M
    nt32_t const *A,
    uint32 t const *B,
    int32_t const *C) {
    // Compute the coordinates of accesses to A and B matrices
    int outer = threadIdx.x / 4; // m or n dimension
    int inner = threadIdx.x % 4; // k dimension
    // Compute the coordinates for the accumulator matrices
    int c_row = threadIdx.x / 4;
    int c_col = 2 * (threadIdx.x % 4);
    // Compute linear offsets into each matrix
    int ab idx = outer * 4 + inner;
    int cd_idx = c_row * 8 + c_col;
    // Issue Tensor Core operation
    asm(
        "mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 "
        " { %0, %1 }
            %2,
            { %4, %5 };
            "=r"(D[cd_idx]), "=r"(D[cd_idx + 1])
            "r"(A[ab_idx]),
            'r"(B[ab_idx]),
            "r"(C[cd_idx]), "r"(C[cd_idx + 1])
    );
}
```


PERFORMANCE IMPLICATIONS

Load A and B inputs from memory: $2 \times 4 B$ per thread
Perform one Tensor Core operation: 2048 flops per warp

2048 flops require 256 B of loaded data
$\rightarrow 8$ flops/byte

NVIDIA A100 Specifications:

- 624 TFLOP/s (INT8)
1.6 TB/s (HBM2)
$\rightarrow 400$ flops/byte

8 flops/byte * 1.6 TB/s $\rightarrow 12$ TFLOP/s
This kernel is global memory bandwidth limited.

CUDA example

```
__global__ void tensor_core_example_8\times8\times16(
    int32_t *D,
    uint32_t const *A,
    uint32_t const *B,
    int32_t const *C) {
    // Compute the coordinates of accesses to A and B matrices
    int outer = threadIdx.x / 4; // m or n dimension
    int inner = threadIdx.x % 4; // k dimension
    Compute the coordinates for the accumulator matrices
    int c_row = threadIdx.x / 4;
    int c_col = 2 * (threadIdx.x % 4);
    compute linear offsets into each matrix
    int ab_idx = outer * 4 + inner;
    int cd_idx = c_row * 8 + c_col;
    // Issue Tensor Core operation
    asm(
        "mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 "
        { %0, %1 },
        " %2,
        %3,
        "=r"(D[cd_idx]), "=r"(D[cd_idx + 1])
: "r"(A[ab_idx]), 
        "r"(C[cd_idx]), "r"(C[cd_idx + 1])
    );
}
```


FEEDING THE DATA PATH

Efficient storing and loading through Shared Memory

Tiled, hierarchical model: reuse data in Shared Memory and in Registers
See CUTLASS GTC 2018 talk for more details about this model.

FEEDING THE DATA PATH

Move data from Global Memory to Tensor Cores as efficiently as possible

Latency-tolerant pipeline from Global Memory

- Conflict-free Shared Memory stores
- Conflict-free Shared Memory loads

ASYNCHRONOUS COPY: EFFICIENT PIPELINES

New NVIDIA Ampere Architecture feature: cp.async

- Asynchronous copy directly from Global to Shared Memory
- See "Inside the NVIDIA Ampere Architecture" for more details (GTC 2020 - S21730)

Enables efficient software pipelines

- Minimizes data movement: $\mathrm{L} 2 \Rightarrow \mathrm{~L} 1 \Rightarrow \mathrm{RF} \Rightarrow$ SMEM becomes $\mathrm{L} 2 \rightarrow$ SMEM
- Saves registers: RF no longer needed to hold the results of long-latency load instructions
- Indirection: fetch several stages in advance for greater latency tolerance

FEEDING THE DATA PATH

Move data from Global Memory to Tensor Cores as efficiently as possible

- Latency-tolerant pipeline from Global Memory
- Conflict-free Shared Memory stores
- Conflict-free Shared Memory loads

GLOBAL MEMORY TO TENSOR CORES

Tensor Cores

LDMATRIX: FETCH TENSOR CORE OPERANDS

PTX instruction to load a matrix from Shared Memory

Each thread supplies a pointer to 128b row of data in Shared Memory
Each 128b row is broadcast to groups of four threads
