
CS 380 - GPU and GPGPU Programming
Lecture 27: GPU Prefix Sum (Pt. 2);

Tensor Core Programming
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Reading Assignment #14 (until Dec 4)

Don‘t forget reading assignment #13! (reduction and prefix sum)

Read (required):
• Warp Shuffle Functions

– CUDA Programming Guide 11.8, Appendix B.22

• CUDA Cooperative Groups
– CUDA Programming Guide 11.8, Appendix C
– https://developer.nvidia.com/blog/cooperative-groups/

• Programming Tensor Cores
– CUDA Programming Guide 11.8, Appendix B.24 (Warp matrix functions)
– https://developer.nvidia.com/blog/programming-tensor-cores-cuda-9/

Read (optional):
• Guy E. Blelloch: Prefix Sums and their Applications

– https://www.cs.cmu.edu/~guyb/papers/Ble93.pdf/

• CUDA Warp-Level Primitives
– https://developer.nvidia.com/blog/using-cuda-warp-level-primitives/

• Warp-aggregated atomics
– https://developer.nvidia.com/blog/

cuda-pro-tip-optimized-filtering-warp-aggregated-atomics/
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Next Lectures

Quiz #3 (only quiz, no lecture): Wed, Dec 7 (regular time)

Semester project presentations: Mon, Dec 12 16:00
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Quiz #3: Dec 7

Organization
• First 30 min of lecture (but this time, there‘ll only be the quiz)

• No material (book, notes, ...) allowed

Content of questions
• Lectures (both actual lectures and slides)

• Reading assignments

• Programming assignments (algorithms, methods)

• Solve short practical examples
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Work Efficiency

Guy E. Blelloch and Bruce M. Maggs:
Parallel Algorithms, 2004  (https://www.cs.cmu.edu/~guyb/papers/BM04.pdf)

In designing a parallel algorithm, it is more important to make it efficient than to make it 
asymptotically fast. The efficiency of an algorithm is determined by the total number of 
operations, or work that it performs. On a sequential machine, an algorithm's work is the 
same as its time. On a parallel machine, the work is simply the processor-time product. 
Hence, an algorithm that takes time t on a P-processor machine performs work W = Pt. In 
either case, the work roughly captures the actual cost to perform the computation, assuming 
that the cost of a parallel machine is proportional to the number of processors in the 
machine.

We call an algorithm work-efficient (or just efficient) if it performs the same amount of 
work, to within a constant factor, as the fastest known sequential algorithm.

For example, a parallel algorithm that sorts n keys in O( sqrt(n) log(n) ) time using sqrt(n) 
processors is efficient since the work, O( n log(n) ), is as good as any (comparison-based) 
sequential algorithm.

However, a sorting algorithm that runs in O( log(n) ) time using n^2 processors is not 
efficient.

The first algorithm is better than the second - even though it is slower - because its work, 
or cost, is smaller. Of course, given two parallel algorithms that perform the same amount of 
work, the faster one is generally better.



GPU ReductionGPU Reduction

• Parallel reduction is a basic parallel programming primitive;
see reduction operation on a stream, e.g., in Brook for GPUs



Helpful fact for counting nodes of full binary trees:
If there are N leaf nodes, there will be N-1 non-leaf nodes







GPU Parallel Prefix SumGPU Parallel Prefix Sum

• Basic parallel programming primitive;
parallelize inherently sequential operations



(next element would be 25)



A Parallel Algorithm for the Efficient Solution of a General Class of 
Recurrence Equations, Kogge and Stone, 1973

See “carry lookahead” adders vs. “ripple carry” adders

Courtesy John Owens
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A Regular Layout for Parallel Adders, Brent and Kung, 1982

Courtesy John Owens



Courtesy John Owens





/ 2



/ 2



/ 2



Down‐Sweep Variant 1: Exclusive Scan
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Down‐Sweep Variant 2: Inlusive Scan
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32 for full warps!

32-thread full warp!



Use Padding to Reduce Conflicts













Programming Tensor CoresProgramming Tensor Cores



NVIDIA Volta SM

Multiprocessor: SM (CC 7.0)
• 64 FP32 + 64 INT32 cores

• 32 FP64 cores

• 32 LD/ST units; 16 SFUs

• 8 tensor cores
(FP16/FP32 mixed-precision)

4 partitions inside SM
• 16 FP32 + 16 INT32 cores each

• 8 FP64 cores each

• 8 LD/ST units; 4 SFUs each

• 2 tensor cores each

• Each has: warp scheduler,
dispatch unit, register file



NVIDIA Turing SM

Multiprocessor: SM (CC 7.5)
• 64 FP32 + INT32 cores

• 2 (!) FP64 cores

• 8 Turing tensor cores
(FP16/32, INT4/8 mixed-precision)

