A,

=
King Abdullah University of A\ ||
Science and Technology KAU ST

CS 380 - GPU and GPGPU Programming
Lecture 26: GPU Reduction;
GPU Prefix Sum (Pt. 1)

Markus Hadwiger, KAUST

Reading Assignment #14 (until Dec 4)

Read (required):

» Warp Shuffle Functions
— CUDA Programming Guide 11.8, Appendix B.22

» CUDA Cooperative Groups
— CUDA Programming Guide 11.8, Appendix C

— https://developer.nvidia.com/blog/cooperative-groups/

* Programming Tensor Cores
— CUDA Programming Guide 11.8, Appendix B.24 (Warp matrix functions)

— https://developer.nvidia.com/blog/programming-tensor-cores-cuda-9/
Read (optional):
* CUDA Warp-Level Primitives

— https://developer.nvidia.com/blog/using-cuda-warp-level-primitives/

* Warp-aggregated atomics

— https://developer.nvidia.com/blog/
cuda-pro-tip-optimized-filtering-warp-aggregated-atomics/

Next Lectures

Lecture 27: Wed, Nov 30 (last regular lecture)

Quiz #3: Wed, Dec 7 (regular time)

Presentations: Mon, Dec 12 16:00?

Quiz #3: Dec 7

Organization
* First 30 min of lecture

* No material (book, notes, ...) allowed

Content of questions
* Lectures (both actual lectures and slides)
* Reading assignments
* Programming assignments (algorithms, methods)

» Solve short practical examples

GPU Reduction

 Parallel reduction is a basic parallel programming primitive;
see reduction operation on a stream, e.g., in Brook for GPUs

Example: Parallel Reduction

« Given an array of values, “reduce” them to a single
value in parallel

« Examples
— sum reduction: sum of all values in the array
— Max reduction: maximum of all values in the array

« Typical parallel implementation:
— Recursively halve # threads, add two values per thread
— Takes log(n) steps for n elements, requires n/2 threads

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Typical Parallel Programming Pattern

* log(n) steps

v
iterations -

Helpful fact for counting nodes of full binary trees:
If there are N leaf nodes, there will be N-1 non-leaf nodes

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Reduction — Version1

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

A Vector Reduction Example

« Assume an in-place reduction using shared memory
— The original vector is in device global memory
— The shared memory used to hold a partial sum vector
— Each iteration brings the partial sum vector closer to the final sum
— The final solution will be in element 0

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Vector Reduction

Array elements ——

iterations

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

A Simple Implementation

Assume we have already loaded array into
__shared float partialSum[];

unsigned int t = threadIdx.x;

// loop log(n) times
for (unsigned int stride = 1;
stride < blockDim.x; stride *= 2)

{
// make sure the sum of the previous iteration
// is available
___syncthreads () ;
if (t % (2*stride) == 0)

partialSum[t] += partialSum[t+stride];

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Reduction #1: Interleaved Addressing >

NVIDIA.

__global__ void reduce0(int *g_idata, int *g_odata) {

extern __shared__ int sdata[];

Il each thread loads one element from global to shared mem
unsigned int tid = threadldx.x;

unsigned int i = blockldx.x*blockDim.x + threadldx.x;
sdata[tid] = g_idatal[i];

__syncthreads();

I/ do reduction in shared mem
for(unsigned int s=1; s < blockDim.x; s *= 2) {
if (tid % (2*s) == 0) {
sdata[tid] += sdata[tid + s];
}

__syncthreads();

}

Il write result for this block to global mem
if (tid == 0) g_odata[blockldx.x] = sdata[0];

Vector Reduction with Branch
Divergence

Thread 0 Thread 2 Thread 4 Thread 6 Thread 8 Thread 10

2

.

1teratio

ERERIN

Array elements ——

Some Observations

* In each iterations, two control flow paths will be sequentially
traversed for each warp
— Threads that perform addition and threads that do not

— Threads that do not perform addition may cost extra cycles depending on the
implementation of divergence

* No more than half of threads will be executing at any time
— All odd index threads are disabled right from the beginning!

— On average, less than Vi of the threads will be activated for all warps over
time.

— Aifter the 5t iteration, entire warps in each block will be disabled, poor
resource utilization but no divergence.