(potentially different threads than the one supplying the pointer)
Data matches arrangement of inputs to Tensor Core operations

Shared Memory Pointers				
TO \longrightarrow	T0	T1	T2	T3
T1 \longrightarrow	T4	T5	T6	T7
T2 \longrightarrow	T8	T9	T10	T11
T3 \longrightarrow	T12	T13	T14	T15
T4 \longrightarrow	T16	T17	T18	T19
T5	T20	T21	T22	T23
T6	T24	T25	T26	T27
T7 \longrightarrow	T28	T29	T30	T31
T8 \longrightarrow	T0	T1	T2	T3
T9 \longrightarrow	T4	T5	T6	T7
$\mathrm{T} 10 \longrightarrow$	T8	T9	T10	T11
T11 \longrightarrow	T12	T13	T14	T15
$\mathrm{T} 12 \longrightarrow$	T16	T17	T18	T19
$\mathrm{T} 13 \longrightarrow$	T20	T21	T22	T23
T14 \longrightarrow	T24	T25	T26	T27
$\mathrm{T} 15 \longrightarrow$	T28	T29	T30	T31

T0	T4						
T1	T5	T9	T13	T17 ${ }^{\text {T2 }}$	T21	T25 ${ }^{\text {T }}$	
T2	T6	T10	T14	T18 ${ }^{\text {T } 22}$	T22	T26 T	
T3	77	T11 ${ }^{\text {T }}$	T15	T19 ${ }^{\text {T }}$	T23	${ }^{\text {T27 }}{ }^{\text {T }}$	
то	T4	T8	T12	T16 ${ }^{\text {T } 20}$	T20	T24 ${ }^{\text {T }}$	
T1	T5	T9	13	T17 T2	T21	T25 T	29
T2	T6	T10	T14	T18 ${ }^{\text {T } 22}$	T22	T26 ${ }^{\text {T }}$	30
T3	77	T11 ${ }^{\text {T }}$	T15	T19 ${ }^{\text {T } 23}$	T23	T27 ${ }^{\text {T }}$	
	то	T1	1	T2	2	T3	
	T4	T5	5	T6	6	T7	
	T8	T9	9	T10	10	T11	
	12	T13	13	T14	14	T15	
	16	T17	17	T18	18	T19	
	20	T2	21	T22	22	T23	
	24	T25	125	T26	126	T27	
	28	T29	29	T30	30	T31	
	то	T1	1	T2	2	т	
	T4	T5	5	T6	6	T7	
	T8	T9	9	T10	10	T11	
	12	T13	13	T14	14	T15	
	T16	T1	17	T18	18	T19	
	720	T21	21	T22	122	T23	
	T24	T25	25	T26	126	T27	
	28	T29	29	T30	30	T31	

LDMATRIX: PTX INSTRUCTION

PTX instruction to load a matrix from SMEM

Each thread supplies a pointer to 128b row of data in Shared Memory Each 128b row is broadcast to groups of four threads (potentially different threads than the one supplying the pointer)

Data matches arrangement of inputs to Tensor Core operations

```
// Inline PTX assembly for ldmatrix
uint32_t R[4];
uint32_t smem_ptr;
asm volatile (
    "ldmatrix.sync.aligned.x4.m8n8.shared.b16 "
    "{%0, %1, %2, %3}, [%4];
    :"=r"(R[0]), "=r"(R[1]), "=r"(R[2]), "=r"(R[3])
    "r"(smem_ptr)
);
```

Matrix loaded by warp

T 0	F 4	$-\mathrm{T} 2-$	$\mathrm{T} 3-1$
T 4	T 5	T 6	T 7
T 8	T 9	T 10	T 11
T 12	T 13	T 14	T 15
T 16	T 17	T 18	T 19
T 20	T 21	T 22	$\mathrm{~T} 23-$
T 24	T 25	T 26	T 27
T 28	T 29	- T 30	T 31

\section*{| T0 | T1 | T2 | T3 |
| :--- | :--- | :--- | :--- |
| T4 | $T 5$ | $T 6$ | $T 7$ |}

T4	T5	T6	T7
T8	T9	T10	T11
T12	T13	T14	T15
T16	T 17	$\mathrm{~T}_{1} 8^{\prime}$	T 19
	T21	T22	T 23

T 0	T 1	T 2	, $^{\prime} 3$
T 4	T 5	T 6	T 7
T 8	T 9	$\mathrm{~T} 10^{\prime}$	T 11
T 12	T 13	$\mathrm{~T}^{\prime} 14$	T 15
T 16	T 17	${ }^{\mathrm{T} 18} 18$	T 19
T 20	T 21,	T 22	T 23
T 24	T 25	T 26	T 27
T 28	$\mathrm{~T}_{2} 29$	T 30	T 31

T0	T 1	T 2	T 3
T 4	T 5	T 6	T 7
T 8	T 9	T 10	T 11
T 12	T 13	T 14	T 15
T 16	T 17	T 18	T 19
T 20	T 21	T 22	T 23
T 24	T 25	T 26	T 27
T 28	T 29	T 30	T 31

Data loaded by TO

GLOBAL MEMORY TO TENSOR CORES

NVIDIA AMPERE ARCHITECTURE - SHARED MEMORY BANK TIMING

Bank conflicts between threads in the same phase
4B words are accessed in 1 phase
8B words are accessed in 2 phases:

- Process addresses of the first 16 threads in a warp

```
Phase 0: T0 .. T7
Phase 1: T8 .. T15
Phase 2: T16 .. T23
Phase 3: T24 .. T31
```

- Process addresses of the second 16 threads in a warp

16B words are accessed in 4 phases:

128 bit access size

- Each phase processes 8 consecutive threads of a warp

Slide borrowed from: Guillaume Thomas-Collignon and Paulius Micikevicius. "Volta Architecture and performance optimization." GTC 2018.

