CS 380-GPU and GPGPU Programming Lecture 15: GPU Compute APIs, Pt. 4; GPU Texturing, Pt. 1

Markus Hadwiger, KAUST

Reading Assignment \#9 (until Oct 30)

Read (required):

- Interpolation for Polygon Texture Mapping and Shading, Paul Heckbert and Henry Moreton
https://www.ri.cmu.edu/publications/interpolation-for-polygon-texture-mapping-and-shading/
- Homogeneous Coordinates
https://en.wikipedia.org/wiki/Homogeneous_coordinates

Code Examples

Example \#2: Matrix Multiply

Programming Model: Square Matrix Multiplication

- $\mathbf{P}=\mathbf{M}$ * \mathbf{N} of size WIDTH x WIDTH
- Without tiling:
- One thread handles one element of P
- M and N are loaded WIDTH times from global memory

Multiply Using One Thread Block

- One block of threads computes matrix P
- Each thread computes one element of P
- Each thread
- Loads a row of matrix M
- Loads a column of matrix N
- Perform one multiply and addition for each pair of M and N elements
- Compute to off-chip memory access ratio close to 1:1 (not very high)
- Size of matrix limited by the number of threads allowed in a thread block

M
P

Matrix Multiplication Device-Side Kernel Function (cont.)

```
for (int k = 0; k < M.width; ++k)
{
    float Melement = M.elements[ty * M.pitch + k];
    float Nelement = Nd.elements[k * N.pitch + tx];
    Pvalue += Melement * Nelement;
}
// Write the matrix to device memory;
// each thread writes one element
P.elements[ty * blockDim.x+ tx] = Pvalue;
```


\}

Handling Arbitrary Sized Square Matrices

- Have each 2D thread block to compute a (BLOCK_WIDTH) ${ }^{2}$ sub-matrix (tile) of the result matrix
- Each has (BLOCK_WIDTH) ${ }^{2}$ threads
- Generate a 2D Grid of (WIDTH/BLOCK_WIDTH)² blocks

You still need to put a loop around the kernel call for cases where WIDTH is greater than Max grid size!

Multiply Using Several Blocks - Idea

- One thread per element of P
- Load sub-blocks of \mathbf{M} and \mathbf{N} into shared memory

- Each thread reads one element of M and one of \mathbf{N}
- Reuse each sub-block for all threads, i.e. for all elements of P
- Outer loop on sub-blocks

Multiply Using Several Blocks - Idea

- One thread per element of P
- Load sub-blocks of \mathbf{M} and \mathbf{N} into shared memory

- Each thread reads one element of M and one of \mathbf{N}
- Reuse each sub-block for all threads, i.e. for all elements of P
- Outer loop on sub-blocks

Example: Matrix Multiplication (1)

- Copy matrices to device; invoke kernel; copy result matrix back to host

```
// Matrix multiplication - Host code
// Matrix dimensions are assumed to be multiples of BLOCK_SIZE
void MatMul(const Matrix A, const Matrix B, Matrix C)
{
    // Load A and B to device memory
    Matrix d A;
    d_A.width = d_A.stride = A.width; d_A.height = A.height;
    size_t size = A.width * A.height * sizeof(float);
    cudaMalloc((void**)&d_A.elements, size);
    cudaMemcpy(d_A.elements, A.elements, size,
    cudaMemcpyHostToDevice);
    Matrix d_B;
    d_B.width = d_B.stride = B.width; d_B.height = B.height;
    size = B.width * B.height * sizeof(float);
    cudaMalloc((void**)&d_B.elements, size);
    cudaMemcpy(d_B.elements, B.elements, size,
    cudaMemcpyHostToDevice);
```


Example: Matrix Multiplication (2)

```
// Allocate C in device memory
Matrix d_C;
d_C.width = d_C.stride = C.width; d_C.height = C.height;
size = C.width * C.height * sizeof(float);
cudaMalloc((void**)&d_C.elements, size);
// Invoke kernel
dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
dim3 dimGrid(B.width / dimBlock.x, A.height / dimBlock.y);
MatMulKernel<<<<dimGrid, dimBlock>>>(d_A, d_B, d_C);
// Read C from device memory
cudaMemcpy(C.elements, d_C.elements, size,
    cudaMemcpyDeviceToHost);
// Free device memory
cudaFree(d_A.elements);
cudaFree(d_B.elements);
cudaFree(d_C.elements);
}
```


Example: Matrix Multiplication (3)

