7D
o gAbd e i1dUT chn Tyg: ((| KAUST

CS 380 - GPU and GPGPU Programming
Lecture 24: CUDA Memory, Pt. 3

kwlar adWiger’ - . -

Reading Assignment #13 (until Nov 27)

Read (required):
» Optimizing Parallel Reduction in CUDA, Mark Harris,

https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

» Programming Massively Parallel Processors book, 4t" edition
Chapter 8: Prefix Sum (Scan) — work efficiency in parallel algorithms

Read (optional):
» Programming Massively Parallel Processors book, 4t" edition
Chapter 7: Reduction

» GPU Gems 3 book, Chapter 39: Parallel Prefix Sum (Scan) with CUDA
https://developer.nvidia.com/gpugems/GPUGems3/gpugems3 ch39.html

 Faster Parallel Reductions on Kepler, Justin Luitjens
https://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/

CUDA Memory:

Shared Memory

Memory and Cache Types

Global memory

« [Device] L2 cache

 [SM] L1 cache (shared mem carved out; or L1 shared with tex cache)
« [SM/TPC] Texture cache (separate, or shared with L1 cache)

 [SM] Read-only data cache (storage might be same as tex cache)

Shared memory

* [SM] Shareable only between threads in same thread block
(Hopper/CC 9.x: also thread block clusters)

Constant memory: Constant (uniform) cache

Unified memory programming: Device/host memory sharing

Markus Hadwiger, KAUST 4

Memory Banks

==

Fermi/Kepler/Maxwell

and newer;

32 banks

4B / bank
Kepler or newer:

configurable

to 8B / bank

Shared Memory

Uses:
Inter-thread communication within a block
Cache data to reduce redundant global memory accesses
Use it to improve global memory access patterns

Performance:
smem accesses are issued per warp

Throughput is 4 (or 8) bytes per bank per clock per multiprocessor

serialization: if N threads of 32 access different words in the same bank,
N accesses are executed serially

multicast: N threads access the same word in one fetch
* Could be different bytes within the same word

Bank Addressing Examples

* No Bank Conflicts * No Bank Conflicts
— Linear addressing — Random 1:1 Permutation
stride ==

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5

Thread 6
Thread 7

Thread 15 Bank 15

Bank 15

Thread 15

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of lllinois, Urbana-Champaign

Bank Addressing Examples

« 2-way Bank Conflicts

— Linear addressing
stride ==

Thread 0
Thread 1

Thread 2 VI‘
Thread 4 "’1

Thread 8
Thread 9
Thread 10

Thread 11

Thread 15

« 8-way Bank Conflicts

— Linear addressing
stride ==

Thread O
Thread 1

Thread 2 ‘
Thread 3 |

Thread 4 '
Thread 5 \
Thread 6 »

Thread 7

x8

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE 498AL, University of lllinois, Urbana-Champaign

How addresses map to banks on G80

* Each bank has a bandwidth of 32 bits per clock cycle

* Successive 32-bit words are assigned to successive
banks

e (G&0 has 16 banks
— So bank = address % 16
— Same as the size of a half-warp

* No bank conflicts between different half-warps, only within a
single half-warp

Fermi and newer have 32 banks,
considers full warps instead of half warps!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of lllinois, Urbana-Champaign

Shared Memory Bank Conflicts

« Shared memory is as fast as registers if there are no bank
conflicts

« The fast case:
— If all threads of a half-warp access different banks, there is no bank conflict

— If all threads of a half-warp access the identical address, there is no bank
conflict (broadcast)

« The slow case:

— Bank Conflict: multiple threads in the same half-warp access the same
bank

— Must serialize the accesses
— Cost = max # of simultaneous accesses to a single bank

full warps instead of half warps on Fermi and newer!