» This can go on for a while, up to 4 more iterations (512/32=16= 24), where each
iteration only has one thread activated until all warps retire

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Short comings of the implementation

Assume we have already loaded array into
__shared float partialSum[];

unsigned int t = threadIdx.x;
for (unsigned int stride = 1;

stride < blockDim.x; stride *= 2)

___syncthreads() ;

if (t % (2*stride) == 0) |

partialSum[t] += partialSum[t+stride];

~

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Reduction — Version?2

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Common Array Bank Conflict Patterns
1D

» Each thread loads 2 elements into shared
mem:

— 2-way-interleaved loads result in
2-way bank conflicts:

Thread O

Thread 1
int tid = threadIdx.x; =8
Thread 2

shared[2*tid] = global[2*tid]; Thread 3
shared[2*tid+1] = global[2*tid+1]; Thread 4

 This makes sense for traditional CPU

threads, locality in cache line usage and Thread 8

reduced sharing traffic. Thread 9
— Not in shared memory usage where there is Vtrsad 10 —
no cache line effects but banking effects Thread 11

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

A Better Array Access Pattern

» Each thread loads one element in
every consecutive group of

blockDim elements. Thread 0

Thread 1
shared[tid] = globall[tid]; Thread 2
shared[tid + blockDim.x] = Thread 3

global[tid + blockDim.x];

Thread 4
Thread 5

Thread 6

Thread 7

¢ ¢
¢ ¢
¢]
A
Thread 15 Bank 15

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

A better implementation

Thread 0

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

A better implementation

 Assume we have already loaded array into
shared float partialSuml[];

unsigned int t = threadIdx.x;
for (unsigned int stride = blockDim.x;
stride > 1; stride >>=1)

___syncthreads() ;
if (t < stride)

partialSum[t] += partialSum[t+stride];

if you want to fully retire warps, this should actually be:
if (t < stride) {

partialSum[t] += partialSum|[t + stride];
} else {
break;

}

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

A better implementation

+ Only the last 5 iterations will have divergence

« Entire warps will be shut down as iterations progress

— For a 512-thread block, 4 iterations to shut down all but one warp in
each block

— Better resource utilization, will likely retire warps and thus blocks
faster

* Recall, no bank conflicts either

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

warp2

Implicit Synchronization in a Warp

« Forlast 6 loops only one warp active (i.e. tid’s 0..31)
— Shared reads & writes SIMD synchronous within a warp
— So skip __syncthreads () and unroll Ia ' '

unsigned int tid = threadIdx.

for (unsigned int d = n>>1; d
__syncthreads|() ;
if (tid < d)

shared[tid] += shared|

}

__syncthreads() ;

if (tid <= 32) { // unroll last
shared[tid] += shared[tid
shared[tid] += shared[tid
shared[tid] += shared[tid
shared[tid] += shared[tid +
shared[tid] += shared[tid + 2];
shared[tid] += shared[tid +

now: __ syncwarp()
or better: Cooperative Groups

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Look at CUDA SDK reduction example and slides!

NVIDIA.

Optimizing Parallel Reduction in CUDA

Mark Harris
NVIDIA Developer Technology

VIDIA.
« Common and important data parallel primitive

« Easy to implement in CUDA
« Harder to get it right

« Serves as a great optimization example
@ We'll walk step by step through 7 different versions
« Demonstrates several important optimization strategies

template <unsigned int blockSize>

{

global__ void reduce6(int *g_idata, int *g_odata, unsigned int n)

extern __shared__ int sdata[]; NVIDIA.

unsigned int tid = threadldx.x; e
unsigned int i = blockldx.x*(blockSize*2) + tid; Final Optimized Kernel
unsigned int gridSize = blockSize*2*gridDim.x;

sdata[tid] = 0;

while (i < n) { sdata[tid] += ¢_idata[i] + gx_ idata[i+blockSize]; i += gridSize; }
—syncthreads(); out-of-bounds check missing, see SDK code

if (blockSize >= 512) { if (tid < 256) { sdata[tid] += sdata[tid + 256]; } _ syncthreads(); }
if (blockSize >= 256) { if (tid < 128) { sdata[tid] += sdata[tid + 128]; } _ syncthreads(); }
if (blockSize >= 128) { if (tid < 64) { sdata[tid] += sdata[tid + 64]; } _ syncthreads(); }

if (tid < 32) {be careful that shared variables are declared volatile! see SDK code
if (blockSize >= 64) sdata[tid] += sdata[tid + 32];
if (blockSize >= 32) sdata[tid] += sdata[tid + 16];
if (blockSize >= 16) sdata[tid] += sdata[tid + 8];
if (blockSize >= 8) sdata[tid] += sdata[tid + 4];
if (blockSize >= 4) sdata[tid] += sdata[tid + 2],
if (blockSize >= 2) sdata[tid] += sdata[tid + 1];
}

if (tid == 0) g_odata[blockldx.x] = sdata[0];

template <unsigned int blockSize>

__device__ void warpReduce(volatile int *sdata, unsigned int tid) { @\% :
if (blockSize >= 64) sdata[tid] += sdatal[tid + 32];
if (blockSize >= 32) sdata[tid] += sdata[tid + 16]; NVIDIA.