- Multiply matrix block-wise
- Set BLOCK_SIZE for efficient hardware use, e.g., to 16 on cc. 1.x or 16 or 32 on cc. 2. $\mathrm{x}+$
- Maximize parallelism
- Launch as many threads per block as block elements
- Each thread fetches one element of block
- Perform row * column dot products in parallel

Example: Matrix Multiplication (4)

```
    global__ void MatrixMul( float *matA, float *matB, float *matC, int w )
{
    __shared__ float blockA[ BLOCK_SIZE ][ BLOCK_SIZE ];
    __shared__ float blockB[ BLOCK_SIZE ][ BLOCK_SIZE ];
    int bx = blockIdx.x; int tx = threadIdx.x;
    int by = blockIdx.y; int ty = threadIdx.y;
    int col = bx * BLOCK_SIZE + tx;
    int row = by * BLOCK_SIZE + ty;
    float out = 0.0f;
    for ( int m = 0; m < w / BLOCK_SIZE; m++ ) {
    blockA[ ty ][ tx ] = matA[ row * w + m * BLOCK_SIZE + tx ];
    blockB[ ty ][ tx ] = matB[ col + ( m * BLOCK_SIZE + ty ) * w ];
    __syncthreads();
    for ( int k = 0; k < BLOCK_SIZE; k++ ) {
            out += blockA[ ty ][ k ] * blockB[ k ][ tx ];
        }
        syncthreads();
    }
    matC[ row * w + col ] = out;
}

Caveat: for brevity, this code assumes matrix sizes are a multiple of the block size (either because they really are, or because padding is used; otherwise guard code would need to be added)

\section*{What About Memory Performance? (more to come later...)}

\section*{Memory Layout of a Matrix in C}
\begin{tabular}{|l|l|l|l|}
\hline\(M_{0,0}\) & \(M_{1,0}\) & \(M_{2,0}\) & \(M_{3,0}\) \\
\hline\(M_{0,1}\) & \(M_{1,1}\) & \(M_{2,1}\) & \(M_{3,1}\) \\
\hline\(M_{0,2}\) & \(M_{1,2}\) & \(M_{2,2}\) & \(M_{3,2}\) \\
\hline\(M_{0,3}\) & \(M_{1,3}\) & \(M_{2,3}\) & \(M_{3,3}\) \\
\hline
\end{tabular}


\section*{Memory Coalescing}
- When accessing global memory, peak performance utilization occurs when all threads in a half warp (full warp on Fermi) access continuous memory locations.
- Requirements relaxed on \(>=1.2\) devices; L1 cache on Fermi!

Not coalesced coalesced


\section*{Memory Layout of a Matrix in C}

\section*{Access direction in Kernel code}


\section*{Memory Layout of a Matrix in C}


\section*{GPU Texturing}

\section*{GPU Texturing}

\section*{8}


Rage / id Tech 5 (id Software)
- Idea: enhance visual appearance of surfaces by applying fine / high-resolution details


\section*{OpenGL Texture Mapping}
- Basis for most real-time rendering effects
- Look and feel of a surface
- Definition:
- A regularly sampled function that is mapped onto every fragment of a surface
- Traditionally an image, but...
- Can hold arbitrary information
- Textures become general data structures
- Sampled and interpreted by fragment programs
- Can render into textures \(\rightarrow\) important!

\section*{Types of Textures}
- Spatial layout
- Cartesian grids: 1D, 2D, 3D, 2D_ARRAY, ...
- Cube maps, ...
- Formats (too many), e.g. OpenGL
- GL_LUMINANCE16_ALPHA16
- GL_RGB8, GL_RGBA8, ...: integer texture formats
- GL_RGB16F, GL_RGBA32F, ...: float texture formats
- compressed formats, high dynamic range formats, ...
- External (CPU) format vs. internal (GPU) format
- OpenGL driver converts from external to internal

\section*{Texturing: General Approach}


Texture space ( \(u, v\) )


Object space \(\left(x_{0}, y_{0}, z_{0}\right)\)


Image Space \(\left(x_{1}, y_{l}\right)\)


\section*{Texture Mapping}

2D (3D) Texture Space
Texture Transformation
2D Object Parameters
Parameterization
3D Object Space
Model Transformation
3D World Space
Viewing Transformation
3D Camera Space
Projection
2D Image Space


\section*{Linear Perspective}


Correct Linear Perspective


Incorrect Perspective


Linear Interpolation, Bad
Perspective Interpolation, Good

Kurt Akeley, Pat Hanrahan

\section*{Texture Mapping Polygons}

Forward transformation: linear projective map
