
CS 380 - GPU and GPGPU Programming
Lecture 22: Stream Computing and GPGPU;

CUDA Memory, Pt. 1

Markus Hadwiger, KAUST

2

Reading Assignment #12 (until Nov 20)

Read (required):
• Programming Massively Parallel Processors book, 4th edition

Chapter 5 (Memory architecture and data locality)
Chapter 6 (Performance considerations)

Read (optional):
• Stream processing
https://en.wikipedia.org/wiki/Stream_processing

• Linear algebra operators for GPU implementation of numerical algorithms,
Krueger and Westermann, SIGGRAPH 2003
https://dl.acm.org/doi/10.1145/882262.882363

• A Survey of General-Purpose Computation on Graphics Hardware (2007)
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467‐8659.2007.01012.x

3

Next Lectures

Lecture 23: Sun, Nov 20

Lecture 24: Tue, Nov 22 (make-up lecture; 16:00 – 17:15)

Lecture 25: Wed, Nov 23

Stream Computing and GPGPUStream Computing and GPGPU

Types of Parallelism

Bit-Level Parallelism (70s and 80s)
• Doubling the word size 4, 8, 16, 32-bit (64-bit ~2003)

Instruction-Level Parallelism (mid 80s-90s)
• Instructions are split into stages multi stage pipeline

• Superscalar execution, …

Data Parallelism
• Multiple processors execute the same instructions on different

parts of the data

Task Parallelism
• Multiple processors execute instructions independently

Markus Hadwiger, KAUST 5

From GPU to GPGPU

1990s Fixed function graphics-pipeline used for more general
computations in academia (e.g., rasterization, z-buffer)

2001 Shaders changed the API to access graphics cards

2004 Brook for GPUs changed the terminology

Since then:

ATI’s Stream SDK (originally based on Brook)

NVIDIA’s CUDA (started by Brook developers)

OpenCL (platform independent)

GLSL Compute Shaders (platform independent)

Vulkan Compute Shaders (platform independent)

DirectX 12 Compute Shaders

Markus Hadwiger, KAUST 6

7

Early GPGPU: Linear Algebra Operators

Vector and matrix representation and operators
• Early approach based on graphics primitives

• Now CUDA makes this much easier

• Linear systems solvers

Krüger and Westermann (2003)

8

Stream Programming Abstraction

Goal: SW programming model that matches data parallelism

Streams

• Collection of data records

• All data is expressed in streams

Kernels

• Inputs/outputs are streams

• Perform computation on streams
(each data record is processes independently)

• Can be chained together
Courtesy John Owens

9

Why Streams?

• Exposing parallelism
• Data parallelism

• Task parallelism

for(i = 0; i<size; i++)
{

a[i] = 2*b[i];
}

for(each a, b)
{

a = 2*b;
}

for(i = 0; i<size; i++)
{

a[i] = a[i+1]*2;
}

for(each a)
{

???
}

• Multiple stream elements can be processed in parallel
• Multiple tasks can be processed in parallel
• Predictable memory access pattern
• Optimize for throughput of all elements, not latency of one
• Processing many elements at once allows latency hiding

CUDA Memory: OverviewCUDA Memory: Overview

cached on Fermi or newer!

cached on Fermi
or newer!

Memory and Cache Types

Global memory
• [Device] L2 cache

• [SM] L1 cache (shared mem carved out; or L1 shared with tex cache)

• [SM/TPC] Texture cache (separate, or shared with L1 cache)

• [SM] Read-only data cache (storage might be same as tex cache)

Shared memory
• [SM] Shareable only between threads in same thread block

(Hopper/CC 9.x: also thread block clusters)

Constant memory: Constant (uniform) cache

Unified memory programming: Device/host memory sharing

Markus Hadwiger, KAUST 45

Memory Configurations and Types
for Different Compute Capabilities

Markus Hadwiger, KAUST 46

GK104 SMX

Multiprocessor: SMX (CC 3.0)

• 192 CUDA cores
(192 = 6 * 32)

• 32 LD/ST units

• 32 SFUs

• 16 texture units

Two dispatch units per warp
scheduler exploit ILP
(instruction-level parallelism)

Can dual-issue ALU instructions!
(“superscalar”)

GK110 SMX

Multiprocessor: SMX (CC 3.5)

• 192 CUDA cores
(192 = 6 * 32)

• 64 DP units

• 32 LD/ST units

• 32 SFUs

• 16 texture units

New read-only
data cache (48KB)

Compute Capab. 3.x (Kepler, Part 1)

Compute Capab. 3.x (Kepler, Part 2)

Compute Capab. 3.x (Kepler, Part 3)

Compute Capab. 3.x (Kepler, Part 4)

Maxwell (GM) Architecture

Multiprocessor: SMM (CC 5.x)
• 128 CUDA cores

• 4 DP units; 32 LD/ST units; 32 SFUs

• 8 texture units

4 partitions inside SMM
• 32 CUDA cores each

• 8 LD/ST units; 8 SFUs each

• Each has its own register file,
warp scheduler, two dispatch units
(but cannot dual-issue ALU insts.!)

