
CS 380 - GPU and GPGPU Programming
Lecture 7: GPU Architecture, Pt. 4

Markus Hadwiger, KAUST

2

Reading Assignment #4 (until Sep 25)

Read (required):
• Read:
https://en.wikipedia.org/wiki/Instruction_pipelining
https://en.wikipedia.org/wiki/Classic_RISC_pipeline

• Get an overview of NVIDIA Ampere (GA102) white paper:
https://www.nvidia.com/content/PDF/

nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf

• Get an overview of NVIDIA Ampere (A100) Tensor Core GPU white paper:
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/

nvidia-ampere-architecture-whitepaper.pdf

• Get an overview of NVIDIA Hopper (H100) Tensor Core GPU white paper:
https://resources.nvidia.com/en-us-tensor-core

NVIDIA GTC

GTC (GPU Technology Conference)
• Sep 19 – 22, 2022

• Keynote: Sep 20 (18:00 – 19:30)
• Announcement of Ada/Lovelace architecture

• Future of AI chat with Turing Award winners: Sep 20 (20:00 – 20:50)

https://www.nvidia.com/gtc/

Markus Hadwiger, KAUST 3

4

Next Lectures

no lecture on Sep 21 !

Lecture 8: Sunday, Sep 25

5

Quiz #1: Sep 28

Organization
• First 30 min of lecture

• No material (book, notes, ...) allowed

Content of questions
• Lectures (both actual lectures and slides)

• Reading assignments

• Programming assignments (algorithms, methods)

• Solve short practical examples

GPU Architecture:
General Architecture
GPU Architecture:
General Architecture

Concepts: Latency vs. Throughput

Latency
• What is the time between start and finish of an operation/computation?

• How long does it take between starting to execute an instruction
until the execution is actually finished?

• Examples: 1 FP32 MUL instruction; 1 vertex computation, …

Throughput
• How many computations (operations/instructions) finish per time unit?

• How many instructions of a certain type (e.g., FP32 MUL)
finish per time unit (per clock cycle, per second)?

GPUs: High-throughput execution (at the expense of latency)
(but: hide latencies to avoid throughput going down)

Markus Hadwiger, KAUST 7

Concepts: Types of Parallelism

Instruction level parallelism (ILP)
• In single instruction stream: Can consecutive instructions/operations

be executed in parallel? (Because they don’t have a dependency)

• To exploit ILP: Execute independent instructions in parallel (e.g., superscalar processors)

• On GPUs: also important, but much less than TLP (compare, e.g., Kepler with current GPUs)

Thread level parallelism (TLP)
• Exploit that by definition operations in different threads are independent

(if no explicit communication/synchronization is used)

• To exploit TLP: Execute operations/instructions from multiple threads in parallel

• On GPUs: main type of parallelism

(more types:

• Bit-level parallelism (processor word size: 64 bits instead of 32, etc.)

• Data parallelism (SIMD, but also SIMT), task parallelism, …)

Markus Hadwiger, KAUST 8

Concepts: Latency Hiding

It’s not about latency of single operation or group of operations,
it’s about avoiding that the throughput goes below peak

Hide latency that does occur for one instruction (group) by
executing a different instruction (group) as soon as current one stalls:

→ Total throughput does not go down

In GPUs, hide latencies via:
• TLP: pull independent, not-stalling instruction from other thread group

• ILP: pull independent instruction from down the inst. stream in same thread group

• Depending on GPU: TLP often sufficient, but sometimes also need ILP

• However: If in one cycle TLP doesn’t work, ILP can jump in or vice versa

Markus Hadwiger, KAUST 9

Where this is going...

GPUs are here!
(usually)

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Idea #1: Slim down

ALU
(Execute)

Fetch/
Decode

Execution
Context

Idea #1:

Remove components that
help a single instruction
stream run fast

11

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Sixteen cores (sixteen fragments in parallel)

ALU ALU

ALUALU

ALU ALU

ALUALU

ALU ALU

ALUALU

ALU ALU

ALUALU

16 cores = 16 simultaneous instruction streams
12

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Instruction stream sharing

<diffuseShader>:

sample r0, v4, t0, s0

mul r3, v0, cb0[0]

madd r3, v1, cb0[1], r3

madd r3, v2, cb0[2], r3

clmp r3, r3, l(0.0), l(1.0)

mul o0, r0, r3

mul o1, r1, r3

mul o2, r2, r3

mov o3, l(1.0)

But… many fragments should
be able to share an instruction
stream!

13

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Idea #2: Add ALUs

Idea #2:

Amortize cost/complexity of
managing an instruction
stream across many ALUs

SIMD processing

(or SIMT, SPMD)

14

Fetch/
Decode

Ctx Ctx Ctx Ctx

Ctx Ctx Ctx Ctx

Shared Ctx Data

ALU 1 ALU 2 ALU 3 ALU 4

ALU 5 ALU 6 ALU 7 ALU 8

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

128 fragments in parallel

= 16 simultaneous instruction streams
16 cores = 128 ALUs

15

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Next Problem: Stalls!

