
CS 380 - GPU and GPGPU Programming
Lecture 13: GPU Compute APIs, Pt. 2

Markus Hadwiger, KAUST

2

Reading Assignment #7 + #8 (until Oct 23)

Read (required):
• Programming Massively Parallel Processors book (4th edition),

Chapter 7 (Convolution)

• Programming Massively Parallel Processors book (4th edition),
Chapter 8 (Stencil)

Read (optional):
• Inline PTX Assembly in CUDA: Inline_PTX_Assembly.pdf

• Dissecting GPU Architectures through Microbenchmarking:

Volta: https://arxiv.org/abs/1804.06826

Turing: https://arxiv.org/abs/1903.07486

https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/
s9839-discovering-the-turing-t4-gpu-architecture-with-microbenchmarks.pdf

Ampere: https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s33322/

3

Next Lectures

Lecture 14: Wed, Oct 12

no lectures on Oct 16 and Oct 19 ! (mid-semester break and IEEE VIS conference)

Lecture 15: Sun, Oct 23

Lecture 16: Wed, Oct 26

Lecture 17: Sun, Oct 30

Lecture 18: Tue, Nov 1 (make-up lecture; 16:00 – 17:15 ?)

Lecture 19: Wed, Nov 2

GPU Compute APIsGPU Compute APIs

cached on Fermi or newer!

cached on Fermi
or newer!

* cached on Fermi or newer!

* YES

* YES

(Memory) State Spaces

PTX ISA 7.8 (Chapter 5)

Unified memory space can be enabled on Fermi / CUDA 4.x and newer

recursion supported on __device__ functions from
cc. 2.x (i.e., basically on all current GPUs)

except: (*) and (**)

(**) also: mapped pinned (page-locked) memory (“zero-copy memory”) :
allocate memory with cudaMallocHost(); beware of low performance!!

(*) “unified memory programming” introduced with CUDA 6 (cc. 3.x +):
allocate memory with cudaMallocManaged(); uses automatic migration

Note: UVA (“unified virtual addressing”; cc. 2.x +) is something different!!
just pertains to unified pointers (see cudaPointerGetAttributes(), …)

()

CUDA 6+: __managed__ (with __device__) for managed
memory (unified memory programming)

CUDA 4.x or newer:
cudaDeviceSynchronize() and
cudaStreamSynchronize()

Plus newer sync functions, e.g., from compute capability 2.x on:
__syncthreads_count(), __syncthreads_and/or(),
__threadfence_block(), __threadfence_system(), …

Now: Must use versions with _sync suffix, because of
Independent Thread Scheduling (compute capability 7.x and newer)!

New in CC 9.0: Thread Block Clusters

New thread hierarchy level!

Markus Hadwiger, KAUST 35

all blocks of a cluster are on the same GPC !all threads of a block are on the same SM !

Code ExamplesCode Examples

Example #1: 1D ConvolutionExample #1: 1D Convolution

KAUST King Abdullah University of Science and Technology 38

Example #1: 1D Convolution

courtesy Kayvon Fatahalian

1D Convolution with 3-tap averaging kernel
(every thread is averaging three inputs)

KAUST King Abdullah University of Science and Technology 39

Running on a GP104 (Pascal) SM

courtesy Kayvon Fatahalian

(but no ALU dual-issue!)

KAUST King Abdullah University of Science and Technology 40

Running on a V100 (Volta) SM

courtesy Kayvon Fatahalian

(sub-core == SM partition)

KAUST King Abdullah University of Science and Technology 41

Code on Same SM Arch. But Different #SMs

courtesy Kayvon Fatahalian

(could now be up to 144 SMs, etc., …)

Thank you.

