
CS 380 - GPU and GPGPU Programming
Lecture 14: GPU Compute APIs, Pt. 3

Markus Hadwiger, KAUST

2

Reading Assignment #7 + #8 (until Oct 23)

Read (required):
• Programming Massively Parallel Processors book (4th edition),

Chapter 7 (Convolution)

• Programming Massively Parallel Processors book (4th edition),
Chapter 8 (Stencil)

Read (optional):
• Inline PTX Assembly in CUDA: Inline_PTX_Assembly.pdf

• Dissecting GPU Architectures through Microbenchmarking:

Volta: https://arxiv.org/abs/1804.06826

Turing: https://arxiv.org/abs/1903.07486

https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/
s9839-discovering-the-turing-t4-gpu-architecture-with-microbenchmarks.pdf

Ampere: https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s33322/

3

Next Lectures

no lectures on Oct 16 and Oct 19 ! (mid-semester break and IEEE VIS conference)

Lecture 15: Sun, Oct 23

Lecture 16: Wed, Oct 26

Lecture 17: Sun, Oct 30

Lecture 18: Tue, Nov 1 (make-up lecture; 16:00 – 17:15 ?)

Lecture 19: Wed, Nov 2

Code ExamplesCode Examples

Example #1: 1D ConvolutionExample #1: 1D Convolution

KAUST King Abdullah University of Science and Technology 6

Example #1: 1D Convolution

courtesy Kayvon Fatahalian

1D Convolution with 3-tap averaging kernel
(every thread is averaging three inputs)

KAUST King Abdullah University of Science and Technology 7

Running on a GP104 (Pascal) SM

courtesy Kayvon Fatahalian

(but no ALU dual-issue!)

KAUST King Abdullah University of Science and Technology 8

Running on a V100 (Volta) SM

courtesy Kayvon Fatahalian

(sub-core == SM partition)

KAUST King Abdullah University of Science and Technology 9

Code on Same SM Arch. But Different #SMs

courtesy Kayvon Fatahalian

(could now be up to 144 SMs, etc., …)

Example #2: Matrix MultiplyExample #2: Matrix Multiply

Example: Matrix Multiplication (1)

• Copy matrices to device; invoke kernel; copy result matrix
back to host

17

Example: Matrix Multiplication (2)

18

Example: Matrix Multiplication (3)

• Multiply matrix block-wise

• Set BLOCK_SIZE for efficient hardware
use, e.g., to 16 on cc. 1.x or
16 or 32 on cc. 2.x +

• Maximize parallelism
– Launch as many threads

per block as block elements
– Each thread fetches one

element of block
– Perform row * column

dot products in parallel

19

Example: Matrix Multiplication (4)

20

__global__ void MatrixMul(float *matA, float *matB, float *matC, int w)
{

__shared__ float blockA[BLOCK_SIZE][BLOCK_SIZE];
__shared__ float blockB[BLOCK_SIZE][BLOCK_SIZE];

int bx = blockIdx.x; int tx = threadIdx.x;
int by = blockIdx.y; int ty = threadIdx.y;

int col = bx * BLOCK_SIZE + tx;
int row = by * BLOCK_SIZE + ty;

float out = 0.0f;
for (int m = 0; m < w / BLOCK_SIZE; m++) {

blockA[ty][tx] = matA[row * w + m * BLOCK_SIZE + tx];
blockB[ty][tx] = matB[col + (m * BLOCK_SIZE + ty) * w];
__syncthreads();

for (int k = 0; k < BLOCK_SIZE; k++) {
out += blockA[ty][k] * blockB[k][tx];

}
__syncthreads();

}

matC[row * w + col] = out;
}

Caveat: for brevity, this code assumes matrix sizes
are a multiple of the block size (either because
they really are, or because padding is used;
otherwise guard code would need to be added)

Thank you.

