
CS 380 - GPU and GPGPU Programming
Lecture 8: GPU Architecture, Pt. 5

Markus Hadwiger, KAUST

2

Reading Assignment #5 (until Oct 2)

Read (required):
• Programming Massively Parallel Processors book, 4th edition,

Chapter 4 (Compute architecture and scheduling)

• NVIDIA CUDA C++ Programming Guide (v11.7, Aug 2022):
Read Chapter 2.6 (Compute Capability);
go through Appendix K (Compute Capabilities);
go through Chapter 5.2 (Maximize Utilization) and

Chapter 5.4 (Maximize Instruction Throughput)
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

Read (optional):
• NVIDIA Fermi (GF100) white paper (CC 2.x; for historical reasons and comparison to current GPUs):

https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

• NVIDIA Pascal (GP100) white paper (CC 6.x):
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf

• NVIDIA Volta (V100) white paper (CC 7.0; tensor cores):
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

• NVIDIA Turing (TU102, TU104, TU106) white paper (CC 7.5; ray tracing cores):
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-

Architecture-Whitepaper.pdf

3

Quiz #1: Sep 28

Organization
• First 30 min of lecture

• No material (book, notes, ...) allowed

Content of questions
• Lectures (both actual lectures and slides)

• Reading assignments

• Programming assignments (algorithms, methods)

• Solve short practical examples

GPU Architecture:
General Architecture
GPU Architecture:
General Architecture

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Next Problem: Stalls!

Texture access latency = 100’s to 1000’s of cycles
(also: instruction pipelining hazards, …)

We’ve removed the fancy caches and logic that helps avoid stalls.

Stalls occur when a core cannot run the next
instruction because of a dependency on a previous

operation.

5

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

But we have LOTS of independent fragments.

Idea #3:
Interleave processing of many fragments on a single core

to avoid stalls caused by high latency operations.

6

Idea #3: Interleave execution of groups

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Idea #3: Store multiple group contexts

Fetch/
Decode

ALU ALU ALU ALU

ALU ALU ALU ALU

Pool of context storage

64 KB

7

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Twenty small contexts (few regs/thread)

Fetch/
Decode

ALU ALU ALU ALU

ALU ALU ALU ALU

1 2 3 4 5

6 7 8 9 10

11 1512 13 14

16 2017 18 19

(maximal latency hiding ability)

8

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Four large contexts (many regs/thread)

Fetch/
Decode

ALU ALU ALU ALU

ALU ALU ALU ALU

43

1 2

(low latency hiding ability)

9

Concepts: SM Occupancy in CUDA (TLP!)

We need to hide latencies from
• Instruction pipelining hazards (RAW – read after write, etc.)

(also: branches; behind branch, fetch instructions from different instruction stream)

• Memory access latency

First type of latency: Definitely need to hide! (it is always there)

Second type of latency: only need to hide if it does occur (of course not unusual)

Occupancy: How close are we to maximum latency hiding ability?
(how many threads are resident vs. how many could be)

See run time occupancy API, or Nsight Compute: https://docs.nvidia.com/
nsight‐compute/NsightCompute/index.html#occupancy‐calculator

Markus Hadwiger, KAUST 10

GPUs are here!
(usually)

Where We‘ve Arrived...

GPU Architecture:
Real Architectures
GPU Architecture:
Real Architectures

NVIDIA Architectures (since first CUDA GPU)

Tesla [CC 1.x]: 2007-2009
• G80, G9x: 2007 (Geforce 8800, ...)

GT200: 2008/2009 (GTX 280, ...)

Fermi [CC 2.x]: 2010 (2011, 2012, 2013, …)

• GF100, ... (GTX 480, ...)
GF104, ... (GTX 460, ...)
GF110, ... (GTX 580, ...)

Kepler [CC 3.x]: 2012 (2013, 2014, 2016, …)

• GK104, ... (GTX 680, ...)
GK110, ... (GTX 780, GTX Titan, ...)

Maxwell [CC 5.x]: 2015
• GM107, ... (GTX 750Ti, ...)

GM204, ... (GTX 980, Titan X, ...)

