CS 380-GPU and GPGPU Programming Lecture 16: GPU Texturing, Pt. 2

Markus Hadwiger, KAUST

Reading Assignment \#10 (until Nov 6)

Read (required):

- MIP-Map Level Selection for Texture Mapping
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=765326

Read (optional):

- Vulkan Tutorial
https://vulkan-tutorial.com

Next Lectures

Lecture 17: Tue, Nov 1 (make-up lecture; 16:00-17:15, room TBA)
Lecture 18: Wed, Nov 2

Quiz \#2: Nov 9

Organization

- First 30 min of lecture
- No material (book, notes, ...) allowed

Content of questions

- Lectures (both actual lectures and slides)
- Reading assignments
- Programming assignments (algorithms, methods)
- Solve short practical examples

CUDA Update (11.8, updated)

CUDA SDK 11.8 and documentation now online
CUDA C Programming Guide

- New compute capability 9.0 (Hopper GPUs)
- New compute capability 8.9 (Ada Lovelace GPUs)

CUDA Binary Utilities

- New Hopper SASS (Ada Lovelace SASS is the same as Ampere)

CUDA NVCC Compiler Driver

- Support for cc 8.9 and 9.0 (PTX \& cubin: sm_89, sm_90, compute_89, compute_90)

PTX ISA 7.8

- Support for cc 8.9 and 9.0 (sm_89 and sm_90) target architectures

Hopper Compatibility Guide, Hopper Tuning Guide

Instruction Throughput

Instruction throughput numbers in CUDA C Programming Guide (Chapter 5.4)

	Compute Capability										
	$\begin{aligned} & 3.5 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 5.0, \\ & 5.2 \end{aligned}$	5.3	6.0	6.1	6.2	7.x	8.0	8.6	8.9	9.0
16-bit floatingpoint add, multiply, multiplyadd	N/A		256	128	2	256	128	128 for	hv_bfloat16	128	$\begin{array}{r} 256 \\ 128 \text { for } \end{array}$
32-bit floatingpoint add, multiply, multiplyadd	192	128		64	128		64		128		
64-bit floatingpoint add, multiply, multiplyadd		GPUs, e	t for Titan	32 GPUs				32 ute capa	$\begin{gathered} 2 \\ 7.5 \text { GPUs } \end{gathered}$	2	64

Instruction Throughput

Instruction throughput numbers in CUDA C Programming Guide (Chapter 5.4)

GPU Texturing

GPU Texturing

8

Rage / id Tech 5 (id Software)

Texturing: General Approach

Texture space (u, v)

Object space $\left(x_{0}, y_{0}, z_{0}\right)$

Image Space $\left(x_{1}, y_{l}\right)$

2D Texture Mapping

For each fragment:
interpolate the
texture coordinates
(barycentric)
Or:

Use arbitrary, computed coordinates

Texture-Lookup:
interpolate the
texture data
(bi-linear)
Or:
Nearest-neighbor for "array lookup"

3D Texture Mapping

For each fragment:
interpolate the
texture coordinates
(barycentric)
Or:
Use arbitrary, computed coordinates

Or:
Nearest-neighbor for "array lookup"

Where do texture coordinates come from?

- Online: texture matrix/texcoord generation
- Offline: manually (or by modeling program) spherical cylindrical planar natural

Where do texture coordinates come from?

- Offline: manual UV coordinates by DCC program

■ Note: a modeling problem!

- How to extend texture beyond the border?
- Border and repeat/clamp modes
- Arbitrary $(\mathrm{s}, \mathrm{t}, \ldots) \rightarrow[0,1] \times[0,1] \rightarrow[0,255] \times[0,255]$
repeat
mirror/repeat

Interpolation \#1

Interpolation Type + Purpose \#1:

Interpolation of Texture Coordinates

(Linear / Rational-Linear Interpolation)

Linear Interpolation / Convex Combinations

Linear interpolation in 1D:

$$
f(\alpha)=(1-\alpha) v_{1}+\alpha v_{2}
$$

Line embedded in 2D (linear interpolation of vertex coordinates/attributes):

$$
\begin{array}{rr}
f\left(\alpha_{1}, \alpha_{2}\right)=\alpha_{1} v_{1}+\alpha_{2} v_{2} & f(\alpha)=v_{1}+\alpha\left(v_{2}-v_{1}\right) \\
\alpha_{1}+\alpha_{2}=1 & \alpha=\alpha_{2}
\end{array}
$$

Line segment: $\quad \alpha_{1}, \alpha_{2} \geq 0 \quad(\rightarrow$ convex combination $)$

Compare to line parameterization with parameter t :

$$
v(t)=v_{1}+t\left(v_{2}-v_{1}\right)
$$

Linear Interpolation / Convex Combinations

Linear combination (n-dim. space):

