

KAUST

CS 380 - GPU and GPGPU Programming Lecture 17: GPU Texturing, Pt. 3

Markus Hadwiger, KAUST

Reading Assignment #10 (until Nov 6)

Read (required):

• MIP-Map Level Selection for Texture Mapping https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=765326

Read (optional):

Vulkan Tutorial

https://vulkan-tutorial.com

Quiz #2: Nov 9

Organization

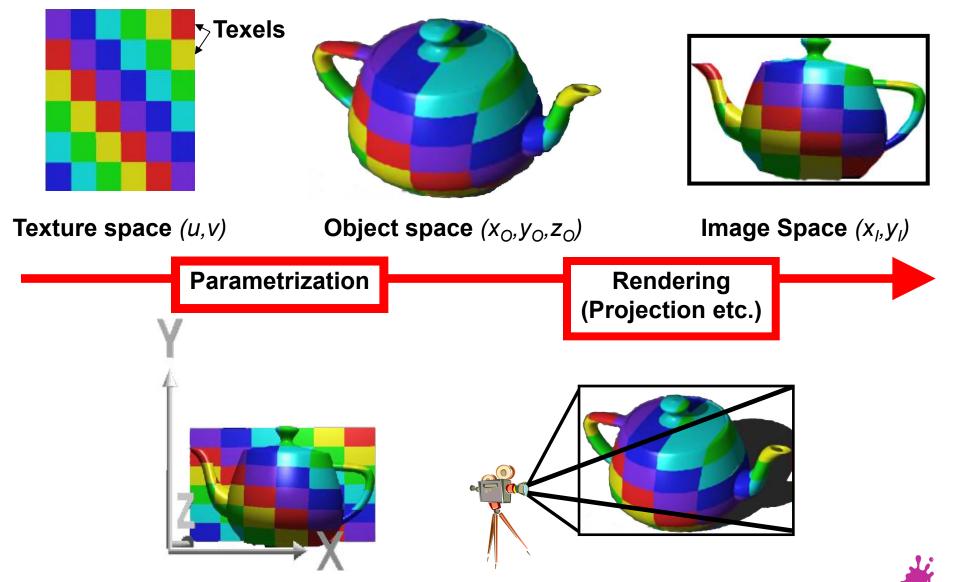
- First 30 min of lecture
- No material (book, notes, ...) allowed

Content of questions

- Lectures (both actual lectures and slides)
- Reading assignments
- Programming assignments (algorithms, methods)
- Solve short practical examples

GPU Texturing

Texturing: General Approach



Eduard Gröller, Stefan Jeschke

Interpolation #1

Interpolation Type + Purpose #1: Interpolation of Texture Coordinates

(Linear / Rational-Linear Interpolation)

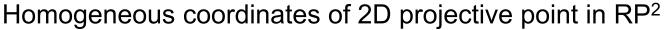
Homogeneous Coordinates (1)

Projective geometry

• (Real) projective spaces RPⁿ:

Real projective line RP¹, real projective plane RP², ...

• A point in RPⁿ is a line through the origin (i.e., all the scalar multiples of the same vector) in an (n+1)-dimensional (real) vector space

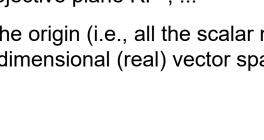


- Coordinates differing only by a non-zero factor λ map to the same point

 $(\lambda x, \lambda y, \lambda)$ dividing out the λ gives (x, y, 1), corresponding to (x, y) in R²

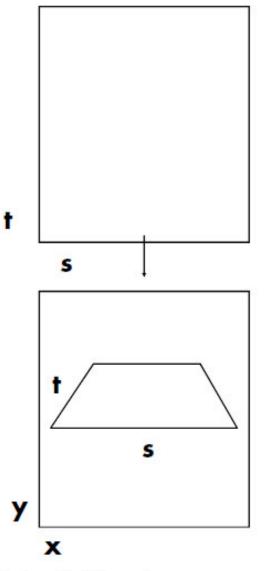
• Coordinates with last component = 0 map to "points at infinity"

(λx , λy , 0) division by last component not allowed; but again this is the same point if it only differs by a scalar factor, e.g., this is the same point as (x, y, 0)



Texture Mapping

2D (3D) Texture Space **Texture Transformation** 2D Object Parameters Parameterization 3D Object Space Model Transformation 3D World Space **Viewing Transformation** 3D Camera Space Projection 2D Image Space



