7D
o gAbd e i1dUT chn Tyg: ((| KAUST

CS 380 - GPU and GPGPU Programming
Lecture 23: CUDA Memory, Pt. 2

kwlar adWiger’ - . -

Reading Assignment #13 (until Nov 27)

Read (required):
» Optimizing Parallel Reduction in CUDA, Mark Harris,

https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

» Programming Massively Parallel Processors book, 4t" edition
Chapter 8: Prefix Sum (Scan) — work efficiency in parallel algorithms

Read (optional):
» Programming Massively Parallel Processors book, 4t" edition
Chapter 7: Reduction

» GPU Gems 3 book, Chapter 39: Parallel Prefix Sum (Scan) with CUDA
https://developer.nvidia.com/gpugems/GPUGems3/gpugems3 ch39.html

 Faster Parallel Reductions on Kepler, Justin Luitjens
https://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/

Next Lectures

Lecture 24: Tue, Nov 22 (make-up lecture; 16:00 — 17:15)
Lecture 25: Wed, Nov 23

CUDA Memory

Kernel Memory Access

® Per-thread
2<_> On-chip
Thread

<« QRJCINVEGE Off-chip, uncached

® Per-block

<> A
QR e R
<> y

® Per-device

q.) Global

Pers stent across
- Memory kernel launches
Kernel 1 ‘ 3 e Kernel 1/0

IA Corporation. @2 n‘llDlA

CUDA Memory:

Shared Memory

Memory and Cache Types

Global memory

« [Device] L2 cache

 [SM] L1 cache (shared mem carved out; or L1 shared with tex cache)
« [SM/TPC] Texture cache (separate, or shared with L1 cache)

 [SM] Read-only data cache (storage might be same as tex cache)

Shared memory

* [SM] Shareable only between threads in same thread block
(Hopper/CC 9.x: also thread block clusters)

Constant memory: Constant (uniform) cache

Unified memory programming: Device/host memory sharing

Markus Hadwiger, KAUST 7

L1 Cache vs. Shared Memory

Different configs on Fermi and Kepler; carveout on Maxwell and newer
* More shared memory on newer GPUs (64KB, 96KB, 100KB, 164KB, ...)
Carveout from unified L1/read-only data cache

(See CUDA C Programming Guide!)

// Device code
__global void MyKernel(...)

{
__shared float buffer[BLOCK DIM];

}

// Host code

int carveout = 50; // prefer shared memory capacity 50% of maximum

// Named Carveout Values

// carveout = cudaSharedmemCarveoutDefault; // (-1)

// carveout = cudaSharedmemCarveoutMaxLl; /a7 (0)

// carveout = cudaSharedmemCarveoutMaxShared; // (100)

cudaFuncSetAttribute (MyKernel, cudaFuncAttributePreferredSharedMemoryCarveout,

carveout) ;
MyKernel <<<gridDim, BLOCK DIM>>>(...);

L0 Instruction Cache LO Instruction Cache

| I Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
N V I D I A 1 O O M Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)
Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64

FP32 FP32 FP64 FP32 FP32 FP64

FP32 FP32 FP64 FP32 FP32 FP64

Multlprocessor SM (CC 9 O) FP32 FP32 FP64 FP32 FP32 FP84
. . FP32 FP32 FP64 FPa2 FP32 FP64

FP32 FP32 FP&4 FP32 FP32 FP64

FP32 FP32 FP64 TENSOR CORE FP32 FP32 FP64 TENSOR CORE

hd 128 FP32 + 64 |NT32 cores FP32 FP32 FP64 4™ GENERATION FP32 FP32 FP64 4" GENERATION
FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FP64 FP32 FP32 FP64
FP32 FP32 FPB64 FP32 FP32 FP64
® 64 FP64 cores FP32 FP32 FP84 FP32 FP32 FP84
FP32 FP32 FP64 FP32 FP32 FP64
th FP32 FP32 FP64 FP32 FP32 FP64
e 4x 4 gen tensor cores FP32 FP32 FP64 FP32 FP32 FP6a

LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU LD/ LD/ Lor LDi LD/ LD/ Lo/

ST ST ST ST ST ST ST ST ST ST ST ST ST ST

* ++ thread block clusters, DPX insts., FP8, TMA

L0 Instruction Cache | LO Instruction Cache

o H H Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
4 partltlons InSIde SM Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)
Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)
« 32 FP32 + 16 INT32 cores
INT32 FP32 FP32 FP&4 INT32 FP32 FP32 FP64
INT3Z FP32 FP32 FP64 INT32 FP32 FP32 FP84
o 16 FP64 cores INT32 FP32 FP32 FP&4 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP84
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP84
H . INT3Z FP32 FP32 FP64 INT32 FP32 FP32 FP64
b 8X LD/ST Un|tS, 4 SFUS eaCh INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
INT32 FP32 FP32 FP64 TENSOR CORE INT32 FP32 FP32 FP64 TENSOR CORE
1 th INT32 FP32 FP32 FP64 4™ GENERATION INT32 FP32 FP32 FP64 4™ GENERATION
° INT32 FP32 FP32 FP64 INT32 FP32 FP32 FPB4
X 4 gen tensor Core eaCh INT32 FP32 FP32 FP84 INT32 FP32 FP32 FP84
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP84
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64
« Each has: warp scheduler, T2 P32 PRS2 Feos NTS2 P32 FPR2 Fpos
. . . . INT32 FP32 FP32 FP&4 INT32 FP32 FP32 FP&4
d|Spatch unit. 16K reg|ster file INT32 FP32 FP32 FP6a INT3Z FP32 FP32 FP8a
H

LD/ LD/ Lo/ LDi LD/ LD/ LDI LD/ SFU Lo/ LD/ LD/ LD/ LD/ LD/ LD/ Lo/
ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST

Tensor Memory Accelerator
256 KB L1 Data Cache / Shared Memory
Markus Hadwiger, KAUST Tex Tex

Compute Capab. 9.x (Hopper, Part 2)

K.8.3. Shared Memory

Similar to the NVIDIA Ampere GPU architecture, the amount of the unified data cache reserved
for shared memory is configurable on a per kernel basis. For the NVIDIA H100 Tensor Core GPU
architecture, the unified data cache has a size of 256 KB for devices of compute capability 9.0.
The shared memory capacity can be set to 0, 8, 16, 32, 64, 100, 132, 164, 196 or 228 KB.

As with the NVIDIA Ampere GPU architecture, an application can configure its preferred
shared memory capacity, I.e., the carveout. Devices of compute capability 9.0 allow

a single thread block to address up to 227 KB of shared memory. Kernels relying

on shared memory allocations over 48 KB per block are architecture-specific, and

must use dynamic shared memory rather than statically sized shared memory arrays.
These kernels require an explicit opt-in by using cudaFuncSetAttribute () to set the
cudaFuncAttributeMaxDynamicSharedMemorySize; see Shared Memory for the Volta
architecture.

Note that the maximum amount of shared memory per thread block is smaller than the
maximum shared memory partition available per SM. The 1 KB of shared memory not made
available to a thread block is reserved for system use.

Markus Hadwiger, KAUST 10

Shared Memory Allocation

« 2 modes

« Static size within kernel
shared float vec[256];

« Dynamic size when calling the kernel
int VecSize = MAX THREADS * sizeof (float4);

vecMat<<< blockGrid, threadBlock, VecSize >>>(pl, p2, .);

extern shared float vec[];

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

Shared Memory

Accessible by all threads in a block Registers Registers

=Rl [sven]

Fast compared to global memory
Low access latency

S [cobamemoy oraw) |

Common uses:
Software managed cache
Data layout conversion

Shared Memory/L1 Sizing

Shared memory and L1 use the same 64KB

Program-configurable split:
Fermi: 48:16, 16:48
Kepler: 48:16, 16:48, 32:32

Large L1 can improve performance when:
Spilling registers (more lines in the cache -> fewer evictions)

