
CS 380 - GPU and GPGPU Programming
Lecture 27: GPU Prefix Sum (Pt. 2);

Tensor Core Programming

Markus Hadwiger, KAUST

2

Reading Assignment #14 (until Dec 4)

Don‘t forget reading assignment #13! (reduction and prefix sum)

Read (required):
• Warp Shuffle Functions

– CUDA Programming Guide 11.8, Appendix B.22

• CUDA Cooperative Groups
– CUDA Programming Guide 11.8, Appendix C
– https://developer.nvidia.com/blog/cooperative-groups/

• Programming Tensor Cores
– CUDA Programming Guide 11.8, Appendix B.24 (Warp matrix functions)
– https://developer.nvidia.com/blog/programming-tensor-cores-cuda-9/

Read (optional):
• Guy E. Blelloch: Prefix Sums and their Applications

– https://www.cs.cmu.edu/~guyb/papers/Ble93.pdf/

• CUDA Warp-Level Primitives
– https://developer.nvidia.com/blog/using-cuda-warp-level-primitives/

• Warp-aggregated atomics
– https://developer.nvidia.com/blog/

cuda-pro-tip-optimized-filtering-warp-aggregated-atomics/

3

Next Lectures

Quiz #3 (only quiz, no lecture): Wed, Dec 7 (regular time)

Semester project presentations: Mon, Dec 12 16:00

4

Quiz #3: Dec 7

Organization
• First 30 min of lecture (but this time, there‘ll only be the quiz)

• No material (book, notes, ...) allowed

Content of questions
• Lectures (both actual lectures and slides)

• Reading assignments

• Programming assignments (algorithms, methods)

• Solve short practical examples

5

Work Efficiency

Guy E. Blelloch and Bruce M. Maggs:
Parallel Algorithms, 2004 (https://www.cs.cmu.edu/~guyb/papers/BM04.pdf)

In designing a parallel algorithm, it is more important to make it efficient than to make it
asymptotically fast. The efficiency of an algorithm is determined by the total number of
operations, or work that it performs. On a sequential machine, an algorithm's work is the
same as its time. On a parallel machine, the work is simply the processor-time product.
Hence, an algorithm that takes time t on a P-processor machine performs work W = Pt. In
either case, the work roughly captures the actual cost to perform the computation, assuming
that the cost of a parallel machine is proportional to the number of processors in the
machine.

We call an algorithm work-efficient (or just efficient) if it performs the same amount of
work, to within a constant factor, as the fastest known sequential algorithm.

For example, a parallel algorithm that sorts n keys in O(sqrt(n) log(n)) time using sqrt(n)
processors is efficient since the work, O(n log(n)), is as good as any (comparison-based)
sequential algorithm.

However, a sorting algorithm that runs in O(log(n)) time using n^2 processors is not
efficient.

The first algorithm is better than the second - even though it is slower - because its work,
or cost, is smaller. Of course, given two parallel algorithms that perform the same amount of
work, the faster one is generally better.

GPU ReductionGPU Reduction

• Parallel reduction is a basic parallel programming primitive;
see reduction operation on a stream, e.g., in Brook for GPUs

Helpful fact for counting nodes of full binary trees:
If there are N leaf nodes, there will be N-1 non-leaf nodes

GPU Parallel Prefix SumGPU Parallel Prefix Sum

• Basic parallel programming primitive;
parallelize inherently sequential operations

(next element would be 25)

A Parallel Algorithm for the Efficient Solution of a General Class of
Recurrence Equations, Kogge and Stone, 1973

See “carry lookahead” adders vs. “ripple carry” adders

Courtesy John Owens

Courtesy John Owens

Courtesy John Owens

A Regular Layout for Parallel Adders, Brent and Kung, 1982

Courtesy John Owens

Courtesy John Owens

/ 2

/ 2

/ 2

Down‐Sweep Variant 1: Exclusive Scan

/ 2

/ 2
/ 2

Down‐Sweep Variant 2: Inlusive Scan

/ 2

/ 2

32 for full warps!

32-thread full warp!