Kurt Akeley, Pat Hanrahan

Perspective-correct linear interpolation

Only projected values interpolate correctly, so project A

Linearly interpolate A₁/w₁ and A₂/w₂

Also interpolate 1/w₁ and 1/w₂

These also interpolate linearly in screen space
Divide interpolants at each sample point to recover A

- (A/w) / (1/w) = A
- Division is expensive (more than add or multiply), so
 - Recover w for the sample point (reciprocate), and
 - Multiply each projected attribute by w

Barycentric triangle parameterization:

 $aA_1/w_1 + bA_2/w_2 + cA_3/w_3$

 $a/w_1 + b/w_2 + c/w_3$

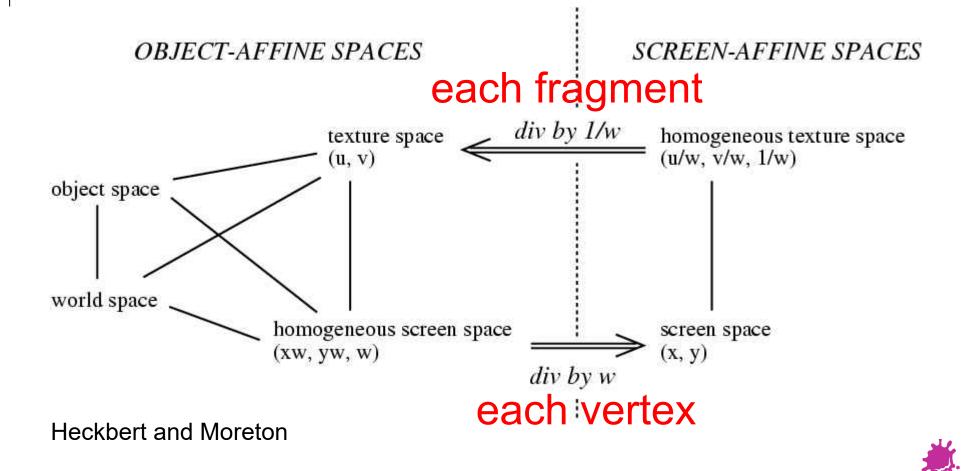
A =

a + b + c = 1

Kurt Akeley, Pat Hanrahan

Perspective Texture Mapping

- Solution: interpolate (s/w, t/w, 1/w)
- (s/w) / (1/w) = s etc. at every fragment



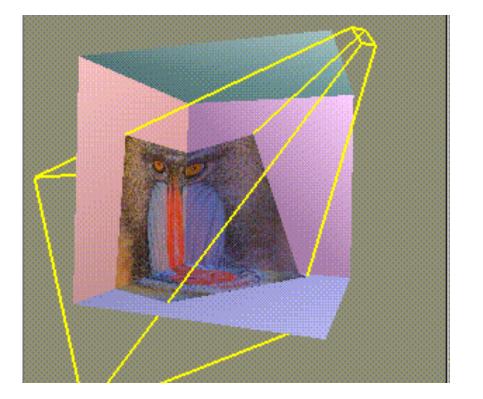
Perspective-Correct Interpolation Recipe

