

KAUST

CS 380 - GPU and GPGPU Programming Lecture 16: GPU Texturing, Pt. 2

Markus Hadwiger, KAUST

Reading Assignment #10 (until Nov 6)

Read (required):

• MIP-Map Level Selection for Texture Mapping https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=765326

Read (optional):

Vulkan Tutorial

https://vulkan-tutorial.com

Next Lectures

Lecture 17: Tue, Nov 1 (make-up lecture; 16:00 – 17:15, room TBA) Lecture 18: Wed, Nov 2

Quiz #2: Nov 9

Organization

- First 30 min of lecture
- No material (book, notes, ...) allowed

Content of questions

- Lectures (both actual lectures and slides)
- Reading assignments
- Programming assignments (algorithms, methods)
- Solve short practical examples

CUDA Update (11.8, updated)

CUDA SDK 11.8 and documentation now online

CUDA C Programming Guide

- New compute capability 9.0 (Hopper GPUs)
- New compute capability 8.9 (Ada Lovelace GPUs)
- **CUDA Binary Utilities**
 - New Hopper SASS (Ada Lovelace SASS is the same as Ampere)
- CUDA NVCC Compiler Driver
 - Support for cc 8.9 and 9.0 (PTX & cubin: sm_89, sm_90, compute_89, compute_90)

PTX ISA 7.8

• Support for cc 8.9 and 9.0 (sm_89 and sm_90) target architectures

Hopper Compatibility Guide, Hopper Tuning Guide

https://developer.nvidia.com/blog/cuda-toolkit-11-8-new-features-revealed/

Instruction Throughput

Instruction throughput numbers in CUDA C Programming Guide (Chapter 5.4)

	Compute Capability										
	3.5, 3.7	5.0, 5.2	5.3	6.0	6.1	6.2	7.x	8.0	8.6	8.9	9.0
16-bit floating- point add, multiply, multiply- add	N/A		256	128	2 256		128	256 128 fornv_bfloat16		128	256
32-bit floating- point add, multiply, multiply- add	192	128		64	128		64		128		
64-bit floating- point add, multiply, multiply- add	64	4		32	4		32	32 ute capabilit	2	2	64

Instruction Throughput

Instruction throughput numbers in CUDA C Programming Guide (Chapter 5.4)

	Compute Capability											
	3.5, 3.7	5.0, 5.2	5.3	6.0	6.1	6.2	7.x	8.0	8.6	8.9	9.0	
32-bit floating- point reciproca square root, base-2 logarithm [log2f base 2 exponentia (exp2f), sine [sinf] cosine [cosf]	l 1. al	32			3	2	16					
32-bit integer add, extended- precision add, subtract, extended- precision subtract	160	1:	28	64	1:	28			64			
32-bit integer multiply, add, extended- precisior multiply- add	eger Itiply, 32 Mul Itiply- dd, nded- cision tiply-				ruct.		64 32 for extended-precision					

list continues...

Markus Hadwiger, KAUST

GPU Texturing

GPU Texturing

Rage / id Tech 5 (id Software)

Texturing: General Approach

Eduard Gröller, Stefan Jeschke

2D Texture Mapping

RGBA

:

ト

O

3D Texture Mapping

Texture Projectors

Where do texture coordinates come from?

- Online: texture matrix/texcoord generation
- Offline: manually (or by modeling program)

spherical cylindrical planar

natural

Texture Projectors

Where do texture coordinates come from?

- Offline: manual UV coordinates by DCC program
- Note: a modeling problem!

Vienna University of Technology

Texture Wrap Mode

- How to extend texture beyond the border?
- Border and repeat/clamp modes
- Arbitrary $(s,t,...) \rightarrow [0,1] \times [0,1] \rightarrow [0,255] \times [0,255]$

Interpolation #1

Interpolation Type + Purpose #1: Interpolation of Texture Coordinates

(Linear / Rational-Linear Interpolation)

Linear interpolation in 1D:

$$f(\boldsymbol{\alpha}) = (1 - \boldsymbol{\alpha})v_1 + \boldsymbol{\alpha}v_2$$

Line embedded in 2D (linear interpolation of vertex coordinates/attributes):