if (blockSize >= 16) sdata[tid] += sdata[tid + 8];
if (blockSize >= 8) sdata[tid] += sdata[tid + 4]; - oy
if (blockSize >= 4) sdata[tid] += sdata[tid + 2]; Final Optimized Kernel
if (blockSize >= 2) sdata[tid] += sdata[tid + 1];

}

template <unsigned int blockSize>
__global___ void reduce6(int *g_idata, int *g_odata, unsigned int n) {
extern __shared__ int sdata[];
unsigned int tid = threadldx.x;
unsigned int i = blockldx.x*(blockSize*2) + tid;
unsigned int gridSize = blockSize*2*gridDim.x;
sdata[tid] = 0;

while (i < n) { sdata[tid] += g_idatal[i] + g_idata[i+blockSize]; i += gridSize; }
__syncthreads();

if (blockSize >= 512) { if (tid < 256) { sdata[tid] += sdata[tid + 256]; } __syncthreads(); }
if (blockSize >= 256) { if (tid < 128) { sdata[tid] += sdata[tid + 128]; } __syncthreads(); }
if (blockSize >= 128) {if (tid < 64) { sdata[tid] += sdata[tid + 64];} _ syncthreads(); }

if (tid < 32) warpReduce(sdata, tid);
if (tid == 0) g_odata[blockldx.x] = sdata[0];

NVIDIA.

“ Don’t we still need block size at compile time?
“ Nope, just a switch statement for 10 possible block sizes:

switch (threads)

{
case 512:

reduce5<512><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
case 256:

reduce5<256><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
case 128:

reduceb<128><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
case 64:

reduced< 64><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
case 32:

reducebd< 32><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
case 16:

reduced< 16><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
case 8:

reduced< 8><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
case 4:

reduced< 4><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
case 2:

reduced< 2><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
case 1:

reduced< 1><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
}

NVIDIA.

“ Tree-based approach used within each thread block

“ Need to be able to use multiple thread blocks
“ To process very large arrays
“ To keep all multiprocessors on the GPU busy
« Each thread block reduces a portion of the array

« But how do we communicate partial results between
thread blocks?

NVIDIA.

“ If we could synchronize across all thread blocks, could easily
reduce very large arrays, right?
“ Global sync after each block produces its result
“ Once all blocks reach sync, continue recursively

« But CUDA has no global synchronization. Why?

« Expensive to build in hardware for GPUs with high processor
count

“ Would force programmer to run fewer blocks (no more than #
multiprocessors * # resident blocks / multiprocessor) to avoid
deadlock, which may reduce overall efficiency

' Solution: decompose into multiple kernels
« Kernel launch serves as a global synchronization point
“ Kernel launch has negligible HW overhead, low SW overhead

NVIDIA.

«“ Avoid global sync by decomposing computation
into multiple kernel invocations

RIRYRYRYRYREYRLILGLY o

8 blocks

Level 1:
zg 1 block
“ In the case of reductions, code for all levels is the

same
“ Recursive kernel invocation

Kernel 1:

interleaved addressing
with divergent branching

Kernel 2:

interleaved addressing
with bank conflicts

Kernel 3:

sequential addressing

Kernel 4:
first add during global load

Kernel 5:

unroll last warp

Kernel 6:

completely unrolled

Kernel 7:

multiple elements per thread

Time (222 ints)

8.054 ms

3.456 ms

1.722 ms
0.965 ms
0.536 ms
0.381 ms

0.268 ms

Bandwidth

2.083 GB/s

4.854 GB/s

9.741 GB/s

17.377 GBIs

31.289 GB/s

43.996 GB/s

62.671 GB/s

Step

NVIDIA.
Cumulative

Speedup Speedup

2.33x

2.01x

1.78x

1.8x

1.41x

1.42X

2.33x

4.68x

8.34x

15.01x

21.16x

30.04x

And More...