• 1 RT (ray tracing) core

4 partitions inside SM
• 16 FP32 + INT32 cores each

• 4 LD/ST units; 4 SFUs each

• 2 Turing tensor cores each

• Each has: warp scheduler,
dispatch unit, 16K register file



NVIDIA GA100 SM

Multiprocessor: SM (CC 8.0)
• 64 FP32 + 64 INT32 cores

• 32 FP64 cores

• 4 3rd gen tensor cores

• 1 2nd gen RT (ray tracing) core

4 partitions inside SM
• 16 FP32 + 16 INT32 cores

• 8 FP64 cores

• 8 LD/ST units; 4 SFUs each

• 1 3rd gen tensor core each

• Each has: warp scheduler,
dispatch unit, 16K register file



NVIDIA GA10x SM

Multiprocessor: SM (CC 8.6)
• 128 (64+64) FP32 + 64 INT32 cores

• 2 (!) FP64 cores

• 4 3rd gen tensor cores

• 1 2nd gen RT (ray tracing) core

4 partitions inside SM
• 32 (16+16) FP32 + 16 INT32 cores

• 4 LD/ST units; 4 SFUs each

• 1 3rd gen tensor core each

• Each has: warp scheduler,
dispatch unit, 16K register file



NVIDIA GH100 SM

Multiprocessor: SM (CC 9.0)
• 128 FP32 + 64 INT32 cores

• 64 FP64 cores

• 4x 4th gen tensor cores
• ++ thread block clusters, DPX insts., FP8, TMA

4 partitions inside SM
• 32 FP32 + 16 INT32 cores

• 16 FP64 cores

• 8x LD/ST units; 4 SFUs each

• 1x 4th gen tensor core each

• Each has: warp scheduler,
dispatch unit, 16K register file
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NVIDIA AD102 SM

Multiprocessor: SM (CC 8.9)
• 128 (64+64) FP32 + 64 INT32 cores

• 2 (!) FP64 cores

• 4x 4th gen tensor cores

• 1x 3rd gen RT (ray tracing) core
• ++ thread block clusters, FP8, … (?)

4 partitions inside SM
• 32 (16+16) FP32 + 16 INT32 cores

• 4x LD/ST units; 4 SFUs each

• 1x 4th gen tensor core each

• Each has: warp scheduler,
dispatch unit, 16K register file
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Tensor Cores

Mixed-precision, fast matrix-matrix multiply and accumulate (mma)

From this, build larger shapes (sizes), higher dimensionalities, ...

API currently only allows using larger shapes (16x16, ...) in warps (wmma)
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Tensor Cores

Fused matrix multiply and accumulate
• Input matrices can be (at most) half-precision (FP16); (Ampere has more!)

• Accumulate can be FP16 or FP32; (Ampere has more!)
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Ampere Tensor Cores: Mixed Precision
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New in Ampere: TF32, BF16, FP64

plus FP64 (new in Ampere; GA100 only)

plus INT4/INT8/binary data types (experimental; introduced in Turing)



Ampere Tensor Cores: Sparsity Support
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Sparse MMA instructions

2:4 structured sparsity



Tensor Cores: More Mixed Precision Options
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New in Hopper: FP8

plus other data types from before (INT4/INT8/binary, …)



Tensor Cores: Hopper vs. Ampere

(preliminary)

Markus Hadwiger, KAUST 65



Tensor Memory Accelerator (TMA)

Asynchronous transfers
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Tensor Core APIs

Low-level options
• CUDA C WMMA (warp-level matrix multiply and accumulate)

• PTX wmma and mma (needed for some features) instructions

• SASS hmma instructions (not documented)

High-level options
• NVIDIA CUTLASS (template abstractions for hi-perf matrix-multiplies)

• NVIDIA cuBLAS

• NVIDIA cuDNN

• Integration into TensorFlow, ...
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CUTLASS 2.11 (November 2022)
https://github.com/NVIDIA/cutlass



CUDA C Warp Matrix Functions (WMMA)

Warp Level Matrix Multiply Accumulate (WMMA)

CUDA C Programming Guide (11.8), Appendix B.24

namespace nvcuda::wmma (and nvcuda::wmma::experimental)

Concept of a matrix fragment (section of a matrix split across threads in a warp)

Dimensions m,n,k:   m x k matrix_a;   k x n matrix_b;   m x n accumulator
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CUDA C Warp Matrix Functions (WMMA)

Data types (T)

wmma API splits

this into fragments
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Volta/Turing/Ampere/Hopper/Ada:



CUDA C Warp Matrix Functions (WMMA)

Data types (T)

wmma API splits

this into fragments
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Ampere/Hopper only:

Turing/Ampere/Ada:

Ampere/Hopper/Ada only:



CUDA C Warp Matrix Functions (WMMA)

Warp Level Matrix Multiply Accumulate (WMMA)

CUDA C Programming Guide (11.8), Appendix B.24
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PTX ISA 7.8, Section 9.7.13 (120 pages)

PTX WMMA and MMA Instructions
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PTX ISA 7.8

PTX WMMA and MMA Instructions
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Load and store: wmma

PTX WMMA and MMA Instructions
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Load and store: wmma

PTX WMMA and MMA Instructions
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wmma example

PTX WMMA and MMA Instructions
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mma: fixed assigments of matrix fragments to registers in each thread of warp

PTX WMMA and MMA Instructions
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mma: fixed assigments of matrix fragments to registers in each thread of warp

PTX WMMA and MMA Instructions
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mma: fixed assignments of matrix fragments to registers in each thread of warp

PTX WMMA and MMA Instructions
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Sparse matrices: mma.sp

PTX WMMA and MMA Instructions

25



Load and store: mma ldmatrix

Warp-wide load matrix instruction

PTX WMMA and MMA Instructions
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PTX WMMA to SASS

Raihan et al., 2019

Get SASS code from cuobjdump disassembly

Micro-benchmarking
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PTX WMMA to SASS

Raihan et al., 2019

Get SASS code from cuobjdump disassembly
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PTX WMMA to SASS

Raihan et al., 2019

Get SASS code from cuobjdump disassembly
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PTX WMMA to SASS

Raihan et al., 2019, reverse-engineered matrix fragment assignment



PTX WMMA to SASS

Raihan et al., 2019, reverse-engineered Tensor core microarchitecture



https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/
s21745‐developing‐cuda‐kernels‐to‐push‐tensor‐cores‐to‐the‐absolute‐limit‐on‐
nvidia‐a100.pdf













































































































Thank you.


