
CS 380 - GPU and GPGPU Programming
Lecture 12: GPU Compute APIs, Pt. 1

Markus Hadwiger, KAUST

2

Reading Assignment #6 (until Oct 9)

Read (required):
• Programming Massively Parallel Processors book (4th edition),

Chapter 2 (Heterogeneous data parallel computing),
Chapter 3 (Multidimensional grids and data)

• CUDA NVCC documentation: https://docs.nvidia.com/cuda/pdf/CUDA_Compiler_Driver_NVCC.pdf
Read Chapters 1 – 3; Chapter 5; get an overview of the rest

Read (optional):
• Look at the “Tuning Guides“ for different architectures in the CUDA SDK

• PTX Instruction Set Architecture 7.8: https://docs.nvidia.com/cuda/parallel-thread-execution/
Read Chapters 1 – 3; get an overview of Chapter 12;
browse through the other chapters to get a feeling for what PTX looks like

• CUDA SASS ISA, Chapter 4: https://docs.nvidia.com/cuda/pdf/CUDA_Binary_Utilities.pdf

CUDA Update (11.8)

CUDA SDK 11.8 and documentation now online

CUDA C Programming Guide
• New compute capability 9.0 (Hopper GPUs)

• Specific info for compute capability 8.9 (Ada Lovelace GPUs) missing

CUDA Binary Utilities
• New Hopper SASS (Ada Lovelace SASS is the same as Ampere)

CUDA NVCC Compiler Driver
• Support for cc 8.9 and 9.0 (PTX & cubin: sm_89, sm_90, compute_89, compute_90)

PTX ISA 7.8
• Support for cc 8.9 and 9.0 (sm_89 and sm_90) target architectures

Hopper Compatibility Guide, Hopper Tuning Guide

Markus Hadwiger, KAUST 3

https://developer.nvidia.com/blog/cuda-toolkit-11-8-new-features-revealed/

Ada Lovelace Architecture Whitepaper

https://images.nvidia.com/aem-dam/Solutions/geforce/ada/nvidia-ada-gpu-architecture.pdf

Markus Hadwiger, KAUST 4

GPU Compute APIsGPU Compute APIs

NVIDIA CUDA

• Old acronym: “Compute Unified Device Architecture”

• Extensions to C(++) programming language
• __host__, __global__, and __device__ functions

• Heavily multi-threaded

• Synchronize threads with __syncthreads(), ...

• Atomic functions
(before compute capability 2.0 only integer, from 2.0 on also float)

• Compile .cu files with NVCC

• Uses general C compiler (Visual C, gcc, ...)

• Link with CUDA run-time (cudart.lib) and cuda core (cuda.lib)

6

KAUST King Abdullah University of Science and Technology 7

Teaser: Simple Typical CUDA Kernel (SM Perspective)

CUDA Compilation Trajectory

Markus Hadwiger, KAUST 10

CUDA Compiler Driver
(NVCC) docs:

CUDA_Compiler_Driver_NVCC.pdf

CUDA Compilation Trajectory / Code Gen

Markus Hadwiger, KAUST
from https://docs.nvidia.com/cuda/pdf/CUDA_Compiler_Driver_NVCC.pdf

CUDA Compilation Trajectory / Code Gen

Also look at compatibility guides:

https://docs.nvidia.com/cuda/pdf/NVIDIA_Ampere_GPU_Architecture_Compatibility_Guide.pdf

https://docs.nvidia.com/cuda/pdf/Hopper_Compatibility_Guide.pdf

CUDA Multi-Threading

CUDA model groups threads
into thread blocks; blocks into grid

Execution on actual
hardware:

• Thread blocks assigned to SM
(up to 8, 16, or 32 blocks per SM;
depending on compute capability)

• 32 threads grouped into a
warp (on all compute capabilities)

13

Threads in Block, Blocks in Grid

• Identify work of thread via
– threadIdx
– blockIdx

14

…
float x =
input[threadIdx];
float y = func(x);
output[threadIdx] = y;
…

threadIdx

Thread Block 0

…
…
float x =
input[threadIdx];
float y = func(x);
output[threadIdx] = y;
…

Thread Block 1

…
float x =
input[threadIdx];
float y = func(x);
output[threadIdx] = y;
…

Thread Block N - 1
76543210 76543210 76543210

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

blockIdx == 0 blockIdx == 1

CUDA Memory Model and Usage

•cudaMalloc(), cudaFree()

•cudaMallocArray(),
cudaMalloc2DArray(),
cudaMalloc3DArray()

•cudaMemcpy()

•cudaMemcpyArray()

• Host ↔ host
Host ↔ device
Device ↔ device

• Asynchronous transfers
possible (DMA)

15

Grid

Global
Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Register
s

Thread (1, 0)

Register
s

Block (1, 0)

Shared Memory

Thread (0, 0)

Register
s

Thread (1, 0)

Register
s

Host

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

* brand new on Hopper: thread block clusters

*

cached on Fermi or newer!

cached on Fermi
or newer!

* cached on Fermi or newer!

* YES

* YES

(Memory) State Spaces

PTX ISA 7.8 (Chapter 5)

Unified memory space can be enabled on Fermi / CUDA 4.x and newer

recursion supported on __device__ functions from
cc. 2.x (i.e., basically on all current GPUs)

except: (*) and (**)

(**) also: mapped pinned (page-locked) memory (“zero-copy memory”) :
allocate memory with cudaMallocHost(); beware of low performance!!

(*) “unified memory programming” introduced with CUDA 6 (cc. 3.x +):
allocate memory with cudaMallocManaged(); uses automatic migration

Note: UVA (“unified virtual addressing”; cc. 2.x +) is something different!!
just pertains to unified pointers (see cudaPointerGetAttributes(), …)

()

CUDA 6+: __managed__ (with __device__) for managed
memory (unified memory programming)

Thank you.