 $f(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2) = \boldsymbol{\alpha}_1 v_1 + \boldsymbol{\alpha}_2 v_2 \qquad \qquad f(\boldsymbol{\alpha}) = v_1 + \boldsymbol{\alpha}(v_2 - v_1)$ $\alpha = \alpha_2$ $\alpha_1 + \alpha_2 = 1$

Line segment: $\alpha_1, \alpha_2 \ge 0$ (\rightarrow convex combination)

Compare to line parameterization with parameter t:

$$v(t) = v_1 + t(v_2 - v_1)$$

Markus Hadwiger

Linear combination (*n*-dim. space):

$$\alpha_1v_1 + \alpha_2v_2 + \ldots + \alpha_nv_n = \sum_{i=1}^n \alpha_iv_i$$

Affine combination: Restrict to (n-1)-dim. subspace:

$$lpha_1+lpha_2+\ldots+lpha_n=\sum_{i=1}^nlpha_i=1$$

Convex combination:

 $\alpha_i \ge 0$

(restrict to simplex in subspace)

$$lpha_1 v_1 + lpha_2 v_2 + \ldots + lpha_n v_n = \sum_{i=1}^n lpha_i v_i$$

 $lpha_1 + lpha_2 + \ldots + lpha_n = \sum_{i=1}^n lpha_i = 1$

Re-parameterize to get affine coordinates:

$$\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 =$$

$$\tilde{\alpha}_1 (v_2 - v_1) + \tilde{\alpha}_2 (v_3 - v_1) + v_1$$

$$\tilde{\alpha}_1 = \alpha_2$$

$$\tilde{\alpha}_2 = \alpha_3$$

Markus Hadwiger

The weights α_i are the (normalized) barycentric coordinates

 \rightarrow linear attribute interpolation in simplex

$$lpha_1 v_1 + lpha_2 v_2 + \ldots + lpha_n v_n = \sum_{i=1}^n lpha_i v_i$$
 $lpha_1 + lpha_2 + \ldots + lpha_n = \sum_{i=1}^n lpha_i = 1$
 $lpha_i \ge 0$

attribute interpolation

Homogeneous Coordinates (1)

Projective geometry

• (Real) projective spaces RPⁿ:

Real projective line RP¹, real projective plane RP², ...

• A point in RPⁿ is a line through the origin (i.e., all the scalar multiples of the same vector) in an (n+1)-dimensional (real) vector space

• Coordinates differing only by a non-zero factor λ map to the same point

 $(\lambda x, \lambda y, \lambda)$ dividing out the λ gives (x, y, 1), corresponding to (x, y) in R²

• Coordinates with last component = 0 map to "points at infinity"

(λx , λy , 0) division by last component not allowed; but again this is the same point if it only differs by a scalar factor, e.g., this is the same point as (x, y, 0)

Homogeneous Coordinates (2)

Examples of usage

- Translation (with translation vector \vec{b})
- Affine transformations (linear transformation + translation)

$$ec{y} = Aec{x} + ec{b}.$$

• With homogeneous coordinates:

$$egin{bmatrix} ec{y} \ 1 \end{bmatrix} = egin{bmatrix} A & ec{b} \ 0 & \dots & 0 \ \end{vmatrix} egin{bmatrix} ec{x} \ 1 \end{bmatrix} egin{bmatrix} ec{x} \ 1 \end{bmatrix}$$

- Setting the last coordinate = 1 and the last row of the matrix to [0, ..., 0, 1] results in translation of the point \vec{x} (via addition of translation vector \vec{b})
- The matrix above is a linear map, but because it is one dimension higher, it does not have to move the origin in the (n+1)-dimensional space for translation

Homogeneous Coordinates (3)

Examples of usage

Texture Mapping

2D (3D) Texture Space **Texture Transformation** 2D Object Parameters Parameterization 3D Object Space Model Transformation 3D World Space **Viewing Transformation** 3D Camera Space Projection 2D Image Space

Kurt Akeley, Pat Hanrahan

Linear Perspective

Correct Linear Perspective

Incorrect Perspective

Linear Interpolation, Bad

Perspective Interpolation, Good

Texture Mapping Polygons

Forward transformation: linear projective map

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} s \\ t \\ r \end{bmatrix}$$