Texture access latency = 100’s to 1000’s of cycles
(also: instruction pipelining hazards, …)

We’ve removed the fancy caches and logic that helps avoid stalls.

Stalls occur when a core cannot run the next
instruction because of a dependency on a previous

operation.

16

Interlude: Instruction Pipelining

Most common way to exploit instruction-level parallelism (ILP)

Problem: hazards (different solutions: bubbles, forwarding, …)

Markus Hadwiger, KAUST 17

wikipedia
https://en.wikipedia.org/wiki/Instruction_pipelining
https://en.wikipedia.org/wiki/Classic_RISC_pipeline

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

But we have LOTS of independent fragments.

Idea #3:
Interleave processing of many fragments on a single core

to avoid stalls caused by high latency operations.

18

Idea #3: Interleave execution of groups

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Idea #3: Store multiple group contexts

Fetch/
Decode

ALU ALU ALU ALU

ALU ALU ALU ALU

Pool of context storage

64 KB

19

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Hiding shader stalls
Time

(clocks)
Frag 1 … 8

Fetch/
Decode

Ctx Ctx Ctx Ctx

Ctx Ctx Ctx Ctx

Shared Ctx Data

ALU ALU ALU ALU

ALU ALU ALU ALU

20

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Hiding shader stalls
Time

(clocks)

Fetch/
Decode

ALU ALU ALU ALU

ALU ALU ALU ALU

1 2

3 4

1 2 3 4

Frag 1 … 8 Frag 9… 16 Frag 17 … 24 Frag 25 … 32

21

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Hiding shader stalls
Time

(clocks)

Stall

Runnable

1 2 3 4

Frag 1 … 8 Frag 9… 16 Frag 17 … 24 Frag 25 … 32

22

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Hiding shader stalls
Time

(clocks)

Stall

Runnable

1 2 3 4

Frag 1 … 8 Frag 9… 16 Frag 17 … 24 Frag 25 … 32

23

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Hiding shader stalls
Time

(clocks)

1 2 3 4

Stall

Stall

Stall

Stall

Runnable

Runnable

Runnable

Frag 1 … 8 Frag 9… 16 Frag 17 … 24 Frag 25 … 32

24

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Throughput!
Time

(clocks)

Stall

Runnable

2 3 4

Frag 1 … 8 Frag 9… 16 Frag 17 … 24 Frag 25 … 32

Done!

Stall

Runnable

Done!

Stall

Runnable

Done!

Stall

Runnable

Done!

1

Increase run time (latency) of one group
To maximum throughput of many groups

Start

Start

Start

25

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Storing contexts

Fetch/
Decode

ALU ALU ALU ALU

ALU ALU ALU ALU

Pool of context storage

64 KB

26

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Twenty small contexts (few regs/thread)

Fetch/
Decode

ALU ALU ALU ALU

ALU ALU ALU ALU

1 2 3 4 5

6 7 8 9 10

11 1512 13 14

16 2017 18 19

(maximal latency hiding ability)

27

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Twelve medium contexts (more regs/th.)

Fetch/
Decode

ALU ALU ALU ALU

ALU ALU ALU ALU

1 2 3 4

5 6 7 8

9 10 11 12

28

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Four large contexts (many regs/thread)

Fetch/
Decode

ALU ALU ALU ALU

ALU ALU ALU ALU

43

1 2

(low latency hiding ability)

29

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Complete GPU

16 cores

8 mul-add [mad] ALUs per core
(8*16 = 128 total)

16 simultaneous
instruction streams

64 (4*16) concurrent (but
interleaved) instruction streams

512 (8*4*16) concurrent
fragments (resident threads)

= 256 GFLOPs (@ 1GHz)
(128 * 2 [mad] * 1G)

30

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

Complete GPU

16 cores

8 mul-add [mad] ALUs per core
(8*16 = 128 total)

16 simultaneous
instruction streams

64 (4*16) concurrent (but
interleaved) instruction streams

512 (8*4*16) concurrent
fragments (resident threads)

= 256 GFLOPs (@ 1GHz)
(128 * 2 [mad] * 1G)

31

SIGGRAPH 2009: Beyond Programmable Shading: http://s09.idav.ucdavis.edu/

“Enthusiast” GPU (Some time ago :)

32 cores, 16 ALUs per core (512 total) = 1 TFLOP (@ 1 GHz)
32

GPUs are here!
(usually)

Where We‘ve Arrived...