Large SMEM can improve performance when:
Occupancy is limited by SMEM

Shared Memory

Uses:
Inter-thread communication within a block
Cache data to reduce redundant global memory accesses
Use it to improve global memory access patterns

Organization:
32 banks, 4-byte (or 8-byte) banks
Successive words accessed through different banks

Parallel Memory Architecture

« In a parallel machine, many threads access memory
— Therefore, memory 1s divided into banks
— Essential to achieve high bandwidth

« Each bank can service one address per cycle

— A memory can service as many simultaneous
accesses as 1t has banks

« Multiple simultaneous accesses to a bank .
result in a bank conflict Bank 15
— Conlflicting accesses are serialized
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 15

ECE 498AL, University of lllinois, Urbana-Champaign

Memory Banks

==

Fermi/Kepler/Maxwell

and newer;

32 banks

4B / bank
Kepler or newer:

configurable

to 8B / bank

Shared Memory

Uses:
Inter-thread communication within a block
Cache data to reduce redundant global memory accesses
Use it to improve global memory access patterns

Performance:
smem accesses are issued per warp

Throughput is 4 (or 8) bytes per bank per clock per multiprocessor

serialization: if N threads of 32 access different words in the same bank,
N accesses are executed serially

multicast: N threads access the same word in one fetch
* Could be different bytes within the same word

Shared Memory Organization

Organized in 32 independent banks
Any 1:1 or multicast pattern
Optimal access: no two words from
same bank
Separate banks per thread
Banks can multicast

Multiple words from same bank serialize

Bank Addressing Examples

* No Bank Conflicts * No Bank Conflicts
— Linear addressing — Random 1:1 Permutation
stride ==

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5

Thread 6
Thread 7

Thread 15 Bank 15

Bank 15

Thread 15

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 19
ECE 498AL, University of lllinois, Urbana-Champaign

Bank Addressing Examples

« 2-way Bank Conflicts

— Linear addressing
stride ==

Thread 0
Thread 1

Thread 2 VI‘
Thread 4 "’1

Thread 8
Thread 9
Thread 10

Thread 11

Thread 15

« 8-way Bank Conflicts

— Linear addressing
stride ==

Thread O
Thread 1

Thread 2 ‘
Thread 3 |

Thread 4 '
Thread 5 \
Thread 6 »

Thread 7

x8

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE 498AL, University of lllinois, Urbana-Champaign

20

How addresses map to banks on G80

* Each bank has a bandwidth of 32 bits per clock cycle

* Successive 32-bit words are assigned to successive
banks

e (G&0 has 16 banks
— So bank = address % 16
— Same as the size of a half-warp

* No bank conflicts between different half-warps, only within a
single half-warp

Fermi and newer have 32 banks,
considers full warps instead of half warps!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 21
ECE 498AL, University of lllinois, Urbana-Champaign

Shared Memory Bank Conflicts

« Shared memory is as fast as registers if there are no bank
conflicts

« The fast case:
— If all threads of a half-warp access different banks, there is no bank conflict

— If all threads of a half-warp access the identical address, there is no bank
conflict (broadcast)

« The slow case:

— Bank Conflict: multiple threads in the same half-warp access the same
bank

— Must serialize the accesses
— Cost = max # of simultaneous accesses to a single bank

full warps instead of half warps on Fermi and newer!

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

Linear Addressing

« Given:

__shared float shared[256];
float foo =
shared[baseIndex + s * threadIdx.x];

* This is only bank-conflict-free if s
shares no common factors with the

number of banks
— 16 on G80, so s must be odd

Thread O
Thread 1
Thread 2
Thread 3

Thread 4
Thread 5
Thread 6
Thread 7

Thread 15 Bank 15

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5

Thread 6
Thread 7

Parallel08 — Memory Access

Hendrik Lensch and Robert Strzodka

Data Types and Bank Conflicts

+ This has no conflicts if type of shared is 32-bits:

foo = shared[baseIndex + threadIdx.x]