Markus Hadwiger, KAUST 13

Pascal [CC 6.x]: 2016 (2017, 2018, 2021, 2022, …)

• GP100 (Tesla P100, ...)

• GP10x: x=2,4,6,7,8, ...
(GTX 1060, 1070, 1080, Titan X Pascal, Titan Xp, ...)

Volta [CC 7.0, 7.2]: 2017/2018
• GV100, ...

(Tesla V100, Titan V, Quadro GV100, ...)

Turing [CC 7.5]: 2018/2019
• TU102, TU104, TU106, TU116, TU117, ...

(Titan RTX, RTX 2070, 2080 (Ti), GTX 1650, 1660, ...)

Ampere [CC 8.0, 8.6, 8.7]: 2020
• GA100, GA102, GA104, GA106, ...

(A100, RTX 3070, 3080, 3090 (Ti), RTX A6000, ...)

Hopper [CC 9.0], Ada Lovelace [CC 8.9]: 2022/23
• GH100, AD102, AD103, AD104, ...

(H100, L40, RTX 4080 (12/16 GB), 4090, RTX 6000, ...)

see https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
and https://en.wikipedia.org/wiki/CUDA

Interlude: PTX vs. SASS Code (1)

PTX is virtual machine ISA

SASS is actual machine ISA

For disassembly:

cuobjdump / nvdisasm

See CUDA_Binary_Utilities.pdf

For debugging (and code
inspection) see:

https://developer.nvidia.com/
nsight‐visual‐studio‐edition

Markus Hadwiger, KAUST 14

SASS

PTX

Interlude: PTX vs. SASS Code (2)

Note

• Size of instructions
(here: 16 bytes)

• MUFU.RCP computing
FP32 reciprocal on SFU
(there is no SASS division:
division is an algorithm
comprising simpler instructions)

• This is debug code:
redundant register moves
not (yet) removed by
optimizer in assembler
(result of virtual PTX
registers being mapped
to same physical register)

• …

Markus Hadwiger, KAUST 15

(SASS on Ampere)

Interlude: PTX vs. SASS Code (2)

Note

• Size of instructions
(here: 16 bytes)

• MUFU.RCP computing
FP32 reciprocal on SFU
(there is no SASS division:
division is an algorithm
comprising simpler instructions)

• This is debug code:
redundant register moves
not (yet) removed by
optimizer in assembler
(result of virtual PTX
registers being mapped
to same physical register)

• …

Markus Hadwiger, KAUST 16

(SASS on Ampere)

Interlude: PTX vs. SASS Code (2)

Note

• Size of instructions
(here: 16 bytes)

• MUFU.RCP computing
FP32 reciprocal on SFU
(there is no SASS division:
division is an algorithm
comprising simpler instructions)

• This is debug code:
redundant register moves
not (yet) removed by
optimizer in assembler
(result of virtual PTX
registers being mapped
to same physical register)

• …

Markus Hadwiger, KAUST 17

(SASS on Ampere)

Instruction Pipelining

Most basic way to exploit instruction-level parallelism (ILP)

Problem: hazards (different solutions: bubbles, …)

Markus Hadwiger, KAUST 18

wikipedia
https://en.wikipedia.org/wiki/Instruction_pipelining
https://en.wikipedia.org/wiki/Classic_RISC_pipeline

Concepts: Latency Hiding (Latency Tolerance)

Main goal: Avoid that instruction throughput goes below peak
ILP: Hide instruction pipeline latency of one instruction by

pipelined execution of independent instruction from same thread

TLP: Hide any latency occurring for one thread (group/warp/wavefront)
by executing a different thread (group/warp/wavefront)
as soon as current thread (group/warp/wavefront) stalls:

→ Total throughput does not go down

Markus Hadwiger, KAUST 19

(*depending on actual microarchitecture)

– TLP: pull independent, not-stalling instruction from other thread group
– ILP: pull independent instruction from same thread group (instruction stream)
– Depending on GPU: TLP often sufficient, but sometimes also need ILP
– However: If in one cycle TLP doesn’t work, ILP can jump in or vice versa*

GPUs

ILP vs. TLP on GPUs

Main observations
• Each time unit (usually one clock cycle), a new instruction without

dependencies should be dispatched to functional units (ALUs, SFUs, …)