$$r_i(x,y) = \frac{r_i(x,y)/w(x,y)}{1/w(x,y)}$$

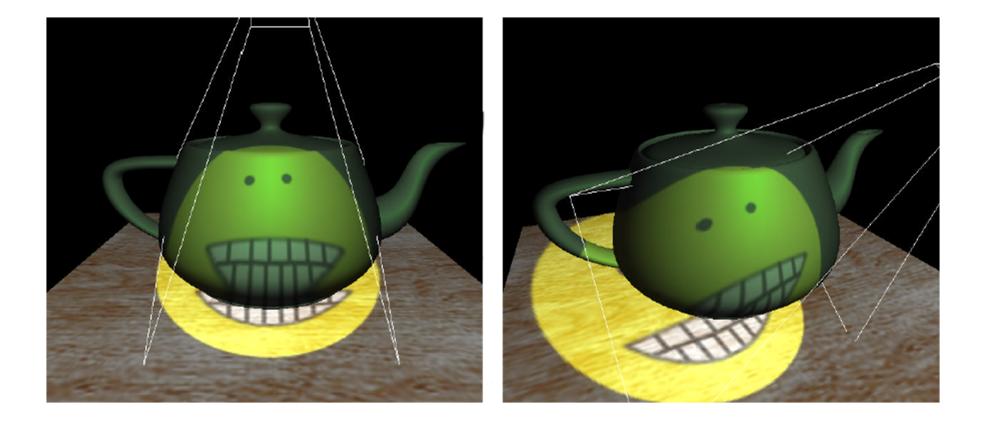
- (1) Associate a record containing the *n* parameters of interest (r_1, r_2, \dots, r_n) with each vertex of the polygon.
- (2) For each vertex, transform object space coordinates to homogeneous screen space using 4×4 object to screen matrix, yielding the values (xw, yw, zw, w).
- (3) Clip the polygon against plane equations for each of the six sides of the viewing frustum, linearly interpolating all the parameters when new vertices are created.
- (4) At each vertex, divide the homogeneous screen coordinates, the parameters r_i , and the number 1 by w to construct the variable list $(x, y, z, s_1, s_2, \dots, s_{n+1})$, where $s_i = r_i/w$ for $i \leq n$, $s_{n+1} = 1/w$.
- (5) Scan convert in screen space by linear interpolation of all parameters, at each pixel computing $r_i = s_i/s_{n+1}$ for each of the *n* parameters; use these values for shading. Heckbert and Moreton

Projective Texture Mapping

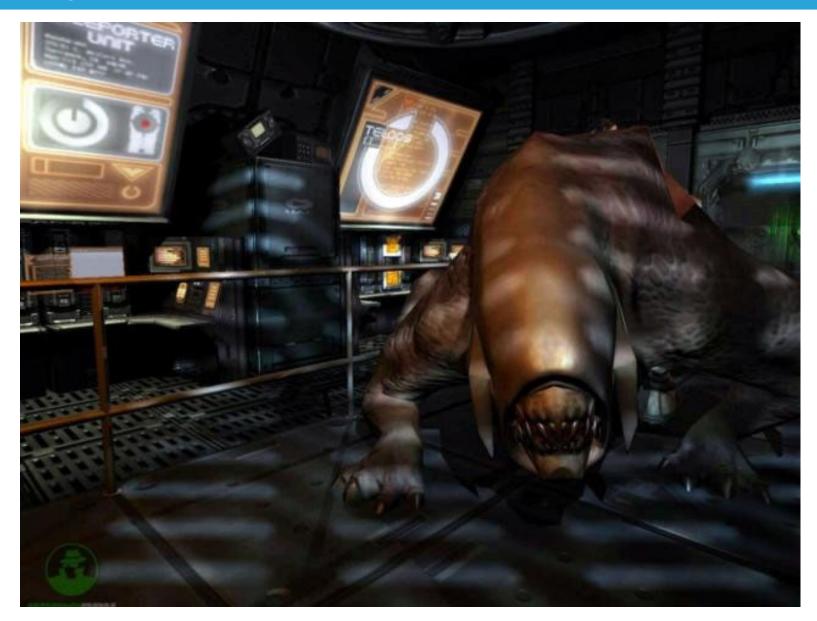
- Want to simulate a beamer
 - ... or a flashlight, or a slide projector
- Precursor to shadows
- Interesting mathematics:
 2 perspective
 projections involved!
- Easy to program!



Projective Texture Mapping



Projective Shadows in Doom 3



Vienna University of Technology

Projective Texturing

- What about homogeneous texture coords?
- Need to do perspective divide also for projector!
 - (s, t, q) \rightarrow (s/q, t/q) for every fragment
- How does OpenGL do that?
 - Needs to be perspective correct as well!
 - Trick: interpolate (s/w, t/w, r/w, q/w)
 - (s/w) / (q/w) = s/q etc. at every fragment
- Remember: s,t,r,q are equivalent to x,y,z,w in projector space! \rightarrow r/q = projector depth!