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

Linear Addressing

« Given:

__shared float shared[256];
float foo =
shared[baseIndex + s * threadIdx.x];

* This is only bank-conflict-free if s
shares no common factors with the

number of banks
— 16 on G80, so s must be odd

Thread O
Thread 1
Thread 2
Thread 3

Thread 4
Thread 5
Thread 6
Thread 7

Thread 15 Bank 15

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5

Thread 6
Thread 7

Parallel08 — Memory Access

Hendrik Lensch and Robert Strzodka

Data Types and Bank Conflicts

+ This has no conflicts if type of shared is 32-bits:

foo = shared[baseIndex + threadIdx.x]

Thread O
Thread 1

'
Thread 2 %
« But not if the data type is smaller oo /

— 4-way bank conflicts: S
shared char sharedl[]; Thread 7
Egb = sh;;éd[baselndex + threadldx.x];

but no problem on Fermi or newer: multi-cast! oo

Thread 0
Thread 1

— v
— 2-way bank conflicts: M ?‘
__shared short shared[]; Thread 4 /
foo = shared[baseIndex + threadIdx.x]; ﬁiii,///
Thread 7
but no problem on Fermi or newer: multi-cast! : A

’I
Thread 15 Bank 15

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

Structs and Bank Conflicts

« Struct assignments compile into as many memory accesses as there are
struct members:

Thread 0

Thread 1 IR
struct vector { float x, v, z; }; Thread 2
struct myType { Thread 3
Thread 4
float f,' Thread 5
1nt c; Thread 6
. Thread 7
}; . .
__shared struct vector vectors[64]; H .
__shared struct myType myTypes[64]; —’ Bank 15
« This has no bank conflicts for vector; struct size is 3 words /\

— 3 accesses per thread, contiguous banks (no common factor with 16)

struct vector v = vectors[baselIndex + threadIdx.x]:;

« This has 2-way bank conflicts for myType;
(each bank will be accessed by 2 threads simultaneously)
struct myType m = myTypes[baseIndex + threadIdx.x];

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

Broadcast on Shared Memory

» Each thread loads the same
element — no bank conlict

Thread 0O

x = shared[0]; Thread 1

Thread 2
* Will be resolved implicitly Thread 3
Thread 4
Thread 5

Thread 6

Thread 7

A
Bank 15

multi-cast on Fermi and newer!

Thread 15

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

Common Array Bank Conflict Patterns
1D

» Each thread loads 2 elements into shared
mem:

— 2-way-interleaved loads result in
2-way bank conflicts:

Thread O

Thread 1
int tid = threadIdx.x; =8
Thread 2

shared[2*tid] = global[2*tid]; Thread 3
shared[2*tid+1] = global[2*tid+1]; Thread 4

 This makes sense for traditional CPU

threads, locality in cache line usage and Thread 8

reduced sharing traffic. Thread 9
— Not in shared memory usage where there is Vtrsad 10 —
no cache line effects but banking effects Thread 11

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

A Better Array Access Pattern

» Each thread loads one element in
every consecutive group of

blockDim elements. Thread 0

Thread 1
shared[tid] = globall[tid]; Thread 2
shared[tid + blockDim.x] = Thread 3

global[tid + blockDim.x];

Thread 4
Thread 5

Thread 6

Thread 7

¢ ¢
¢ ¢
¢]
A
Thread 15 Bank 15

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

OPTIMIZE

Kernel Optimizations: Shared Memory Accesses

Case Study: Matrix Transpose

* Coalesced read
* Scattered write (stride N)

— Process matrix tile, not single
row/column, per block

= Transpose matrix tile within block

Case Study: Matrix Transpose

* Coalesced read
* Scattered write (stride N)

* Transpose matrix tile within block

— Need threads in a block to cooperate:
use shared memory

Transpose with coalesced read/write

__global transpose(float in[], float out[])
{

__shared float tile[TILE] [TILE];

int glob_in = xIndex + (yIndex)*N;
int glob out = xIndex + (yIndex) *N;

tile[threadIdx.y] [threadIdx.x] = in[glob_in];
__syncthreads() ;

out[glob out] = tile[threadIdx.x] [threadIdx.y];

Fixed GMEM coalescmg, but introduced SMEM bank conflicts

transpose<<<gr1d threads>>>(1n out) ;

Shared Memory: Avoiding Bank Conflicts

Example: 32x32 SMEM array

Warp accesses a column:
32-way bank conflicts (threads in a warp access the same bank)

warps:
yi

Bank O 2

2

2

Shared Memory: Avoiding Bank Conflicts

Add a column for padding:
32x33 SMEM array

Warp accesses a column:

» 32 different banks, no bank conflicts
warps:
31 padding

Thank you.