Shared memory and L1 cache now
separate!
• L1 cache shares with texture cache

• Shared memory is its own space

Compute Capab. 5.x (Maxwell, Part 1)

Markus Hadwiger, KAUST 54

Compute Capab. 5.x (Maxwell, Part 2)

Markus Hadwiger, KAUST 55

Compute Capab. 5.x (Maxwell, Part 3)

Markus Hadwiger, KAUST 56

Compute Capab. 5.x (Maxwell, Part 4)

Markus Hadwiger, KAUST 57

NVIDIA Pascal GP100 SM

Multiprocessor: SM (CC 6.0)

• 64 CUDA cores

• 32 DP units

• 16 LD/ST units

• 16 SFUs

• 4 texture units

2 partitions inside SM
• 32 CUDA cores each; 16 DP units each; 8 LD/ST units each; 8 SFUs each

• Each has its own register file, warp scheduler, two dispatch units
(but cannot dual-issue ALU (single precision core) insts.!)

NVIDIA Pascal GP104 SM

Multiprocessor: SM (CC 6.1/6.2)
• 128 CUDA cores

• 32 LD/ST units

• 32 SFUs

• 8 texture units

4 partitions inside SM
• 32 CUDA cores; 8 LD/ST units; 8 SFUs

• Each has its own register file,
warp scheduler, two dispatch units
(but cannot dual-issue ALU insts.!)

Compute Capab. 6.x (Pascal, Part 1)

Markus Hadwiger, KAUST 60

Compute Capab. 6.x (Pascal, Part 2)

Markus Hadwiger, KAUST 61

NVIDIA Volta SM

Multiprocessor: SM (CC 7.0)
• 64 FP32 + 64 INT32 cores

• 32 FP64 cores

• 32 LD/ST units; 16 SFUs

• 8 tensor cores
(FP16/FP32 mixed-precision)

4 partitions inside SM
• 16 FP32 + 16 INT32 cores each

• 8 FP64 cores each

• 8 LD/ST units; 4 SFUs each

• 2 tensor cores each

• Each has: warp scheduler,
dispatch unit, register file

NVIDIA Turing SM

Multiprocessor: SM (CC 7.5)
• 64 FP32 + INT32 cores

• 2 (!) FP64 cores

• 8 Turing tensor cores
(FP16/32, INT4/8 mixed-precision)

• 1 RT (ray tracing) core

4 partitions inside SM
• 16 FP32 + INT32 cores each

• 4 LD/ST units; 4 SFUs each

• 2 Turing tensor cores each

• Each has: warp scheduler,
dispatch unit, 16K register file

Compute Capab. 7.x (Volta/Turing, Part 1)

Markus Hadwiger, KAUST 64

Compute Capab. 7.x (Volta/Turing, Part 2)

Markus Hadwiger, KAUST 65

Compute Capab. 7.x (Volta/Turing, Part 3)

Markus Hadwiger, KAUST 66

Compute Capab. 7.x (Volta/Turing, Part 4)

Compute Capab. 7.x (Volta/Turing, Part 5)

NVIDIA GA100 SM

Multiprocessor: SM (CC 8.0)
• 64 FP32 + 64 INT32 cores

• 32 FP64 cores

• 4 3rd gen tensor cores

• 1 2nd gen RT (ray tracing) core

4 partitions inside SM
• 16 FP32 + 16 INT32 cores

• 8 FP64 cores

• 8 LD/ST units; 4 SFUs each

• 1 3rd gen tensor core each

• Each has: warp scheduler,
dispatch unit, 16K register file

NVIDIA GA10x SM

Multiprocessor: SM (CC 8.6)
• 128 (64+64) FP32 + 64 INT32 cores

• 2 (!) FP64 cores

• 4 3rd gen tensor cores

• 1 2nd gen RT (ray tracing) core

4 partitions inside SM
• 32 (16+16) FP32 + 16 INT32 cores

• 4 LD/ST units; 4 SFUs each

• 1 3rd gen tensor core each

• Each has: warp scheduler,
dispatch unit, 16K register file

NVIDIA AD102 SM

Multiprocessor: SM (CC 8.9)
• 128 (64+64) FP32 + 64 INT32 cores

• 2 (!) FP64 cores (not in diagram)

• 4x 4th gen tensor cores

• 1x 3rd gen RT (ray tracing) core
• ++ thread block clusters, FP8, … (?)

4 partitions inside SM
• 32 (16+16) FP32 + 16 INT32 cores

• 4x LD/ST units; 4 SFUs each

• 1x 4th gen tensor core each

• Each has: warp scheduler,
dispatch unit, 16K register file

Markus Hadwiger, KAUST 71

Compute Capab. 8.x (Ampere/Ada, Part 1)

Markus Hadwiger, KAUST 72

Compute Capab. 8.x (Ampere/Ada, Part 2)

Markus Hadwiger, KAUST 73

Compute Capab. 8.x (Ampere/Ada, Part 3)

Markus Hadwiger, KAUST 74

NVIDIA GH100 SM

Multiprocessor: SM (CC 9.0)
• 128 FP32 + 64 INT32 cores

• 64 FP64 cores

• 4x 4th gen tensor cores
• ++ thread block clusters, DPX insts., FP8, TMA

4 partitions inside SM
• 32 FP32 + 16 INT32 cores

• 16 FP64 cores

• 8x LD/ST units; 4 SFUs each

• 1x 4th gen tensor core each

• Each has: warp scheduler,
dispatch unit, 16K register file

Markus Hadwiger, KAUST 75

Compute Capab. 9.x (Hopper, Part 1)

Markus Hadwiger, KAUST 76

Compute Capab. 9.x (Hopper, Part 2)

Markus Hadwiger, KAUST 77

Thank you.