• Instruction is a group of threads that is executing the same instruction:
CUDA warp (32 threads), wavefront (32 or 64 threads), …

• Where can this instruction come from?
• TLP: from another runnable warp (i.e., different instruction stream)
• ILP: from the same warp (i.e., the same instruction stream)

How many instructions/warps per time unit (clock cycle)?
• “Scalar” pipeline (CPI=1.0): TLP sufficient (if enough warps); can exploit ILP

(next instruction either from different warp, or from same warp)

• “Superscalar” (CPI<1.0) pipeline: dispatch more than one instruction per
cycle, (#dispatchers > #warp schedulers): need ILP!

Markus Hadwiger, KAUST 20
(CPI = clocks per instruction)

21

Example: “Scalar” GF100

Main concept here:

There is one instruction dispatcher
(dispatch unit / fetch/decode unit)
per warp scheduler
(warp selector)

Details later...
Ignore less important subtleties...
GF100 has two warp schedulers, not one,
and each 32-thread instruction is executed
over two clock cycles, not one, etc.

Caveat on NVIDIA diagrams: if two dispatchers per warp scheduler
are shown, it still doesn‘t mean that the ALU pipeline is “superscalar”
(often, the second dispatcher dispatches to a non-ALU pipeline)
... need to look at CUDA programming guide info, also given

in our tables in row “# ALU dispatch / warp sched.”

KAUST King Abdullah University of Science and Technology 22

Example: “Superscalar” ALUs in SM Architecture

Instruction Throughput

Instruction throughput numbers in CUDA C Programming Guide (Chapter 5.4)

Markus Hadwiger, KAUST 23

9.0

256

128

64

8.9

?

?

?

see NVIDIA CUDA C Programming Guides (different versions)
performance guidelines/multiprocessor level; compute capabilities

ALU Instruction Latencies and Instructs. / SM

Markus Hadwiger, KAUST 24

CC 2.0
(Fermi)

2.1
(Fermi)

3.x
(Kepler)

5.x
(Maxwell)

6.0
(Pascal)

6.1/6.2
(Pascal)

7.x
(Volta, Turing)

8.x
(Ampere)

8.9/9.x
(Ada/Hopper)

warp sched.
/ SM 2 2 4 4 2 4 4 4 4

ALU
dispatch

/ warp sched.
1 (over
2 clocks)

2 (over
2 clocks) 2 1 1 1 1 1 1

SM busy with
warps + inst L 2L 8L 4L 2L 4L 4L 4L 4L

inst. pipe
latency (L) 22 22 11 9 6 6 4 4 ?

SM busy with
warps 22 22

+ ILP
44

+ ILP 36 12 24 16 16 4*?

see NVIDIA CUDA C Programming Guides (different versions)
performance guidelines/multiprocessor level; compute capabilities

ALU Instruction Latencies and Instructs. / SM

Markus Hadwiger, KAUST 25

CC 2.0
(Fermi)

2.1
(Fermi)

3.x
(Kepler)

5.x
(Maxwell)

6.0
(Pascal)

6.1/6.2
(Pascal)

7.x
(Volta, Turing)

8.x
(Ampere)

8.9/9.x
(Ada/Hopper)

warp sched.
/ SM 2 2 4 4 2 4 4 4 4

ALU
dispatch

/ warp sched.
1 (over
2 clocks)

2 (over
2 clocks) 2 1 1 1 1 1 1

SM busy with
warps + inst L 2L 8L 4L 2L 4L 4L 4L 4L

inst. pipe
latency (L) 22 22 11 9 6 6 4 4 ?

SM busy with
warps 22 22

+ ILP
44

+ ILP 36 12 24 16 16 4*?

IF no other stalls occur!
(i.e., except inst. pipe hazards)

NVIDIA Tesla Architecture
2007-2009

(compute capability 1.x)

G80 (cc 1.0): 2007 (Geforce 8800, ...)
G9x (cc 1.1): 2008 (Geforce 9800, ...)
GT200 (cc 1.3): 2008/2009 (GTX 280, GTX 285, ...)

(this is not the Tesla product line!)