- Apply multiple textures in one pass
- Integral part of programmable shading
 - e.g. diffuse texture map + gloss map
 - e.g. diffuse texture map + light map
- Performance issues
 - How many textures are free?
 - How many are available

Example: Light Mapping

- Used in virtually every commercial game
- Precalculate diffuse lighting on static objects
 - Only low resolution necessary
 - Diffuse lighting is view independent!
- Advantages:
 - No runtime lighting necessary
 - VERY fast!
 - Can take global effects (shadows, color bleeds) into account

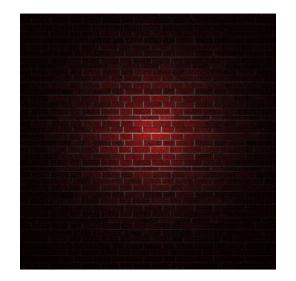
Light Mapping

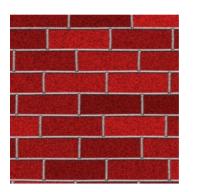
Original LM texels

Bilinear Filtering

Vienna University of Technology

Why premultiplication is bad...





Full Size Texture (with Lightmap)

Tiled Surface Texture plus Lightmap

 \rightarrow use tileable surface textures and low resolution lightmaps Vienna University of Technology

Light Mapping

Original scene

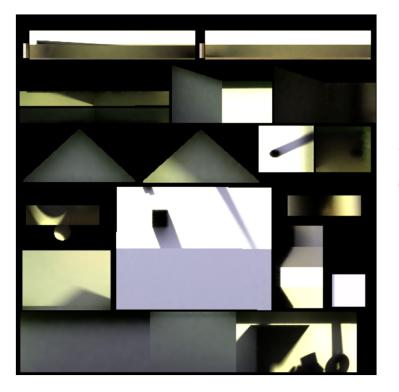
Light-mapped

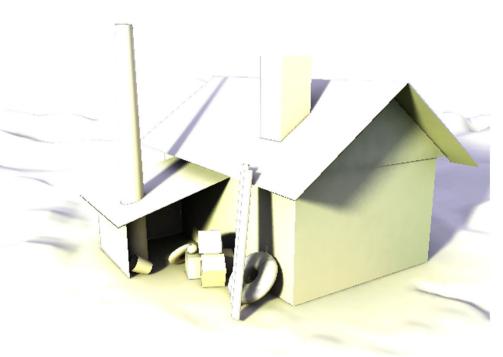
Vienna University of Technology

Example: Light Mapping

- Precomputation based on non-realtime methods
 - Radiosity
 - Ray tracing
 - Monte Carlo Integration
 - Path tracing
 - Photon mapping

Light Mapping



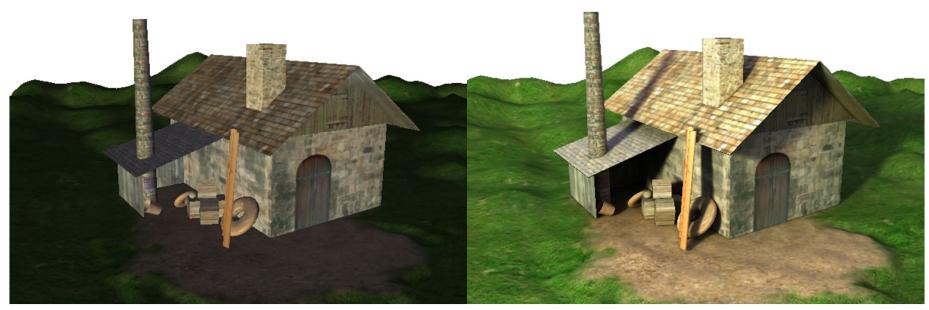


Lightmap

mapped

Vienna University of Technology

Light Mapping



Original scene

Light-mapped

Vienna University of Technology

Interpolation #2

Interpolation Type + Purpose #2: Interpolation of Samples in Texture Space

(Multi-Linear Interpolation)

Types of Textures

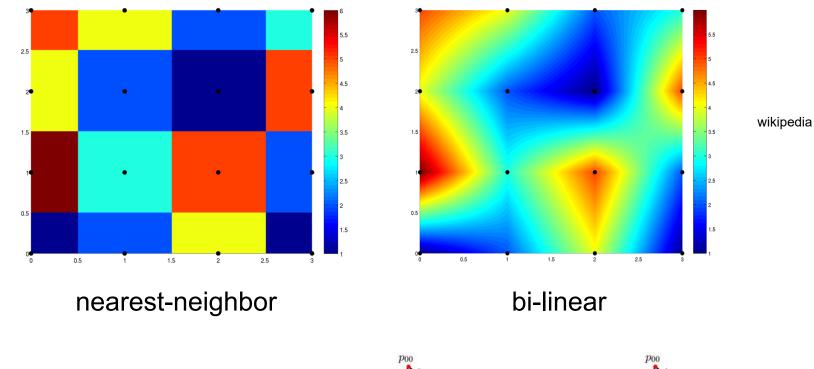
- Spatial layout
 - Cartesian grids: 1D, 2D, 3D, 2D_ARRAY, …
 - Cube maps, …
- Formats (too many), e.g. OpenGL
 - GL_LUMINANCE16_ALPHA16
 - GL_RGB8, GL_RGBA8, …: integer texture formats
 - GL_RGB16F, GL_RGBA32F, …: float texture formats
 - compressed formats, high dynamic range formats, …
- External (CPU) format vs. internal (GPU) format
 - OpenGL driver converts from external to internal