1. On Volta and newer (Ampere, ...),
reduction in shared memory must use

warp synchronization! syncwarp() or Cooperative Groups
2. Last optimization step for parallel reduction:

Do not use shared memory for last 5 steps, but use

warp shuffle instructions

Markus Hadwiger, KAUST 32

EXAMPLE: REDUCTION VIA SHARED MEMORY

Re-converge threads and perform memory fence

v += shmem[tid+16]; _ syncwarp();

shmem[tid] = v; __syncwarp();
v += shmem[tid+8]; _ syncwarp();
shmem[tid] = v; __syncwarp();
v += shmem[tid+4]; _ syncwarp();
shmem[tid] = v; __syncwarp();
v += shmem[tid+2]; _ syncwarp();
shmem[tid] = v; __syncwarp();
v += shmem[tid+1]; _ syncwarp();

shmem[tid] = v;

38 NVIDIA.

Shuffle (SHFL)

= [nstruction to exchange data in a warp

= Threads can “read” other threads’ registers

= No shared memory is needed

= |t is available starting from SM 3.0

Variants

= 4 variants (idx, up, down, bfly):

abcdefgh

/ |~

shfl.idx shfLup shil.down shfl.bfly

« v \ —~

C e cldlalb]lglhle|f

A R,

Indexed Shift right to nt" Shift left to nt" Butterfly (XOR)
any-to-any neighbour neighbour exchange

Instruction (PTX)

Optional dst. predicate Lane/offset/mask

shfl.mode.b32 d[|p], a, b, c;

Dst. register Src. register Bound

Reduce

= Code

// Threads want to reduce the value in Xx.

float x = ..;

#pragma unroll

for(int mask = WARP_SIZE / 2 ; mask > 0 ; mask >>= 1)
X += __shfl_xor(x, mask);

// The x variable of laneid 0 contains the reduction.

= Performance
— Launch 26 blocks of 1024 threads
— Run the reduction 4096 times

L B o N 7S B LN S B o AR |

QO = N W Ao Dy

Execution Time fp32 (ms)

SHFL
(unsafe)

SMEM per Block fp32 (KB)

unsafe

GPU Parallel Prefix Sum

 Basic parallel programming primitive;
parallelize inherently sequential operations

Parallel Prefix Sum (Scan)

« Definition:
The all-prefix-sums operation takes a binary associative operator
@ with identity /, and an array of n elements
[ag; @4, -5 @5 4]
and returns the ordered set
[/, a,, (a,® a,), ..., (a,® a,D ... D a,,)].

» Example:
if @ is addition, then scan on the set

[3170416 3]
returns the set
[03411111516 2

(From Blelloch, 1990, “Prefix
Sums and Their Applications)

Parallel08 — Control Flow

Applications of Scan

« Scan is a simple and useful parallel building block

— Convert recurrences from sequential :
for (3=1;j<n;Jj++)

out[j] = out[j-1]1 + f£(3);
— Iinto parallel:
forall(j) { templ[j] = £(3) 1};

scan (out, temp):;

« Useful for many parallel algorithms:
* radix sort * Polynomial evaluation

* quicksort * Solving recurrences
* String comparison ¢ Tree operations

* Lexical analysis « Range Histograms
Etc.

« Stream compaction

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Scan on the CPU

volid scan(float* scanned, float* input, int length)

{
scanned[0] = 0O;
for(int 1 = 1; i < length; ++i)
{

scanned[i] = input[i-1] + scanned[i-1];
}
}

« Just add each element to the sum of the elements
before it

* Trivial, but sequential
Exactly n adds: optimal in terms of work efficiency

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Prefix Sum Application
- Compaction -

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Parallel Data Compaction

« Given an array of marked values
31 7 4 2 1 5 6

3 1
(OB 0[0]0[0 N O/O]

« Output the compacted list of marked values

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Using Prefix Sum

« Calculate prefix sum on index array
3

0

1

1

7 4 2

1

0

0

1
0

S 6 3

0

2

2

2

2

2

0

1
0

3

3

* For each marked value lookup the destination index in
the prefix sum

« Parallel write to separate destination elements

Parallel08 — Control Flow

Hendrik Lensch and Robert Strzodka

Prefix Sum Application
- Range Histogram -

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Range Histogram

« A histogram calculate the occurance of each value in an
array.

hii] = |J| J={j| v@l =i}
 Range query: number over elements in interval [a,b].