NVIDIA Tesla Architecture (not the Tesla product line!),
G80: 2007, GT200: 2008/2009

G80: first CUDA GPU!

Multiprocessor: SM (CC 1.x)

• Streaming Processor (SP) [or: CUDA core; or: FP32 / FP64 / INT32 core, ...]

• Streaming Multiprocessor (SM)

• Texture/Processing Cluster (TPC)

Courtesy AnandTech

NVIDIA Tesla Architecture (not the Tesla product line!),
G80: 2007, GT200: 2008/2009

• G80/G92: 8 TPCs * (2 * 8 SPs) = 128 SPs [= CUDA cores]

• GT200: 10 TPCs * (3 * 8 SPs) = 240 SPs [= CUDA cores]
• Arithmetic intensity has increased (num. of ALUs vs. texture units)

G80 / G92 GT200
Courtesy AnandTech

NVIDIA Fermi Architecture
2010

(compute capability 2.x)

GF100 (cc 2.0), ... (GTX 480, ...)
GF104 (cc 2.1), ... (GTX 460, ...)
GF110 (cc 2.0), ... (GTX 580, ...)

30

NVIDIA Fermi (GF100) Architecture (2010)

Full size

• 4 GPCs

• 4 SMs each

• 6 64-bit
memory
controllers
(= 384 bit)

NVIDIA Fermi (GF100) Die Photo

Full size

• 4 GPCs

• 4 SMs each

see NVIDIA CUDA C Programming Guides (different versions)
performance guidelines/multiprocessor level; compute capabilities

ALU Instruction Latencies and Instructs. / SM

Markus Hadwiger, KAUST 32

CC 2.0
(Fermi)

2.1
(Fermi)

3.x
(Kepler)

5.x
(Maxwell)

6.0
(Pascal)

6.1/6.2
(Pascal)

7.x
(Volta, Turing)

8.x
(Ampere)

8.9/9.0
(Ada/Hopper)

warp sched.
/ SM 2 2 4 4 2 4 4 4 4

ALU
dispatch

/ warp sched.
1 (over
2 clocks)

2 (over
2 clocks) 2 1 1 1 1 1 1

SM busy with
warps + inst L 2L 8L 4L 2L 4L 4L 4L 4L

inst. pipe
latency (L) 22 22 11 9 6 6 4 4 ?

SM busy with
warps 22 22

+ ILP
44

+ ILP 36 12 24 16 16 4*?

33

NVIDIA GF100 SM (2010)

Multiprocessor: SM (CC 2.0)

Streaming processors now called
CUDA cores

32 CUDA cores per Fermi GF100/GF110
streaming multiprocessor (SM)
Example GPU with 15 SMs = 480 CUDA cores (GTX 480)

Example GPU with 16 SMs = 512 CUDA cores (GTX 580)

CPU-like cache hierarchy
• L1 cache / shared memory

• L2 cache

Texture units and caches now in SM
(instead of with TPC=multiple SMs in G80/GT200)

34

Graphics Processor Clusters (GPC)

(instead of TPC on GT200)

4 SMs

32 CUDA cores / SM

4 SMs / GPC =
128 cores / GPC

Decentralized rasterization
and geometry

• 4 raster engines

• 16 ”PolyMorph” engines

Dual Warp Schedulers

Dual Warp Schedulers

NVIDIA Fermi (GF104) Architecture (2010)

Full size GF104

• 2 GPCs

• 4 SMs each

• SM design
different from
GF100 / GF110 !

• Fewer total SMs,
but each SM is
“superscalar”

Markus Hadwiger, KAUST 37

see NVIDIA CUDA C Programming Guides (different versions)
performance guidelines/multiprocessor level; compute capabilities

ALU Instruction Latencies and Instructs. / SM

Markus Hadwiger, KAUST 38

CC 2.0
(Fermi)

2.1
(Fermi)

3.x
(Kepler)

5.x
(Maxwell)

6.0
(Pascal)

6.1/6.2
(Pascal)

7.x
(Volta, Turing)

8.x
(Ampere)

8.9/9.0
(Ada/Hopper)

warp sched.
/ SM 2 2 4 4 2 4 4 4 4

ALU
dispatch

/ warp sched.
1 (over
2 clocks)

2 (over
2 clocks) 2 1 1 1 1 1 1

SM busy with
warps + inst L 2L 8L 4L 2L 4L 4L 4L 4L

inst. pipe
latency (L) 22 22 11 9 6 6 4 4 ?