Thread O

/
Thread 1
Thread 2 %

« But not if the data type is smaller — /
— 4-way bank conflicts: Al
__shared char shared[]; Thread 7

foo = shared[baseIndex + threadIdx.x]:;

not true on Fermi, because of multi-cast! s

Thread 0

Thread 1 "
— 2-way bank conflicts: Thread 2 ?‘
__shared short shared[]; Thread 4 /
foo = shared[baseIndex + threadIdx.x]; ﬁiii,///
Thread 7
not true on Fermi, because of multi-cast! i Y

’I
Thread 15 Bank 15

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

Structs and Bank Conflicts

« Struct assignments compile into as many memory accesses as there are
struct members:

Thread 0

Thread 1 IR
struct vector { float x, v, z; }; Thread 2
struct myType { Thread 3
Thread 4
float f,' Thread 5
1nt c; Thread 6
. Thread 7
}; . .
__shared struct vector vectors[64]; H .
__shared struct myType myTypes[64]; —’ Bank 15
« This has no bank conflicts for vector; struct size is 3 words /\

— 3 accesses per thread, contiguous banks (no common factor with 16)

struct vector v = vectors[baselIndex + threadIdx.x]:;

« This has 2-way bank conflicts for myType;
(each bank will be accessed by 2 threads simultaneously)
struct myType m = myTypes[baseIndex + threadIdx.x];

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

Broadcast on Shared Memory

» Each thread loads the same
element — no bank conlict

Thread O
x = shared[O0]; Thread 1

Thread 2

* Will be resolved implicitly Thread s
Thread 4
Thread 5
Thread 6

Thread 7

A
Bank 15

multi-cast on Fermi and newer!

Thread 15

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

Common Array Bank Conflict Patterns
1D

» Each thread loads 2 elements into shared
mem:

— 2-way-interleaved loads result in
2-way bank conflicts:

Thread O

Thread 1
int tid = threadIdx.x; =8
Thread 2

shared[2*tid] = global[2*tid]; Thread 3
shared[2*tid+1] = global[2*tid+1]; Thread 4

 This makes sense for traditional CPU

threads, locality in cache line usage and Thread 8

reduced sharing traffic. Thread 9
— Not in shared memory usage where there is Vtrsad 10 —
no cache line effects but banking effects Thread 11

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

A Better Array Access Pattern

» Each thread loads one element in
every consecutive group of

blockDim elements. Thread 0

Thread 1
shared[tid] = globall[tid]; Thread 2
shared[tid + blockDim.x] = Thread 3

global[tid + blockDim.x];

Thread 4
Thread 5

Thread 6

Thread 7

¢ ¢
¢ ¢
¢]
A
Thread 15 Bank 15

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

OPTIMIZE

Kernel Optimizations: Shared Memory Accesses

Case Study: Matrix Transpose

* Coalesced read
* Scattered write (stride N)

— Process matrix tile, not single
row/column, per block

= Transpose matrix tile within block

Case Study: Matrix Transpose

* Coalesced read
* Scattered write (stride N)

* Transpose matrix tile within block

— Need threads in a block to cooperate:
use shared memory

Transpose with coalesced read/write

__global transpose(float in[], float out[])
{

__shared float tile[TILE] [TILE];

int glob_in = xIndex + (yIndex)*N;
int glob out = xIndex + (yIndex) *N;

tile[threadIdx.y] [threadIdx.x] = in[glob_in];
__syncthreads() ;

out[glob out] = tile[threadIdx.x] [threadIdx.y];

Fixed GMEM coalescmg, but introduced SMEM bank conflicts

transpose<<<gr1d threads>>>(1n out) ;

Shared Memory: Avoiding Bank Conflicts

Example: 32x32 SMEM array

Warp accesses a column:
32-way bank conflicts (threads in a warp access the same bank)

warps:
yi

Bank O 2

2

2

Shared Memory: Avoiding Bank Conflicts

Add a column for padding:
32x33 SMEM array

Warp accesses a column:

» 32 different banks, no bank conflicts
warps:
31 padding

Thank you.