Use Padding to Reduce Conflicts

Programming Tensor CoresProgramming Tensor Cores

NVIDIA Volta SM

Multiprocessor: SM (CC 7.0)
• 64 FP32 + 64 INT32 cores

• 32 FP64 cores

• 32 LD/ST units; 16 SFUs

• 8 tensor cores
(FP16/FP32 mixed-precision)

4 partitions inside SM
• 16 FP32 + 16 INT32 cores each

• 8 FP64 cores each

• 8 LD/ST units; 4 SFUs each

• 2 tensor cores each

• Each has: warp scheduler,
dispatch unit, register file

NVIDIA Turing SM

Multiprocessor: SM (CC 7.5)
• 64 FP32 + INT32 cores

• 2 (!) FP64 cores

• 8 Turing tensor cores
(FP16/32, INT4/8 mixed-precision)

• 1 RT (ray tracing) core

4 partitions inside SM
• 16 FP32 + INT32 cores each

• 4 LD/ST units; 4 SFUs each

• 2 Turing tensor cores each

• Each has: warp scheduler,
dispatch unit, 16K register file

NVIDIA GA100 SM

Multiprocessor: SM (CC 8.0)
• 64 FP32 + 64 INT32 cores

• 32 FP64 cores

• 4 3rd gen tensor cores

• 1 2nd gen RT (ray tracing) core

4 partitions inside SM
• 16 FP32 + 16 INT32 cores

• 8 FP64 cores

• 8 LD/ST units; 4 SFUs each

• 1 3rd gen tensor core each

• Each has: warp scheduler,
dispatch unit, 16K register file

NVIDIA GA10x SM

Multiprocessor: SM (CC 8.6)
• 128 (64+64) FP32 + 64 INT32 cores

• 2 (!) FP64 cores

• 4 3rd gen tensor cores

• 1 2nd gen RT (ray tracing) core

4 partitions inside SM
• 32 (16+16) FP32 + 16 INT32 cores

• 4 LD/ST units; 4 SFUs each

• 1 3rd gen tensor core each

• Each has: warp scheduler,
dispatch unit, 16K register file

NVIDIA GH100 SM

Multiprocessor: SM (CC 9.0)
• 128 FP32 + 64 INT32 cores

• 64 FP64 cores

• 4x 4th gen tensor cores
• ++ thread block clusters, DPX insts., FP8, TMA

4 partitions inside SM
• 32 FP32 + 16 INT32 cores

• 16 FP64 cores

• 8x LD/ST units; 4 SFUs each

• 1x 4th gen tensor core each

• Each has: warp scheduler,
dispatch unit, 16K register file

Markus Hadwiger, KAUST 58

NVIDIA AD102 SM

Multiprocessor: SM (CC 8.9)
• 128 (64+64) FP32 + 64 INT32 cores

• 2 (!) FP64 cores

• 4x 4th gen tensor cores

• 1x 3rd gen RT (ray tracing) core
• ++ thread block clusters, FP8, … (?)

4 partitions inside SM
• 32 (16+16) FP32 + 16 INT32 cores

• 4x LD/ST units; 4 SFUs each

• 1x 4th gen tensor core each

• Each has: warp scheduler,
dispatch unit, 16K register file

Markus Hadwiger, KAUST 59

Tensor Cores

Mixed-precision, fast matrix-matrix multiply and accumulate (mma)

From this, build larger shapes (sizes), higher dimensionalities, ...

API currently only allows using larger shapes (16x16, ...) in warps (wmma)

Markus Hadwiger, KAUST 60

Tensor Cores

Fused matrix multiply and accumulate
• Input matrices can be (at most) half-precision (FP16); (Ampere has more!)

• Accumulate can be FP16 or FP32; (Ampere has more!)

