
CS 380 - GPU and GPGPU Programming
Lecture 15: GPU Compute APIs, Pt. 4;

GPU Texturing, Pt. 1

Markus Hadwiger, KAUST

2

Reading Assignment #9 (until Oct 30)

Read (required):

• Interpolation for Polygon Texture Mapping and Shading,
Paul Heckbert and Henry Moreton
https://www.ri.cmu.edu/publications/interpolation-for-polygon-texture-mapping-and-shading/

• Homogeneous Coordinates
https://en.wikipedia.org/wiki/Homogeneous_coordinates

Code ExamplesCode Examples

Example #2: Matrix MultiplyExample #2: Matrix Multiply

Example: Matrix Multiplication (1)

• Copy matrices to device; invoke kernel; copy result matrix
back to host

11

Example: Matrix Multiplication (2)

12

Example: Matrix Multiplication (3)

• Multiply matrix block-wise

• Set BLOCK_SIZE for efficient hardware
use, e.g., to 16 on cc. 1.x or
16 or 32 on cc. 2.x +

• Maximize parallelism
– Launch as many threads

per block as block elements
– Each thread fetches one

element of block
– Perform row * column

dot products in parallel

13

Example: Matrix Multiplication (4)

14

__global__ void MatrixMul(float *matA, float *matB, float *matC, int w)
{

__shared__ float blockA[BLOCK_SIZE][BLOCK_SIZE];
__shared__ float blockB[BLOCK_SIZE][BLOCK_SIZE];

int bx = blockIdx.x; int tx = threadIdx.x;
int by = blockIdx.y; int ty = threadIdx.y;

int col = bx * BLOCK_SIZE + tx;
int row = by * BLOCK_SIZE + ty;

float out = 0.0f;
for (int m = 0; m < w / BLOCK_SIZE; m++) {

blockA[ty][tx] = matA[row * w + m * BLOCK_SIZE + tx];
blockB[ty][tx] = matB[col + (m * BLOCK_SIZE + ty) * w];
__syncthreads();

for (int k = 0; k < BLOCK_SIZE; k++) {
out += blockA[ty][k] * blockB[k][tx];

}
__syncthreads();

}

matC[row * w + col] = out;
}

Caveat: for brevity, this code assumes matrix sizes
are a multiple of the block size (either because
they really are, or because padding is used;
otherwise guard code would need to be added)

What About Memory Performance?
(more to come later…)

What About Memory Performance?
(more to come later…)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

16

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

17

Memory Coalescing

• When accessing global memory, peak performance
utilization occurs when all threads in a half warp (full
warp on Fermi) access continuous memory locations.

• Requirements relaxed on >=1.2 devices; L1 cache on Fermi!

Md Nd

W
ID
T
H

WIDTH

Thread 1
Thread 2

Not coalesced coalesced

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

18

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M
T1 T2 T3 T4

Time Period 1

T1 T2 T3 T4

Time Period 2

Access
direction in
Kernel
code

…

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

19

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M
T1 T2 T3 T4

Time Period 1

T1 T2 T3 T4

Time Period 2

Access
direction in
Kernel
code

…

GPU TexturingGPU Texturing

21

GPU Texturing

Rage / id Tech 5 (id Software)

22

Why Texturing?

Idea: enhance visual appearance of surfaces by
applying fine / high-resolution details

Vienna University of Technology

Vienna University of Technology 23

OpenGL Texture Mapping

Basis for most real-time rendering effects
Look and feel of a surface
Definition:

A regularly sampled function that is mapped onto
every fragment of a surface
Traditionally an image, but…

Can hold arbitrary information
Textures become general data structures
Sampled and interpreted by fragment programs
Can render into textures important!

Vienna University of Technology 24

Types of Textures
Spatial layout

Cartesian grids: 1D, 2D, 3D, 2D_ARRAY, …
Cube maps, …

Formats (too many), e.g. OpenGL
GL_LUMINANCE16_ALPHA16
GL_RGB8, GL_RGBA8, …: integer texture formats
GL_RGB16F, GL_RGBA32F, …: float texture formats
compressed formats, high dynamic range formats, …

External (CPU) format vs. internal (GPU) format
OpenGL driver converts from external to internal

Eduard Gröller, Stefan Jeschke 25

Texturing: General Approach

Texture space (u,v) Object space (xO,yO,zO) Image Space (xI,yI)

Parametrization Rendering
(Projection etc.)

Texels

26

Perspective Projection

27

Perspective Projection

28

Perspective Projection

29

Perspective Projection

30

Perspective Projection

31

Perspective Projection

Vienna University of Technology 32

Perspective Texture Mapping

2

2

1

1

21

21

w
xb

w
xa

bwaw
bxax

linear interpolation

in object space

a = b = 0.5

linear interpolation
in screen space

Homogeneous Coordinates (1)

Projective geometry
• (Real) projective spaces RPn:

Real projective line RP1, real projective plane RP2, ...

• A point in RPn is a line through the origin (i.e., all the scalar multiples
of the same vector) in an (n+1)-dimensional (real) vector space

Homogeneous coordinates of 2D projective point in RP2

• Coordinates differing only by a non-zero factor λ map to the same point

(λx, λy, λ) dividing out the λ gives (x, y, 1), corresponding to (x,y) in R2

• Coordinates with last component = 0 map to “points at infinity”

(λx, λy, 0) division by last component not allowed; but again this is the
same point if it only differs by a scalar factor, e.g., this is the
same point as (x, y, 0)

Markus Hadwiger, KAUST

Homogeneous Coordinates (2)

Examples of usage
• Translation (with translation vector)

• Affine transformations (linear transformation + translation)

• With homogeneous coordinates:

• Setting the last coordinate = 1 and the last row of the matrix to [0, ..., 0, 1]
results in translation of the point (via addition of translation vector)

• The matrix above is a linear map, but because it is one dimension higher, it
does not have to move the origin in the (n+1)-dimensional space for translation

Markus Hadwiger, KAUST

Homogeneous Coordinates (3)

Examples of usage
• Projection (e.g., OpenGL projection matrices)

Markus Hadwiger, KAUST

perspective

orthographic

Thank you.

