
CS 380 - GPU and GPGPU Programming
Lecture 23: CUDA Memory, Pt. 2

Markus Hadwiger, KAUST

2

Reading Assignment #13 (until Nov 27)

Read (required):
• Optimizing Parallel Reduction in CUDA, Mark Harris,
https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

• Programming Massively Parallel Processors book, 4th edition
Chapter 8: Prefix Sum (Scan) – work efficiency in parallel algorithms

Read (optional):
• Programming Massively Parallel Processors book, 4th edition

Chapter 7: Reduction

• GPU Gems 3 book, Chapter 39: Parallel Prefix Sum (Scan) with CUDA
https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch39.html

• Faster Parallel Reductions on Kepler, Justin Luitjens
https://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/

3

Next Lectures

Lecture 24: Tue, Nov 22 (make-up lecture; 16:00 – 17:15)

Lecture 25: Wed, Nov 23

CUDA MemoryCUDA Memory

cached on Fermi or newer!

cached on Fermi
or newer!

CUDA Memory:
Shared Memory
CUDA Memory:
Shared Memory

Memory and Cache Types

Global memory
• [Device] L2 cache

• [SM] L1 cache (shared mem carved out; or L1 shared with tex cache)

• [SM/TPC] Texture cache (separate, or shared with L1 cache)

• [SM] Read-only data cache (storage might be same as tex cache)

Shared memory
• [SM] Shareable only between threads in same thread block

(Hopper/CC 9.x: also thread block clusters)

Constant memory: Constant (uniform) cache

Unified memory programming: Device/host memory sharing

Markus Hadwiger, KAUST 7

8

L1 Cache vs. Shared Memory

Different configs on Fermi and Kepler; carveout on Maxwell and newer
• More shared memory on newer GPUs (64KB, 96KB, 100KB, 164KB, ...)

Carveout from unified L1/read-only data cache

(See CUDA C Programming Guide!)

NVIDIA GH100 SM

Multiprocessor: SM (CC 9.0)
• 128 FP32 + 64 INT32 cores

• 64 FP64 cores

• 4x 4th gen tensor cores
• ++ thread block clusters, DPX insts., FP8, TMA

4 partitions inside SM
• 32 FP32 + 16 INT32 cores

• 16 FP64 cores

• 8x LD/ST units; 4 SFUs each

• 1x 4th gen tensor core each

• Each has: warp scheduler,
dispatch unit, 16K register file

Markus Hadwiger, KAUST 9

Compute Capab. 9.x (Hopper, Part 2)

Markus Hadwiger, KAUST 10

use cudaFuncSetAttribute()

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

15

Parallel Memory Architecture

• In a parallel machine, many threads access memory
– Therefore, memory is divided into banks
– Essential to achieve high bandwidth

• Each bank can service one address per cycle
– A memory can service as many simultaneous

accesses as it has banks

• Multiple simultaneous accesses to a bank
result in a bank conflict
– Conflicting accesses are serialized

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Memory Banks

Fermi/Kepler/Maxwell
and newer:

32 banks

default:
4B / bank

Kepler or newer:
configurable
to 8B / bank

16

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

19

Bank Addressing Examples

• No Bank Conflicts
– Linear addressing

stride == 1

• No Bank Conflicts
– Random 1:1 Permutation

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

20

Bank Addressing Examples

• 2-way Bank Conflicts
– Linear addressing

stride == 2

• 8-way Bank Conflicts
– Linear addressing

stride == 8

Thread 11
Thread 10
Thread 9
Thread 8

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2
Bank 1
Bank 0x8

x8

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

21

How addresses map to banks on G80
• Each bank has a bandwidth of 32 bits per clock cycle
• Successive 32-bit words are assigned to successive

banks
• G80 has 16 banks

– So bank = address % 16
– Same as the size of a half-warp

• No bank conflicts between different half-warps, only within a
single half-warp

Fermi and newer have 32 banks,
considers full warps instead of half warps!

full warps instead of half warps on Fermi and newer!

not true on Fermi, because of multi-cast!

not true on Fermi, because of multi-cast!

multi-cast on Fermi and newer!

0

Thank you.

