
CS 380 - GPU and GPGPU Programming
Lecture 26: GPU Reduction;

GPU Prefix Sum (Pt. 1)

Markus Hadwiger, KAUST

2

Reading Assignment #14 (until Dec 4)

Read (required):
• Warp Shuffle Functions

– CUDA Programming Guide 11.8, Appendix B.22

• CUDA Cooperative Groups
– CUDA Programming Guide 11.8, Appendix C
– https://developer.nvidia.com/blog/cooperative-groups/

• Programming Tensor Cores
– CUDA Programming Guide 11.8, Appendix B.24 (Warp matrix functions)
– https://developer.nvidia.com/blog/programming-tensor-cores-cuda-9/

Read (optional):
• CUDA Warp-Level Primitives

– https://developer.nvidia.com/blog/using-cuda-warp-level-primitives/

• Warp-aggregated atomics
– https://developer.nvidia.com/blog/

cuda-pro-tip-optimized-filtering-warp-aggregated-atomics/

3

Next Lectures

Lecture 27: Wed, Nov 30 (last regular lecture)

Quiz #3: Wed, Dec 7 (regular time)

Presentations: Mon, Dec 12 16:00?

4

Quiz #3: Dec 7

Organization
• First 30 min of lecture

• No material (book, notes, ...) allowed

Content of questions
• Lectures (both actual lectures and slides)

• Reading assignments

• Programming assignments (algorithms, methods)

• Solve short practical examples

GPU ReductionGPU Reduction

• Parallel reduction is a basic parallel programming primitive;
see reduction operation on a stream, e.g., in Brook for GPUs

Helpful fact for counting nodes of full binary trees:
If there are N leaf nodes, there will be N-1 non-leaf nodes

=

if you want to fully retire warps, this should actually be:
if (t < stride) {

partialSum[t] += partialSum[t + stride];
} else {

break;
}

now: __syncwarp()
or better: Cooperative Groups

Look at CUDA SDK reduction example and slides!

out-of-bounds check missing, see SDK code

be careful that shared variables are declared volatile! see SDK code

And More...

1. On Volta and newer (Ampere, ...),
reduction in shared memory must use
warp synchronization! __syncwarp() or Cooperative Groups

2. Last optimization step for parallel reduction:

Do not use shared memory for last 5 steps, but use

warp shuffle instructions

Markus Hadwiger, KAUST 32

Now: Use _sync variants / shuffle in cooperative thread groups!

Now: Use _sync variants / shuffle in cooperative thread groups!

GPU Parallel Prefix SumGPU Parallel Prefix Sum

• Basic parallel programming primitive;
parallelize inherently sequential operations

51

Work Efficiency

Guy E. Blelloch and Bruce M. Maggs:
Parallel Algorithms, 2004 (https://www.cs.cmu.edu/~guyb/papers/BM04.pdf)

In designing a parallel algorithm, it is more important to make it efficient than to make it
asymptotically fast. The efficiency of an algorithm is determined by the total number of
operations, or work that it performs. On a sequential machine, an algorithm's work is the
same as its time. On a parallel machine, the work is simply the processor-time product.
Hence, an algorithm that takes time t on a P-processor machine performs work W = Pt. In
either case, the work roughly captures the actual cost to perform the computation, assuming
that the cost of a parallel machine is proportional to the number of processors in the
machine.

We call an algorithm work-efficient (or just efficient) if it performs the same amount of
work, to within a constant factor, as the fastest known sequential algorithm.

For example, a parallel algorithm that sorts n keys in O(sqrt(n) log(n)) time using sqrt(n)
processors is efficient since the work, O(n log(n)), is as good as any (comparison-based)
sequential algorithm.

However, a sorting algorithm that runs in O(log(n)) time using n^2 processors is not
efficient.

The first algorithm is better than the second - even though it is slower - because its work,
or cost, is smaller. Of course, given two parallel algorithms that perform the same amount of
work, the faster one is generally better.

Helpful fact for counting nodes of full binary trees:
If there are N leaf nodes, there will be N-1 non-leaf nodes

A Parallel Algorithm for the Efficient Solution of a General Class of
Recurrence Equations, Kogge and Stone, 1973

See “carry lookahead” adders vs. “ripple carry” adders

Courtesy John Owens

Courtesy John Owens

Courtesy John Owens

A Regular Layout for Parallel Adders, Brent and Kung, 1982

Courtesy John Owens

Courtesy John Owens

Thank you.