Backward transformation: linear projective map

$$\begin{bmatrix} s \\ t \\ r \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}^{-1} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Kurt Akeley, Pat Hanrahan

Incorrect attribute interpolation

Kurt Akeley, Pat Hanrahan

Linear interpolation

Compute intermediate attribute value

- Along a line: $A = aA_1 + bA_2$, a+b=1
- On a plane: $A = aA_1 + bA_2 + cA_3$, a+b+c=1

Only projected values interpolate linearly in screen space (straight lines project to straight lines)

- x and y are projected (divided by w)
- Attribute values are not naturally projected

Choice for attribute interpolation in screen space

- Interpolate unprojected values
 - Cheap and easy to do, but gives wrong values
 - Sometimes OK for color, but
 - Never acceptable for texture coordinates
- Do it right

Linear Perspective

Correct Linear Perspective

Incorrect Perspective

Linear Interpolation, Bad

Perspective Interpolation, Good

Perspective Texture Mapping $\frac{ax_1 + bx_2}{aw_1 + bw_2} \neq a\frac{x_1}{w_1} + b\frac{x_2}{w_2}$ linear interpolation in screen space linear interpolation in object space

$$a = b_{31} = 0.5$$

Vienna University of Technology

Early Perspective Texture Mapping in Games

Ultima Underworld (Looking Glass, 1992)

Markus Hadwiger, KAUST

Early Perspective Texture Mapping in Games

DOOM (id Software, 1993)

Early Perspective Texture Mapping in Games

Quake (id Software, 1996)

Perspective-correct linear interpolation

Only projected values interpolate correctly, so project A

Linearly interpolate A₁/w₁ and A₂/w₂

Also interpolate 1/w₁ and 1/w₂

These also interpolate linearly in screen space
Divide interpolants at each sample point to recover A

- (A/w) / (1/w) = A
- Division is expensive (more than add or multiply), so
 - Recover w for the sample point (reciprocate), and
 - Multiply each projected attribute by w

Barycentric triangle parameterization:

 $aA_1/w_1 + bA_2/w_2 + cA_3/w_3$

 $a/w_1 + b/w_2 + c/w_3$

A =

a + b + c = 1

Kurt Akeley, Pat Hanrahan

Perspective Texture Mapping

- Solution: interpolate (s/w, t/w, 1/w)
- (s/w) / (1/w) = s etc. at every fragment

Perspective-Correct Interpolation Recipe

$$r_i(x,y) = \frac{r_i(x,y)/w(x,y)}{1/w(x,y)}$$

- (1) Associate a record containing the *n* parameters of interest (r_1, r_2, \dots, r_n) with each vertex of the polygon.
- (2) For each vertex, transform object space coordinates to homogeneous screen space using 4×4 object to screen matrix, yielding the values (xw, yw, zw, w).
- (3) Clip the polygon against plane equations for each of the six sides of the viewing frustum, linearly interpolating all the parameters when new vertices are created.
- (4) At each vertex, divide the homogeneous screen coordinates, the parameters r_i , and the number 1 by w to construct the variable list $(x, y, z, s_1, s_2, \dots, s_{n+1})$, where $s_i = r_i/w$ for $i \leq n$, $s_{n+1} = 1/w$.
- (5) Scan convert in screen space by linear interpolation of all parameters, at each pixel computing $r_i = s_i/s_{n+1}$ for each of the *n* parameters; use these values for shading. Heckbert and Moreton

Projective Texture Mapping

- Want to simulate a beamer
 - ... or a flashlight, or a slide projector
- Precursor to shadows
- Interesting mathematics:
 2 perspective
 projections involved!
- Easy to program!

Projective Texture Mapping

Projective Shadows in Doom 3

Vienna University of Technology

Projective Texturing

- What about homogeneous texture coords?
- Need to do perspective divide also for projector!
 - (s, t, q) \rightarrow (s/q, t/q) for every fragment
- How does OpenGL do that?
 - Needs to be perspective correct as well!
 - Trick: interpolate (s/w, t/w, r/w, q/w)
 - (s/w) / (q/w) = s/q etc. at every fragment
- Remember: s,t,r,q are equivalent to x,y,z,w in projector space! \rightarrow r/q = projector depth!

Thank you.