« Slow answer:
hrange = 0;
for (i = a; i<=b; ++i)
hrange += h[i];

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Fast Range Histogram

« Compute prefix sum of histogram

* Fast answer:
hrange = pref[B] - pref[A];

=Y Hlil-) Ali]=_Ali]

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Prefix Sum Application
- Summed Area Tables -

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Summed Area Tables

* Per texel, store sum from (0, 0) to (u, v)

A

B

* Many bits per texel (sum!)
« Evaluation of 2D integrals in constant time!

AxAy

J‘J.[(x,y)dxdy:A—B—CJrD

BxCy

.

Parallel08 — Control Flow

Hendrik Lensch and Robert Strzodka

Summed Area Table with Prefix Sums

* One possible way:
« Compute prefix sum horizontally

* ... then vertically on the result

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Work Efficiency

Guy E. Blelloch and Bruce M. Maggs:
Parallel Algorithms, 2004 (https://www.cs.cmu.edu/~guyb/papers/BMo4.pdf)

In designing a parallel algorithm, it is more important to make it efficient than to make it
asymptotically fast. The efficiency of an algorithm is determined by the total number of
operations, or work that it performs. On a sequential machine, an algorithm's work is the
same as its time. On a parallel machine, the work is simply the processor-time product.
Hence, an algorithm that takes time t on a P-processor machine performs work W = Pt. In
either case, the work roughly captures the actual cost to perform the computation, assuming
that the cost of a parallel machine is proportional to the number of processors in the
machine.

We call an algorithm work-efficient (or just efficient) if it performs the same amount of
work, to within a constant factor, as the fastest known sequential algorithm.

For example, a parallel algorithm that sorts n keys in O(sqrt(n) log(n)) time using sqrt(n)
processors is efficient since the work, O(n log(n)), is as good as any (comparison-based)
sequential algorithm.

However, a sorting algorithm that runs in O(log(n)) time using n”2 processors is not
efficient.

The first algorithm is better than the second - even though it is slower - because its work,
or cost, is smaller. Of course, given two parallel algorithms that perform the same amount of
work, the faster one is generally better.

51

Vector Reduction

Array elements ——

iterations

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Typical Parallel Programming Pattern

* log(n) steps

v
iterations -

Helpful fact for counting nodes of full binary trees:
If there are N leaf nodes, there will be N-1 non-leaf nodes

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Courtesy John Owens

Kogge-Stone Scan

Circuit family

XgiXy XgiX, Xgr X, XgiXy Xgi X, XXy XX XX, XgiXy XgiX, XgiXyy XgiXp XgiXp, XgiXpy XpiXp XgiXis

A Parallel Algorithm for the Efficient Solution of a General Class of
Recurrence Equations, Kogge and Stone, 1973

See “carry lookahead” adders vs. “ripple carry” adders

Courtesy John Owens

O(n log n) Scan

I B B e e B A

2(Xo..Xg) | 2(Xo..X1) | 2(X1..X2) | Z(X2..X3) | (X3..X4) 2(X4..Xs) | 2(X5..X6) | 2(X6..X7)

Z(Xo..Xo) Z(Xo..Xl) Z(Xo..Xz) Z(Xo..Xg,) Z(Xl..X4) Z(Xz..X5) Z(Xg..X6) Z(X4..X7)

Z(Xo..Xo) Z(Xo..Xl) Z(Xo..Xz) Z(Xo..Xg) Z(Xo..X4) Z(Xo..X5) Z(Xo..X6) Z(XO..X‘?)

e Step efficient (log n steps)
¢ Not work efficient (n log n work)
e Requires barriers at each step (WAR dependencies)

Courtesy John Owens
Hillis-Steele Scan Implementation

No WAR conflicts, O(2N) storage

o
Q‘@-@“‘@

B X)) Blxg) Bcg.x;) Blx.x,) Dl,.x) Blx,..x) Blx,..x)

\ .
\\ .
QWO W o W) W= o)

B(XgeX,) B(xg)| Bxgex3) Blxg-X,) BlXpXs) By Xe) BlxgX7)

A First-Attempt Parallel Scan
Algorithm

ol In | 3 1 7 0 4 1 6 3 1. Read input from
device memory to

\\:\\\\\'\\\ \\\ shared memory. Set

To 0 3 1 7 0 4 q 6 first element to zero
and shift others right

by one.

Each thread reads one value from the input
array in device memory into shared memory array TO.
Thread 0 writes 0 into shared memory array.

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

A First-Attempt Parallel Scan

Algorithm

1.

2.