Markus Hadwiger, KAUST 61

Ampere Tensor Cores: Mixed Precision

Markus Hadwiger, KAUST 62

New in Ampere: TF32, BF16, FP64

plus FP64 (new in Ampere; GA100 only)

plus INT4/INT8/binary data types (experimental; introduced in Turing)

Ampere Tensor Cores: Sparsity Support

Markus Hadwiger, KAUST 63

Sparse MMA instructions

2:4 structured sparsity

Tensor Cores: More Mixed Precision Options

Markus Hadwiger, KAUST 64

New in Hopper: FP8

plus other data types from before (INT4/INT8/binary, …)

Tensor Cores: Hopper vs. Ampere

(preliminary)

Markus Hadwiger, KAUST 65

Tensor Memory Accelerator (TMA)

Asynchronous transfers

Markus Hadwiger, KAUST 66

Tensor Core APIs

Low-level options
• CUDA C WMMA (warp-level matrix multiply and accumulate)

• PTX wmma and mma (needed for some features) instructions

• SASS hmma instructions (not documented)

High-level options
• NVIDIA CUTLASS (template abstractions for hi-perf matrix-multiplies)

• NVIDIA cuBLAS

• NVIDIA cuDNN

• Integration into TensorFlow, ...

Markus Hadwiger, KAUST 67

CUTLASS 2.11 (November 2022)
https://github.com/NVIDIA/cutlass

CUDA C Warp Matrix Functions (WMMA)

Warp Level Matrix Multiply Accumulate (WMMA)

CUDA C Programming Guide (11.8), Appendix B.24

namespace nvcuda::wmma (and nvcuda::wmma::experimental)

Concept of a matrix fragment (section of a matrix split across threads in a warp)

Dimensions m,n,k: m x k matrix_a; k x n matrix_b; m x n accumulator

Markus Hadwiger, KAUST 68

CUDA C Warp Matrix Functions (WMMA)

Data types (T)

wmma API splits

this into fragments

Markus Hadwiger, KAUST 69

Volta/Turing/Ampere/Hopper/Ada:

CUDA C Warp Matrix Functions (WMMA)

Data types (T)

wmma API splits

this into fragments

Markus Hadwiger, KAUST 70

Ampere/Hopper only:

Turing/Ampere/Ada:

Ampere/Hopper/Ada only:

CUDA C Warp Matrix Functions (WMMA)

Warp Level Matrix Multiply Accumulate (WMMA)

CUDA C Programming Guide (11.8), Appendix B.24

Markus Hadwiger, KAUST 71

PTX ISA 7.8, Section 9.7.13 (120 pages)

PTX WMMA and MMA Instructions

Markus Hadwiger, KAUST 72

PTX ISA 7.8

PTX WMMA and MMA Instructions

73

Load and store: wmma

PTX WMMA and MMA Instructions

74

Load and store: wmma

PTX WMMA and MMA Instructions

75

wmma example

PTX WMMA and MMA Instructions

76

mma: fixed assigments of matrix fragments to registers in each thread of warp

PTX WMMA and MMA Instructions

77

mma: fixed assigments of matrix fragments to registers in each thread of warp

PTX WMMA and MMA Instructions

78

mma: fixed assignments of matrix fragments to registers in each thread of warp

PTX WMMA and MMA Instructions

79

Sparse matrices: mma.sp

PTX WMMA and MMA Instructions

25

Load and store: mma ldmatrix

Warp-wide load matrix instruction

PTX WMMA and MMA Instructions

81

PTX WMMA to SASS

Raihan et al., 2019

Get SASS code from cuobjdump disassembly

Micro-benchmarking

Markus Hadwiger, KAUST 82

PTX WMMA to SASS

Raihan et al., 2019

Get SASS code from cuobjdump disassembly

Markus Hadwiger, KAUST 83

PTX WMMA to SASS

Raihan et al., 2019

Get SASS code from cuobjdump disassembly

Markus Hadwiger, KAUST 84

PTX WMMA to SASS

Raihan et al., 2019, reverse-engineered matrix fragment assignment

PTX WMMA to SASS

Raihan et al., 2019, reverse-engineered Tensor core microarchitecture

https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/
s21745‐developing‐cuda‐kernels‐to‐push‐tensor‐cores‐to‐the‐absolute‐limit‐on‐
nvidia‐a100.pdf

Thank you.