GLOBAL MEMORY TO TENSOR CORES

Bank conflict on either store or load from Shared Memory

GLOBAL TO SHARED MEMORY

Load from Global Memory

Permuted Shared Memory layout
XOR function maps thread index to Shared Memory location

GLOBAL TO SHARED MEMORY

Load from Global Memory

Load

Store to Shared Memory

Phase 0: T0 .. T7
Phase 1: T8 .. T15
Phase 2: T16 .. T23
Phase 3: T24 .. T31

GLOBAL TO SHARED MEMORY

Load from Global Memory

Store to Shared Memory

T0	T1	T2	T3	T4	T5	T6	T7
T9	T8	T11	T10	T13	T12	T15	T14
T18	T19	T16	T17	T22	T23	T20	T21
T27	T26	T25	T24	T31	T30	T29	T28
T----	T----						

Phase 0: T0 .. T7
Phase 1: T8 .. T15
Phase 2: T16 .. T23
Phase 3: T24 .. T31

GLOBAL TO SHARED MEMORY

Load from Global Memory

Store to Shared Memory

то	T1	T2	T3	T4	T5	T6	T7
T9	T8	T11	T10	T13	T12	T15	T14
T18	T19	T16	T17	T22	T23	T20	T21
T27	T26	T25	T24	T31	T30	T29	T28
5^{---}							
+							

Phase 0: T0 .. T7
Phase 1: T8 .. T15
Phase 2: T16 .. T23
Phase 3: T24 .. T31

GLOBAL TO SHARED MEMORY

Load from Global Memory

Store to Shared Memory

T0	T1	T2	T3	T4	T5	T6	T7
T9	T8	T11	T10	T13	T12	T15	T14
T18	T19	T16	T17	T22	T23	T20	T21
T27	T26	T25	T24	T31	T30	T29	T28

Phase 0: T0 .. T7
Phase 1: T8 .. T15
Phase 2: T16 .. T23
Phase 3: T24 .. T31

FEEDING THE DATA PATH

Move data from Global Memory to Tensor Cores as efficiently as possible

- Latency-tolerant pipeline from Global Memory
- Conflict-free Shared Memory stores
- Conflict-free Shared Memory loads

LOADING FROM SHARED MEMORY TO REGISTERS

Logical view of threadblock tile

Load Matrix from Shared Memory

T0	T16			T1	T17		
T18	T2			T19	T3		
		T4	T20			T5	T21
		T22	T6			T23	T7
T8	T24			T9	T25		
T26	T10			T27	T11		
		T12	T28			T13	T29
		T30	T14			T31	T15

T0	\longrightarrow	T0	T1	T2	T3
T1	\longrightarrow	T4	T5	T6	T7
T2	\longrightarrow	T8	T9	T10	T11
T3	\longrightarrow	T12	T13	T14	T15
T4	\longrightarrow	T16	T17	T18	T19
T5	\longrightarrow	T20	T21	T22	T23
T6	\longrightarrow	T24	T25	T26	T27
T7		T28	T29	T30	T31
T8	\longrightarrow	T0	T1	T2	T3
T9	\longrightarrow	T4	T5	T6	T7
T10	\longrightarrow	T8	T9	T10	T11
T11	\longrightarrow	T12	T13	T14	T15
T12	\rightarrow	T16	T17	T18	T19
T13	\longrightarrow	T20	T21	T22	123
T14	\rightarrow	T24	T25	T26	T27
T15	\longrightarrow	T28	T29	T30	T31

Shared Memory
Pointers

T16	то	T1	T2	T3	то	T1	T2	T3
T17	T4	T5	T6	T7	T4	T5	T6	T7
T18	T8	T9	T10	T11	т 8	T9	T10	T11
T19	T12	T13	T14	T15	T12	T13	T14	T15
T20	T16	T17	T18	T19	T16	T17	T18	T19
T21	T20	T21	T22	T23	T20	T21	T22	T23
T22	T24	T25	T26	T27	T24	T25	T26	T27
T23	T28	T29	T30	T31	T28	T29	T30	T31
T24	то	T1	T2	T3	то	T1	T2	T3
T25	T4	TS	T6	T7	T4	TS	T6	77
T26	T8	T9	T10	T11	T8	T9	T10	T11
T27	T12	T13	T14	T15	T12	T13	T14	T15
T28	T16	T17	T18	T19	T16	T17	T18	T19
T29	T20	T21	T22	T23	T20	T21	T22	T23
