
CS 380 - GPU and GPGPU Programming
Lecture 15: GPU Compute APIs, Pt. 4;

GPU Texturing, Pt. 1
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Reading Assignment #9 (until Oct 30)

Read (required):

• Interpolation for Polygon Texture Mapping and Shading,
Paul Heckbert and Henry Moreton
https://www.ri.cmu.edu/publications/interpolation-for-polygon-texture-mapping-and-shading/

• Homogeneous Coordinates
https://en.wikipedia.org/wiki/Homogeneous_coordinates
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Example #2: Matrix MultiplyExample #2: Matrix Multiply















Example: Matrix Multiplication (1)

• Copy matrices to device; invoke kernel; copy result matrix 
back to host
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Example: Matrix Multiplication (2)
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Example: Matrix Multiplication (3)

• Multiply matrix block-wise

• Set BLOCK_SIZE for efficient hardware
use, e.g., to 16 on cc. 1.x or
16 or 32 on cc. 2.x +

• Maximize parallelism
– Launch as many threads

per block as block elements
– Each thread fetches one

element of block
– Perform row * column

dot products in parallel

13



Example: Matrix Multiplication (4)
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__global__ void MatrixMul( float *matA, float *matB, float *matC, int w )
{

__shared__ float blockA[ BLOCK_SIZE ][ BLOCK_SIZE ];
__shared__ float blockB[ BLOCK_SIZE ][ BLOCK_SIZE ];

int bx = blockIdx.x; int tx = threadIdx.x;
int by = blockIdx.y; int ty = threadIdx.y;

int col = bx * BLOCK_SIZE + tx;
int row = by * BLOCK_SIZE + ty;

float out = 0.0f;
for ( int m = 0; m < w / BLOCK_SIZE; m++ ) {

blockA[ ty ][ tx ] = matA[ row * w +   m * BLOCK_SIZE + tx       ];
blockB[ ty ][ tx ] = matB[ col     + ( m * BLOCK_SIZE + ty ) * w ];
__syncthreads();

for ( int k = 0; k < BLOCK_SIZE; k++ ) {
out += blockA[ ty ][ k ] * blockB[ k ][ tx ];

}
__syncthreads();

}

matC[ row * w + col ] = out;
}

Caveat: for brevity, this code assumes matrix sizes 
are a multiple of the block size (either because 
they really are, or because padding is used; 
otherwise guard code would need to be added) 



What About Memory Performance?
(more to come later…)

What About Memory Performance?
(more to come later…)
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Memory Coalescing

• When accessing global memory, peak performance 
utilization occurs when all threads in a half warp (full 
warp on Fermi) access continuous memory locations.

• Requirements relaxed on >=1.2 devices; L1 cache on Fermi!
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Thread 1
Thread 2

Not coalesced coalesced
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GPU TexturingGPU Texturing
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GPU Texturing

Rage / id Tech 5 (id Software)
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Why Texturing?

Idea: enhance visual appearance of surfaces by 
applying fine / high-resolution details

Vienna University of Technology
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OpenGL Texture Mapping

Basis for most real-time rendering effects
Look and feel of a surface
Definition:

A regularly sampled function that is mapped onto 
every fragment of a surface
Traditionally an image, but…

Can hold arbitrary information
Textures become general data structures
Sampled and interpreted by fragment programs
Can render into textures  important!
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Types of Textures
Spatial layout

Cartesian grids: 1D, 2D, 3D, 2D_ARRAY, …
Cube maps, …

Formats (too many), e.g. OpenGL
GL_LUMINANCE16_ALPHA16
GL_RGB8, GL_RGBA8, …: integer texture formats
GL_RGB16F, GL_RGBA32F, …: float texture formats
compressed formats, high dynamic range formats, …

External (CPU) format vs. internal (GPU) format
OpenGL driver converts from external to internal
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Texturing: General Approach

Texture space (u,v) Object space (xO,yO,zO) Image Space (xI,yI)

Parametrization Rendering
(Projection etc.)

Texels



26

Perspective Projection
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Perspective Projection
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Perspective Projection
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Perspective Projection
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Perspective Projection
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Perspective Projection
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Perspective Texture Mapping
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linear interpolation

in object space

a = b = 0.5

linear interpolation
in screen space



Homogeneous Coordinates (1)

Projective geometry
• (Real) projective spaces RPn:

Real projective line RP1, real projective plane RP2, ...

• A point in RPn is a line through the origin (i.e., all the scalar multiples
of the same vector) in an (n+1)-dimensional (real) vector space

Homogeneous coordinates of 2D projective point in RP2

• Coordinates differing only by a non-zero factor λ map to the same point

( λx, λy, λ ) dividing out the λ gives ( x, y, 1 ), corresponding to (x,y) in R2

• Coordinates with last component = 0 map to “points at infinity”

( λx, λy, 0 ) division by last component not allowed; but again this is the
same point if it only differs by a scalar factor, e.g., this is the
same point as ( x, y, 0 )

Markus Hadwiger, KAUST



Homogeneous Coordinates (2)

Examples of usage
• Translation (with translation vector   )

• Affine transformations (linear transformation + translation)

• With homogeneous coordinates:

• Setting the last coordinate = 1 and the last row of the matrix to [ 0, ..., 0, 1 ] 
results in translation of the point     (via addition of translation vector   )

• The matrix above is a linear map, but because it is one dimension higher, it 
does not have to move the origin in the (n+1)-dimensional space for translation

Markus Hadwiger, KAUST



Homogeneous Coordinates (3)

Examples of usage
• Projection (e.g., OpenGL projection matrices)

Markus Hadwiger, KAUST

perspective

orthographic



Thank you.