\[
\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{l}
s \\
t \\
r
\end{array}\right]
\]

Backward transformation: linear projective map
\[
\left[\begin{array}{l}
s \\
t \\
r
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]^{-1}\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
\]

\section*{Incorrect attribute interpolation}

\[
A^{\prime} \neq A!
\]

Kurt Akeley, Pat Hanrahan

\section*{Linear interpolation}

Compute intermediate attribute value
- Along a line: \(A=a A_{1}+b A_{2}, \quad a+b=1\)
- On a plane: \(\quad A=a A_{1}+b A_{2}+c A_{3}, \quad a+b+c=1\)

Only projected values interpolate linearly in screen space (straight lines project to straight lines)
- \(x\) and \(y\) are projected (divided by w)
- Attribute values are not naturally projected

Choice for attribute interpolation in screen space
- Interpolate unprojected values
- Cheap and easy to do, but gives wrong values
- Sometimes OK for color, but
- Never acceptable for texture coordinates
- Do it right

\section*{Linear Perspective}


Correct Linear Perspective


Incorrect Perspective


Linear Interpolation, Bad
Perspective Interpolation, Good

Kurt Akeley, Pat Hanrahan

\section*{Perspective Texture Mapping}

linear interpolation \(\frac{a x_{1}+b x_{2}}{a w_{1}+b w_{2}} \neq a \underline{x_{1}}+b \underline{x_{2}}\) linear interpolation in object space
\[
a w_{1}+b w_{2} \quad w_{1} \quad w_{2}
\] in screen space

\[
a=b_{32}=0.5
\]

\section*{Homogeneous Coordinates (1)}

\section*{Projective geometry}
- (Real) projective spaces RPn:

Real projective line \(R P^{1}\), real projective plane \(R^{2}\), ...
- A point in \(\mathrm{RP}^{n}\) is a line through the origin (i.e., all the scalar multiples of the same vector) in an ( \(\mathrm{n}+1\) )-dimensional (real) vector space

Homogeneous coordinates of 2D projective point in \(\mathrm{RP}^{2}\)

- Coordinates differing only by a non-zero factor \(\lambda\) map to the same point
\((\lambda x, \lambda y, \lambda) \quad\) dividing out the \(\lambda\) gives \((x, y, 1)\), corresponding to \((x, y)\) in \(R^{2}\)
- Coordinates with last component = 0 map to "points at infinity"
\((\lambda x, \lambda y, 0) \quad\) division by last component not allowed; but again this is the same point if it only differs by a scalar factor, e.g., this is the same point as ( \(\mathrm{x}, \mathrm{y}, 0\) )

\section*{Homogeneous Coordinates (2)}

\section*{Examples of usage}
- Translation (with translation vector \(\vec{b}\) )
- Affine transformations (linear transformation + translation)
\[
\vec{y}=A \vec{x}+\vec{b}
\]
- With homogeneous coordinates:
\[
\left[\begin{array}{c}
\vec{y} \\
1
\end{array}\right]=\left[\begin{array}{ccc|c} 
& A & & \vec{b} \\
& \ldots & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\vec{x} \\
1
\end{array}\right]
\]
- Setting the last coordinate \(=1\) and the last row of the matrix to \([0, \ldots, 0,1\) ] results in translation of the point \(\vec{x}\) (via addition of translation vector \(\vec{b}\) )
- The matrix above is a linear map, but because it is one dimension higher, it does not have to move the origin in the \((\mathrm{n}+1)\)-dimensional space for translation

\section*{Homogeneous Coordinates (3)}

\section*{Examples of usage}
- Projection (e.g., OpenGL projection matrices)
\[
\left[\begin{array}{cccc}
\frac{2}{\text { right-left }} & 0 & 0 & -\begin{array}{c}
\text { right }+ \text { left } \\
\text { right }- \text { left } \\
0
\end{array} \\
\frac{2}{\text { top-bottom }} & 0 & -\frac{- \text { top }+ \text { obtom }}{\text { top }- \text { obttom }} \\
0 & 0 & \frac{-2}{\text { far- near }} & -\frac{\text { far nenear }}{\text { far } \text { faear }} \\
0 & 0 & 0 & 1
\end{array}\right] \quad \text { Orthographic }
\]


perspective


Thank you.```