T30	T24	T25	T26	T27	T24	T25	T26	T27
T31	T28	T29	T30	T31	T28	T29	T30	T31

LOADING FROM SHARED MEMORY TO REGISTERS

Logical view of threadblock tile

Shared Memory
Pointers

T 0
T 1
T 2
T 3
T 4
T 5

T 6 \longrightarrow| \longrightarrow |
| :--- |

Shared Memory
Pointers

LOADING FROM SHARED MEMORY TO REGISTERS

Logical view of threadblock tile

Shared Memory Pointers	
T0	
T1	
T2	\longrightarrow
T3	\longrightarrow
T4	\longrightarrow
T5	\longrightarrow
T6	\longrightarrow
T7	\longrightarrow
T8	\longrightarrow

T16	\longrightarrow	то	T1	T2	т	то	T1	T2	т
T17	\longrightarrow	T4	T5	T6	T7	T4	TS	T6	77
T18	\longrightarrow	T8	T9	T10	T11	т 8	т9	T10	T11
T19	\longrightarrow	T12	T13	T14	T15	T12	T13	T14	T15
T20	\longrightarrow	T16	T17	T18	T19	T16	T17	T18	T19
T21	\longrightarrow	T20	T21	T22	T23	T20	T21	T22	T23
T22		T24	T25	T26	T27	T24	T25	T26	T27
T23	\rightarrow	T28	T29	T30	T31	T28	T29	T30	T31
T24	\longrightarrow	то	T1	T2	T3	то	T1	T2	T3
T25		T4	T5	T6	T7	T4	TS	T6	T7
T26		т8	T9	T10	T11	T8	т9	T10	T11
T27		T12	T13	T14	T15	T12	T13	T14	T15
T28		T16	T17	T18	T19	T16	T17	T18	T19
T29		T20	T21	T22	T23	T20	T21	T22	T23
T30	\longrightarrow	T24	T25	T26	T27	T24	T25	T26	T27
T31	-	T28	T29	T30	T31	T28	T29	T30	T31

LOADING FROM SHARED MEMORY TO REGISTERS

Logical view of threadblock tile

Shared Memory
Pointers
Load Matrix from Shared Memory

T0	T16			T1	T17		
T18	T2			T19	T3		
		T4	T20			T5	T21
		T22	T6			T23	T7
T8	T24			T9	T25		
T26	T10			T27	T11		
		T12	T28			T13	T29
		T30	T14			T31	T15

ADVANCING TO NEXT K GROUP

ADVANCING TO NEXT K GROUP

T0	T16			T1	T17		
T18	T2			T19	T3		
		T4	T20			T5	T21
T8	T24			T9	T25		
T26	T10			T27	T11		
		T12	T28			T13	T29
		T30	T14			T31	T15

smem_ptr $=$ row_idx * $8+$ column_idx;

\longrightarrow| | | $T 0$ | $T 16$ | | | $T 1$ | $T 17$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | $T 18$ | $T 2$ | | | T 19 | T 3 |
| T 4 | T 20 | | | T, | T 21 | | |
| T 22 | T 6 | | | T 23 | T 7 | | |
| | | T 8 | T 24 | | | T 9 | T 25 |
| | | T 26 | T 10 | | | T 27 | T 11 |
| T 12 | T 28 | | | T 13 | T 29 | | |
| T 30 | T 14 | | | T 31 | T 15 | | |

smem_ptr = smem_ptr ^ 2;

LOADING FROM SHARED MEMORY TO REGISTERS

Logical view of threadblock tile

Phase 0

Load Matrix from Shared Memory

		T0	T16			T1	T17	
		T18	T2			T19	T3	
T4	T20			T5	T21			
T22	T6			T23	T7			
		T8	T24			T9	T25	
		T26	T10			T27	T11	
T12	T28			T13	T29			
T30	T14							

LOADING FROM SHARED MEMORY TO REGISTERS

Logical view of threadblock tile

Phase 1

Load Matrix from Shared Memory

		T0	T16			T1	T17
		T18	T2			T19	T3
T4	T20			T5	T21		
T22	T6			T23	T7		
		T8	T24			T9	T25
		T26	T10			T27	T11
T12	T28			T13	T29		
T30	T14			T31	T15		

LOADING FROM SHARED MEMORY TO REGISTERS

Logical view of threadblock tile

Phase 2

Load Matrix from Shared Memory