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{n} v_{n}=\sum_{i=1}^{n} \alpha_{i} v_{i}
$$

Affine combination: Restrict to $(n-1)$-dim. subspace:

$$
\alpha_{1}+\alpha_{2}+\ldots+\alpha_{n}=\sum_{i=1}^{n} \alpha_{i}=1
$$

Convex combination:

$$
\alpha_{i} \geq 0
$$

(restrict to simplex in subspace)

Linear Interpolation / Convex Combinations

$$
\begin{aligned}
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{n} v_{n} & =\sum_{i=1}^{n} \alpha_{i} v_{i} \\
\alpha_{1}+\alpha_{2}+\ldots+\alpha_{n} & =\sum_{i=1}^{n} \alpha_{i}=1
\end{aligned}
$$

Re-parameterize to get affine coordinates:

$$
\begin{array}{r}
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3}= \\
\tilde{\alpha}_{1}\left(v_{2}-v_{1}\right)+\tilde{\alpha}_{2}\left(v_{3}-v_{1}\right)+v_{1} \\
\tilde{\alpha}_{1}=\alpha_{2} \\
\tilde{\alpha}_{2}=\alpha_{3}
\end{array}
$$

Linear Interpolation / Convex Combinations

The weights α_{i} are the (normalized) barycentric coordinates
\rightarrow linear attribute interpolation in simplex

$$
\begin{array}{r}
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{n} v_{n}=\sum_{i=1}^{n} \alpha_{i} v_{i} \\
\alpha_{1}+\alpha_{2}+\ldots+\alpha_{n}=\sum_{i=1}^{n} \alpha_{i}=1 \\
\quad \alpha_{i} \geq 0
\end{array}
$$

attribute interpolation

spatial position interpolation

Homogeneous Coordinates (1)

Projective geometry

- (Real) projective spaces RPn:

Real projective line $R P^{1}$, real projective plane R^{2}, ...

- A point in RP^{n} is a line through the origin (i.e., all the scalar multiples of the same vector) in an ($n+1$)-dimensional (real) vector space

Homogeneous coordinates of 2D projective point in RP^{2}

- Coordinates differing only by a non-zero factor λ map to the same point
$(\lambda x, \lambda y, \lambda) \quad$ dividing out the λ gives $(x, y, 1)$, corresponding to (x, y) in R^{2}
- Coordinates with last component = 0 map to "points at infinity"
$(\lambda x, \lambda y, 0) \quad$ division by last component not allowed; but again this is the same point if it only differs by a scalar factor, e.g., this is the same point as ($\mathrm{x}, \mathrm{y}, 0$)

Homogeneous Coordinates (2)

Examples of usage

- Translation (with translation vector \vec{b})
- Affine transformations (linear transformation + translation)

$$
\vec{y}=A \vec{x}+\vec{b}
$$

- With homogeneous coordinates:

$$
\left[\begin{array}{c}
\vec{y} \\
1
\end{array}\right]=\left[\begin{array}{ccc|c}
& A & & \vec{b} \\
& \ldots & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\vec{x} \\
1
\end{array}\right]
$$

- Setting the last coordinate $=1$ and the last row of the matrix to $[0, \ldots, 0,1$] results in translation of the point \vec{x} (via addition of translation vector \vec{b})
- The matrix above is a linear map, but because it is one dimension higher, it does not have to move the origin in the $(\mathrm{n}+1)$-dimensional space for translation

Homogeneous Coordinates (3)

Examples of usage

- Projection (e.g., OpenGL projection matrices)

$$
\left[\begin{array}{cccc}
\frac{2}{\text { right-left }} & 0 & 0 & -\begin{array}{c}
\text { right }+ \text { left } \\
\text { right }- \text { left } \\
0
\end{array} \\
\frac{2}{\text { top-bottom }} & 0 & -\frac{- \text { top }+ \text { obtom }}{\text { top }- \text { obttom }} \\
0 & 0 & \frac{-2}{\text { far- near }} & -\frac{\text { far nenear }}{\text { far } \text { faear }} \\
0 & 0 & 0 & 1
\end{array}\right] \quad \text { Orthographic }
$$

perspective

Texture Mapping

2D (3D) Texture Space
Texture Transformation
2D Object Parameters
Parameterization
3D Object Space
Model Transformation
3D World Space
Viewing Transformation
3D Camera Space
Projection
2D Image Space

Linear Perspective

Correct Linear Perspective

Incorrect Perspective

Linear Interpolation, Bad
Perspective Interpolation, Good

Kurt Akeley, Pat Hanrahan

Texture Mapping Polygons

Forward transformation: linear projective map

$$
\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{l}
s \\
t \\
r
\end{array}\right]
$$