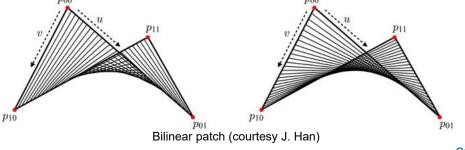
Magnification (Bi-linear Filtering Example)

Original image

Bi-linear filtering

Nearest-Neighbor vs. Bi-Linear Interpolation

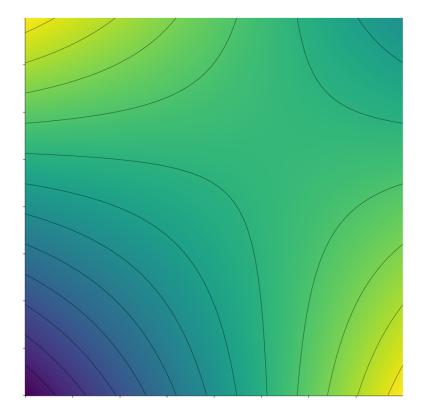


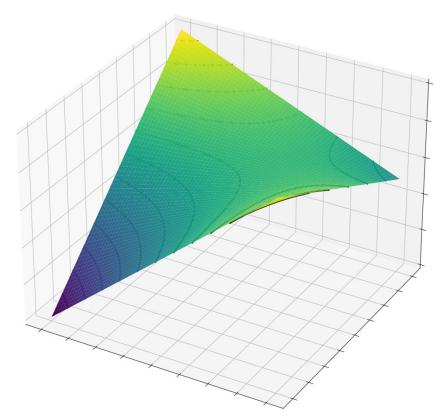


Markus Hadwiger

Consider area between 2x2 adjacent samples (e.g., pixel centers)

Example #2: 1 at top-left and bottom-right, 0 at bottom-left, 0.5 at top-right





Consider area between 2x2 adjacent samples (e.g., pixel centers):

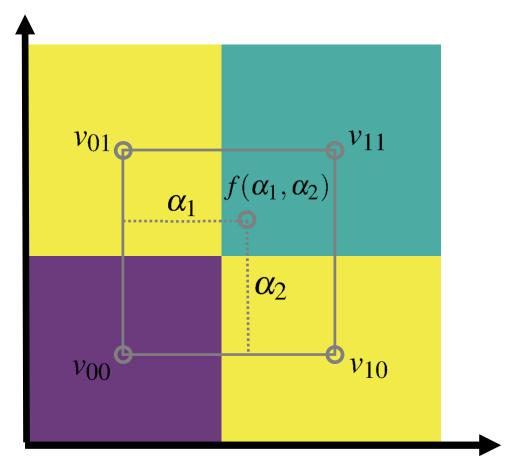
Given any (fractional) position

$\alpha_1 := x_1 - \lfloor x_1 \rfloor$	$lpha_1 \in [0.0, 1.0)$
$\alpha_2 := x_2 - \lfloor x_2 \rfloor$	$lpha_2 \in [0.0, 1.0)$

and 2x2 sample values

$$\begin{bmatrix} v_{01} & v_{11} \\ v_{00} & v_{10} \end{bmatrix}$$

Compute: $f(\alpha_1, \alpha_2)$



Consider area between 2x2 adjacent samples (e.g., pixel centers):