		T0	T16			T1	T17
		T18	T2			T19	T3
T4	T20			T5	T21		
T22	T6			T23	T7		
		T8	T24			T9	T25
		T26	T10			T27	T11
T12	T28			T13	T29		
T30	T14			T31	T15		

LOADING FROM SHARED MEMORY TO REGISTERS

Logical view of threadblock tile

Phase 3

Load Matrix from Shared Memory

		T0	T16			T1	T17
		T18	T2			T19	T3
T4	T20			T5	T21		
T22	T6			T23	T7		
		T8	T24			T9	T25
		T26	T10			T27	T11
T12	T28			T13	T29		
T30	T14			T31	T15		

CUTLASS

CUDA C++ Templates as an Optimal Abstraction Layer for Tensor Cores

- Latency-tolerant pipeline from Global Memory
- Conflict-free Shared Memory stores
- Conflict-free Shared Memory loads

CUTLASS: OPTIMAL ABSTRACTION FOR TENSOR CORES

CUTLASS: OPTIMAL ABSTRACTION FOR TENSOR CORES

Tile Iterator Constructors:

Initialize pointers into permuted Shared Memory buffers

Fragments:

Register-backed arrays holding each thread's data
load() - Fetches data from permuted Shared Memory buffers - . operator++() - advances to the next logical matrix in SMEM

Warp-level matrix multiply:

Decomposes a large matrix multiply into Tensor Core operations -
using Mma = cutlass::gemm::warp: :DefaultMmaTensorOp< GemmShape<64, 64, 16>,
half_t, LayoutA, // GEMM A operand half_t, LayoutB, // GEMM B operand float, RowMajor // GEMM C operand
>;
__shared__ ElementA smem_buffer_A[Mma::Shape::kM * GemmK];
_shared__ ElementB smem_buffer_B[Mma::Shape::kN * GemmK];
// Construct iterators into SMEM tiles
Mma::IteratorA iter_A(\{smem_buffer_A, lda\}, thread_id);
Mma::IteratorB iter_B(\{smem_buffer_B, ldb\}, thread_id);
Mma::FragmentA frag_A;
Mma: :FragmentB frag_B;
Mma::FragmentC accum;
Mma mma;
accum.clear();
\#pragma unroll 1
for (int k = 0; k < GemmK; k += Mma::Shape::kK) \{
iter_A.load(frag_A); // Load fragments from A and B matrices
iter_B.load(frag_B);
++iter_A; ++iter_B; // Advance along GEMM K to next tile in A
and B matrices
// Compute matrix product
mma(accum, frag_A, frag_B, accum);

Thank you.

[^0]: Helpful fact for counting nodes of full binary trees:
 If there are N leaf nodes, there will be $\mathrm{N}-1$ non-leaf nodes

[^1]: Iterate $\log (\mathrm{n})$ times. Each thread adds value stride $/ 2$ elements away to its own value.

[^2]: Iterate $\log (n)$ times. Each thread adds value stride / 2 elements away to its own value.

[^3]: Iterate $\log (\mathrm{n})$ times. Each thread adds value stride $/ 2$ elements away to its own value.
 Note that this algorithm operates in-place: no need for double buffering

[^4]: Iterate $\log (n)$ times. Each thread adds value stride $/ 2$ elements away to its own value. First element adds zero.

[^5]: Iterate $\log (\mathrm{n})$ times. Each thread adds value stride $/ 2$ elements away to its own value. First element adds zero.

[^6]: Markus Hadwiger, KAUST