Backward transformation: linear projective map

$$
\left[\begin{array}{l}
s \\
t \\
r
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]^{-1}\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

Incorrect attribute interpolation

$$
A^{\prime} \neq A!
$$

Kurt Akeley, Pat Hanrahan

Linear interpolation

Compute intermediate attribute value

- Along a line: $A=a A_{1}+b A_{2}, \quad a+b=1$
- On a plane: $\quad A=a A_{1}+b A_{2}+c A_{3}, \quad a+b+c=1$

Only projected values interpolate linearly in screen space (straight lines project to straight lines)

- x and y are projected (divided by w)
- Attribute values are not naturally projected

Choice for attribute interpolation in screen space

- Interpolate unprojected values
- Cheap and easy to do, but gives wrong values
- Sometimes OK for color, but
- Never acceptable for texture coordinates
- Do it right

Linear Perspective

Correct Linear Perspective

Incorrect Perspective

Linear Interpolation, Bad
Perspective Interpolation, Good

Kurt Akeley, Pat Hanrahan

Perspective Texture Mapping

linear interpolation $\frac{a x_{1}+b x_{2}}{a w_{1}+b w_{2}} \neq a \underline{x_{1}}+b \underline{x_{2}}$ linear interpolation in object space

$$
a w_{1}+b w_{2} \quad w_{1} \quad w_{2}
$$ in screen space

$$
a=b_{31}=0.5
$$

Early Perspective Texture Mapping in Games

Ultima Underworld (Looking Glass, 1992)

Early Perspective Texture Mapping in Games

DOOM (id Software, 1993)

Early Perspective Texture Mapping in Games

Quake (id Software, 1996)

Perspective-correct linear interpolation

Only projected values interpolate correctly, so project A

- Linearly interpolate A_{1} / w_{1} and A_{2} / w_{2}

Also interpolate $1 / w_{1}$ and $1 / w_{2}$

- These also interpolate linearly in screen space

Divide interpolants at each sample point to recover A

- $(A / w) /(1 / w)=A$
- Division is expensive (more than add or multiply), so
- Recover w for the sample point (reciprocate), and
- Multiply each projected attribute by w

Barycentric triangle parameterization:

$$
A=\frac{a A_{1} / w_{1}+b A_{2} / w_{2}+c A_{3} / w_{3}}{a / w_{1}+b / w_{2}+c / w_{3}} \quad a+b+c=1
$$

Perspective Texture Mapping

- Solution: interpolate (s/w, t/w, 1/w)
- (s/w) / (1/w) = s etc. at every fragment

OBJECT-AFFINE SPACES each frạgment

Perspective-Correct Interpolation Recipe

$$
r_{i}(x, y)=\frac{r_{i}(x, y) / w(x, y)}{1 / w(x, y)}
$$

(1) Associate a record containing the n parameters of interest $\left(r_{1}, r_{2}, \cdots, r_{n}\right)$ with each vertex of the polygon.
(2) For each vertex, transform object space coordinates to homogeneous screen space using 4×4 object to screen matrix, yielding the values $(x w, y w, z w, w)$.
(3) Clip the polygon against plane equations for each of the six sides of the viewing frustum, linearly interpolating all the parameters when new vertices are created.
(4) At each vertex, divide the homogeneous screen coordinates, the parameters r_{i}, and the number 1 by w to construct the variable list ($x, y, z, s_{1}, s_{2}, \cdots, s_{n+1}$), where $s_{i}=r_{i} / w$ for $i \leq n, s_{n+1}=1 / w$.
(5) Scan convert in screen space by linear interpolation of all parameters, at each pixel computing $r_{i}=s_{i} / s_{n+1}$ for each of the n parameters; use these values for shading.

Projective Texture Mapping

- Want to simulate a beamer

■ ... or a flashlight, or a slide projector

- Precursor to shadows
- Interesting mathematics:

2 perspective projections involved!

- Easy to program!

Projective Texture Mapping

Projective Shadows in Doom 3

Projective Texturing

- What about homogeneous texture coords?
- Need to do perspective divide also for projector!
$\square(\mathrm{s}, \mathrm{t}, \mathrm{q}) \rightarrow(\mathrm{s} / \mathrm{q}, \mathrm{t} / \mathrm{q})$ for every fragment
- How does OpenGL do that?
- Needs to be perspective correct as well!
- Trick: interpolate (s/w, t/w, r/w, q/w)
- (s / w) / ($q / w)=\mathrm{s} / \mathrm{q}$ etc. at every fragment
- Remember: s,t,r,q are equivalent to x, y, z, w in projector space! \rightarrow r/q = projector depth!

Thank you.