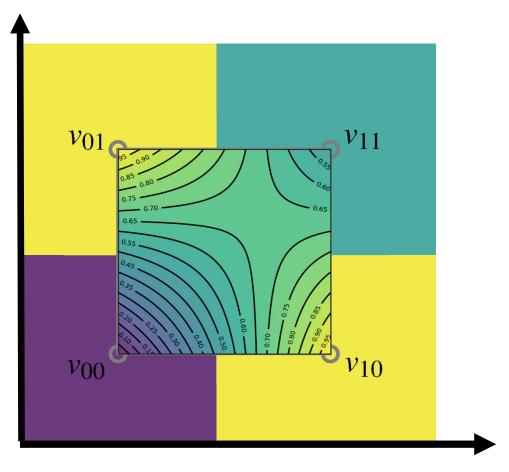
Given any (fractional) position

$\alpha_1 := x_1 - \lfloor x_1 \rfloor$	$\alpha_1 \in [0.0, 1.0)$
$\alpha_2 := x_2 - \lfloor x_2 \rfloor$	$lpha_2 \in [0.0, 1.0)$

and 2x2 sample values

$$\begin{bmatrix} v_{01} & v_{11} \\ v_{00} & v_{10} \end{bmatrix}$$

Compute: $f(\alpha_1, \alpha_2)$



Weights in 2x2 format:

$$\begin{bmatrix} \alpha_2 \\ (1-\alpha_2) \end{bmatrix} \begin{bmatrix} (1-\alpha_1) & \alpha_1 \end{bmatrix} = \begin{bmatrix} (1-\alpha_1)\alpha_2 & \alpha_1\alpha_2 \\ (1-\alpha_1)(1-\alpha_2) & \alpha_1(1-\alpha_2) \end{bmatrix}$$

Interpolate function at (fractional) position (α_1, α_2):

$$f(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2) = \begin{bmatrix} \boldsymbol{\alpha}_2 & (1 - \boldsymbol{\alpha}_2) \end{bmatrix} \begin{bmatrix} v_{01} & v_{11} \\ v_{00} & v_{10} \end{bmatrix} \begin{bmatrix} (1 - \boldsymbol{\alpha}_1) \\ \boldsymbol{\alpha}_1 \end{bmatrix}$$

Interpolate function at (fractional) position (α_1, α_2):

$$f(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2) = \begin{bmatrix} \boldsymbol{\alpha}_2 & (1 - \boldsymbol{\alpha}_2) \end{bmatrix} \begin{bmatrix} v_{01} & v_{11} \\ v_{00} & v_{10} \end{bmatrix} \begin{bmatrix} (1 - \boldsymbol{\alpha}_1) \\ \boldsymbol{\alpha}_1 \end{bmatrix}$$

$$= \begin{bmatrix} \alpha_2 & (1-\alpha_2) \end{bmatrix} \begin{bmatrix} (1-\alpha_1)v_{01} + \alpha_1v_{11} \\ (1-\alpha_1)v_{00} + \alpha_1v_{10} \end{bmatrix}$$

$$= \begin{bmatrix} \alpha_2 v_{01} + (1 - \alpha_2) v_{00} & \alpha_2 v_{11} + (1 - \alpha_2) v_{10} \end{bmatrix} \begin{bmatrix} (1 - \alpha_1) \\ \alpha_1 \end{bmatrix}$$

Interpolate function at (fractional) position (α_1, α_2):

$$f(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2) = \begin{bmatrix} \boldsymbol{\alpha}_2 & (1 - \boldsymbol{\alpha}_2) \end{bmatrix} \begin{bmatrix} v_{01} & v_{11} \\ v_{00} & v_{10} \end{bmatrix} \begin{bmatrix} (1 - \boldsymbol{\alpha}_1) \\ \boldsymbol{\alpha}_1 \end{bmatrix}$$

$$= (1 - \alpha_1)(1 - \alpha_2)v_{00} + \alpha_1(1 - \alpha_2)v_{10} + (1 - \alpha_1)\alpha_2v_{01} + \alpha_1\alpha_2v_{11}$$

$$= v_{00} + \alpha_1(v_{10} - v_{00}) + \alpha_2(v_{01} - v_{00}) + \alpha_1\alpha_2(v_{00} + v_{11} - v_{10} - v_{01})$$