(previous slide)

lterate log(n)

times: Threads stride
to n: Add pairs of
elements stride
elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

ol In 3 1 7 0 6 3
T0
Stride 1 M\@\@\@\»@\»@\)@
T1
teration %11 | ° Active threads: stride to n-1 (n-stride threads)
setrﬁ dI(e)n= 1 » Thread j adds elements j and j-stride from TO and

writes result into shared memory buffer T1 (ping-pong)

Parallel08 — Control Flow

Hendrik Lensch and Robert Strzodka

A First-Attempt Parallel Scan

Algorithm

In

3 | 1

7

0

6

3

0\\\\\\\\

TO 7 1 6
Stride 1 M\@\@\)@\»@\»@\)@
T1
Stride 2 h%a%%%@—»@
TO [O 3
lteration #2
Stride = 2

1.

Read input from
device memory to
shared memory. Set
first element to zero
and shift others right
by one.

lterate log(n)

times: Threads stride
to n. Add pairs of
elements sfride
elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

Parallel08 — Control Flow

Hendrik Lensch and Robert Strzodka

A First-Attempt Parallel Scan

Algorithm

0 In 3 1 7 0 6 3
T0 1 6
Stride 1 M\@\)@\)@\@\»@\»@
T1
Stride 2 l\vm—%
TO | O 3
TMT| 0| 3 Z 11
lteration #3
Stride = 4

1.

Read input from
device memory to
shared memory. Set
first element to zero
and shift others right
by one.

lterate log(n)

times: Threads stride
to n. Add pairs of
elements sfride
elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

Parallel08 — Control Flow

Hendrik Lensch and Robert Strzodka

A First-Attempt Parallel Scan

Algorithm

Stride 1 1\@\)@\)@\)@\)@\)@\»@
Stride 2 l\vm-@

KRE 3____
IR AR

O |«
w |«

Out

. Read input from

device memory to
shared memory. Set
first element to zero
and shift others right
by one.

. Iterate log(n)

times: Threads stride
to n. Add pairs of
elements stride
elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

. Write output to device

memory.

Parallel08 — Control Flow

Hendrik Lensch and Robert Strzodka

Work Efficiency Considerations

+ The first-attempt Scan executes log(n) parallel
iterations

— Total adds: n * (log(n) — 1) + 1 = O(n*log(n)) work

« This scan algorithm is not very work efficient
— Sequential scan algorithm does n adds
— A factor of log(n) hurts: 20x for 10*6 elements!

« A parallel algorithm can be slow when execution
resources are saturated due to low work efficiency

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Balanced Trees

« For improving efficiency
« A common parallel algorithm pattern:

— Build a balanced binary tree on the input data and sweep it to and from the
root
— Tree is not an actual data structure, but a concept to determine what each

thread does at each step

» Forscan:
— Traverse down from leaves to root building partial sums at internal nodes
In the tree
* Root holds sum of all leaves
— Traverse back up the tree building the scan from the partial sums

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Typical Parallel Programming Pattern

+ 2 log(n) steps

log(n)

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Typical Parallel Programming Pattern

+ 2 log(n) steps

I B I
| I
]
T
I I I

‘"IN

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Courtesy John Owens
Brent Kung Scan

Circuit family

o X X X3 X A5 X Xy Xy X X A Ky X3 Xy XS

\i\}\}\\i
\

\ e

_ _ NI
NNNNNNNS

X, . X X, X, XgiX, X X ~
*p 0yt *p 2x0:x3x0 4x0:x5x0 6x0:x7x0 ® iy 0 10x0:xux0 12x0:x13x0 14y,

A Regular Layout for Parallel Adders, Brent and Kung, 1982

O(n) Scan [Blelloch] &>

X0 | Zxex1)| X2 | E(xeexs)| x4 |Z(xaexs)| xs | E(x0.x7)
d=2 M
X0 | Zxex1)| X2 |E(xexs)| x4 |Z(xa.xs)| X6 Z(X;..xﬂ
Xo |E®ex1)| X Z(Xz'..X3) Xy |Exex9)| xe E(Xﬁ—..X-;)
a0 1 1 1
w | oxmo | om | om | o | om | x|
X0 | ZGex)| X | Z(eXs)| Xe |ZXexs)| Xs | Z(o.Xr)
Z%o
%o | Z(Xo.X1)
d=10
Xo | 2(%p.%;)
d=1 fi
* Work efficient (O(n) work) » | 0
* Bank conflicts, and lots of ‘em ¢ 7 __»—><a = ><a ik =<
0 Xo | Z(%0.X1) | T X2) | T(%o..X3) | T Xa) | E(%o..X5) | E(o..Xs)

Thank you.