SM busy with
warps 22 22

+ ILP
44

+ ILP 36 12 24 16 16 4*?

39

NVIDIA GF104 SM (2010)

Multiprocessor: SM (CC 2.1)

Streaming processors now called
CUDA cores

48 CUDA cores per Fermi GF104
streaming multiprocessor (SM)
Example GPU with 7 SMs = 336 CUDA cores (GTX 460)

2 dispatch units / warp scheduler: “superscalar”

CPU-like cache hierarchy
• L1 cache / shared memory

• L2 cache

Texture units and caches now in SM
(instead of with TPC=multiple SMs in G80/GT200)

NVIDIA Fermi GF100 Architecture (2010)

CC 2.0, not 2.1 !

NVIDIA Fermi GF100 Architecture (2010)

CC 2.0, not 2.1 !

NVIDIA Fermi GF100 Architecture (2010)

CC 2.0, not 2.1 !

NVIDIA Fermi GF100 Architecture (2010)

CC 2.0, not 2.1 !

NVIDIA Ampere Architecture
2020

(compute capability 8.0/8.6/8.7)

GA100 (cc 8.0), ... (A100, ...)
GA10x (cc 8.6), ... (RTX 3070, RTX 3080, RTX 3090, ...)
GA10B (cc 8.7), ... (Jetson, DRIVE, ...)

(x=2,3,4,6,7)

NVIDIA Ampere GA100 Architecture (2020)

GA 100 (A100 Tensor Core GPU) Full GPU: 128 SMs (in 8 GPCs/64 TPCs)

Instruction Throughput

Instruction throughput numbers in CUDA C Programming Guide (Chapter 5.4)

Markus Hadwiger, KAUST 46

9.0

256

128

64

8.9

256

128

2

see NVIDIA CUDA C Programming Guides (different versions)
performance guidelines/multiprocessor level; compute capabilities

ALU Instruction Latencies and Instructs. / SM

Markus Hadwiger, KAUST 47

CC 2.0
(Fermi)

2.1
(Fermi)

3.x
(Kepler)

5.x
(Maxwell)

6.0
(Pascal)

6.1/6.2
(Pascal)

7.x
(Volta, Turing)

8.x
(Ampere)

8.9/9.0
(Ada/Hopper)

warp sched.
/ SM 2 2 4 4 2 4 4 4 4

ALU
dispatch

/ warp sched.
1 (over
2 clocks)

2 (over
2 clocks) 2 1 1 1 1 1 1

SM busy with
warps + inst L 2L 8L 4L 2L 4L 4L 4L 4L

inst. pipe
latency (L) 22 22 11 9 6 6 4 4 ?

SM busy with
warps 22 22

+ ILP
44

+ ILP 36 12 24 16 16 4*?

NVIDIA GA100 SM

Multiprocessor: SM (CC 8.0)
• 64 FP32 + 64 INT32 cores

• 32 FP64 cores

• 4 3rd gen tensor cores

• 1 2nd gen RT (ray tracing) core

4 partitions inside SM
• 16 FP32 + 16 INT32 cores

• 8 FP64 cores

• 8 LD/ST units; 4 SFUs each

• 1 3rd gen tensor core each

• Each has: warp scheduler,
dispatch unit, 16K register file

NVIDIA Ampere GA10x Architecture (2020)

GA 102 (RTX 3070, 3080, 3090) Full GPU: 84 SMs (in 7 GPCs/42 TPCs)

NVIDIA GA10x SM

Multiprocessor: SM (CC 8.6)
• 128 (64+64) FP32 + 64 INT32 cores

• 2 (!) FP64 cores

• 4 3rd gen tensor cores

• 1 2nd gen RT (ray tracing) core

4 partitions inside SM
• 32 (16+16) FP32 + 16 INT32 cores

• 4 LD/ST units; 4 SFUs each

• 1 3rd gen tensor core each

• Each has: warp scheduler,
dispatch unit, 16K register file

Thank you.