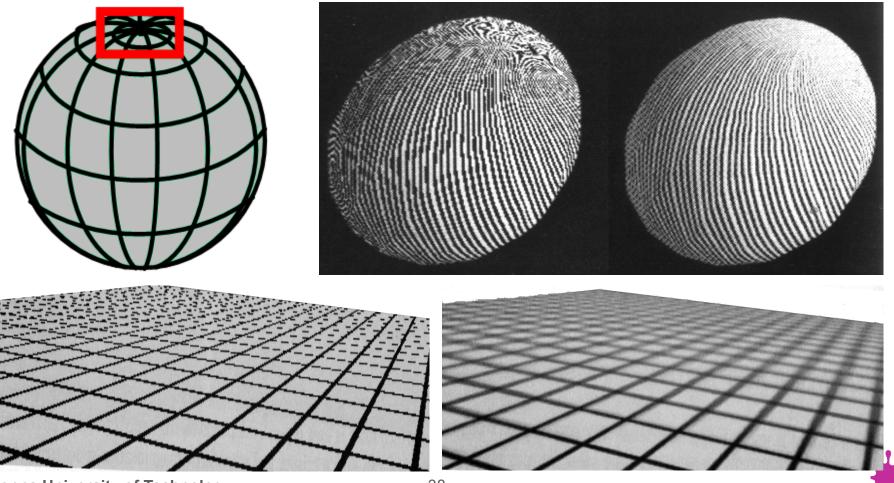
REALLY IMPORTANT:

this is a different thing (for a different purpose) than the linear (or, in perspective, rational-linear) interpolation of texture coordinates!!

Texture Minification

Texture Aliasing: Minification

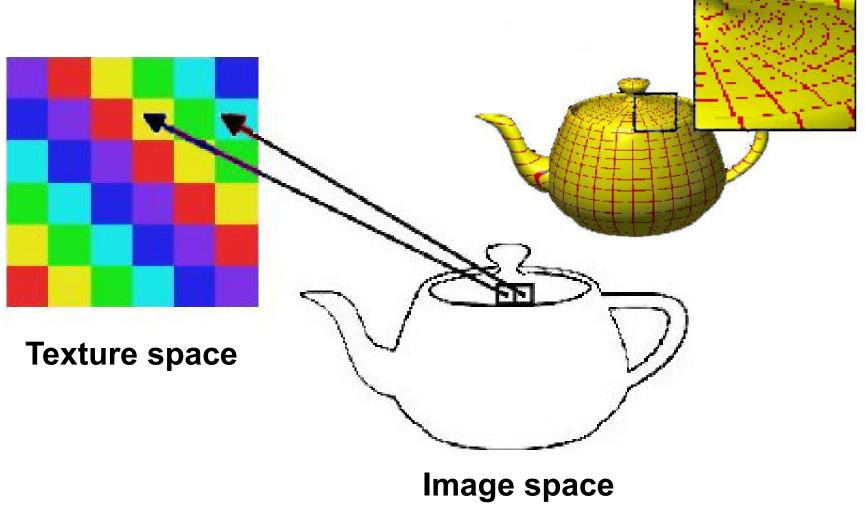
Problem: One pixel in image space covers many texels



Vienna University of Technology

Texture Aliasing: Minification

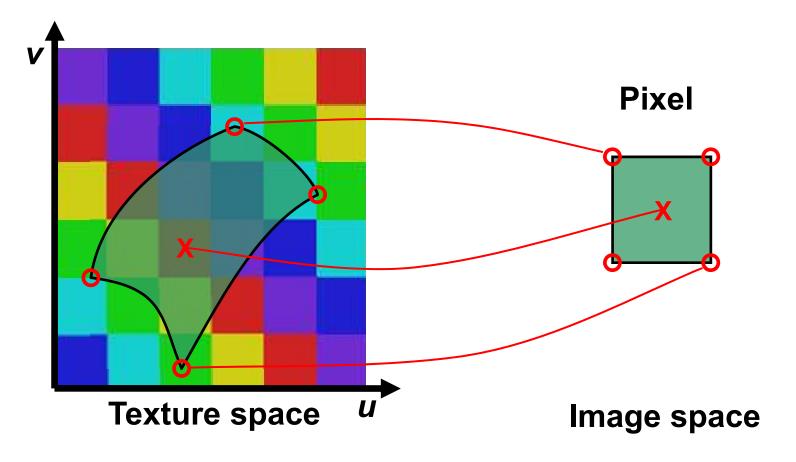
Caused by undersampling: texture information is lost



Vienna University of Technology

Texture Anti-Aliasing: Minification

A good pixel value is the weighted mean of the pixel area projected into texture space



Thank you.