GPU Architecture:
Real Architectures
GPU Architecture:
Real Architectures

NVIDIA Architectures (since first CUDA GPU)

Tesla: 2007-2009
• G80, G9x: 2007 (Geforce 8800, ...)

GT200: 2008/2009 (GTX 280, ...)

Fermi: 2010
• GF100, ... (GTX 480, ...)

GF110, ... (GTX 580, ...)

Kepler: 2012
• GK104, ... (GTX 680, ...)

GK110, ... (GTX 780, GTX Titan, ...)

Maxwell: 2015
• GM107, ... (GTX 750Ti, ...)

GM204, ... (GTX 980, Titan X, ...)

Markus Hadwiger, KAUST 35

Pascal: 2016
• GP100 (Tesla P100, ...)

• GP10x: x=2,4,6,7,8, ...
(GTX 1080, Titan X Pascal...)

Volta: 2017/2018
• GV100, ...

(Tesla V100, Titan V, ...)

Turing: 2018/2019
• TU102, TU104, TU106, TU116, ...

(Titan RTX, RTX 2070, 2080, 2080Ti, ...)

Ampere: 2020
• GA100, GA102, GA104, ...

(A100, RTX 3070, 3080, 3090, ...)

Hopper, Ada/Lovelace: 2022/23
• GH100,...

(H100,...)

Instruction Throughput

Instruction throughput numbers in CUDA C Programming Guide (Chapter 5.4)

Markus Hadwiger, KAUST 36

9.0

256

128

64

9.?

?

?

?

Concepts: Latency Hiding

It’s not about latency of single operation or group of operations,
it’s about avoiding that the throughput goes below peak

Hide latency that does occur for one instruction (group) by
executing a different instruction (group) as soon as current one stalls:

→ Total throughput does not go down

In GPUs, hide latencies via:
• TLP: pull independent, not-stalling instruction from other thread group

• ILP: pull independent instruction from down the inst. stream in same thread group

• Depending on GPU: TLP often sufficient, but sometimes also need ILP

• However: If in one cycle TLP doesn’t work, ILP can jump in or vice versa

Markus Hadwiger, KAUST 37

Concepts: SM Occupancy in CUDA

We need to hide latencies from
• Instruction pipelining hazards

• Memory access latency

First type of latency: Definitely need to hide! (it is always there)

Second type of latency: only need to hide if it does occur (of course not unusual)

Occupancy: How close are we to maximum latency hiding ability?
(how many threads are resident vs. how many could be)

Markus Hadwiger, KAUST 38

see NVIDIA CUDA C Programming Guides (different versions)
performance guidelines/multiprocessor level; compute capabilities

ALU Instruction Latencies and Instructs. / SM

Markus Hadwiger, KAUST 39

CC 2.0
(Fermi)

2.1
(Fermi)

3.x
(Kepler)

5.x
(Maxwell)

6.0
(Pascal)

6.1/6.2
(Pascal)

7.x
(Volta, Turing)

8.x
(Ampere)

9.x
(Hopper/Ada)

warp sched.
/ SM 2 2 4 4 2 4 4 4 4

ALU
dispatch

/ warp sched.
1 (over
2 clocks)

2 (over
2 clocks) 2 1 1 1 1 1 1

SM busy with
warps + inst L 2L 8L 4L 2L 4L 4L 4L 4L

inst. pipe
latency (L) 22 22 11 9 6 6 4 4 ?

SM busy with
warps 22 22

+ ILP
44

+ ILP 36 12 24 16 16 4*?

see NVIDIA CUDA C Programming Guides (different versions)
performance guidelines/multiprocessor level; compute capabilities

ALU Instruction Latencies and Instructs. / SM

Markus Hadwiger, KAUST 40

CC 2.0
(Fermi)

2.1
(Fermi)

3.x
(Kepler)

5.x
(Maxwell)

6.0
(Pascal)

6.1/6.2
(Pascal)

7.x
(Volta, Turing)

8.x
(Ampere)

9.x
(Hopper/Ada)

warp sched.
/ SM 2 2 4 4 2 4 4 4 4

ALU
dispatch

/ warp sched.
1 (over
2 clocks)

2 (over
2 clocks) 2 1 1 1 1 1 1

SM busy with
warps + inst L 2L 8L 4L 2L 4L 4L 4L 4L

inst. pipe
latency (L) 22 22 11 9 6 6 4 4 ?

SM busy with
warps 22 22

+ ILP
44

+ ILP 36 12 24 16 16 4*?

IF no other stalls occur!
(i.e., except inst. pipe hazards)

Instruction Pipelining

Most basic way to exploit instruction-level parallelism (ILP)

Problem: hazards (different solutions: bubbles, …)

Markus Hadwiger, KAUST 41

wikipedia
https://en.wikipedia.org/wiki/Instruction_pipelining
https://en.wikipedia.org/wiki/Classic_RISC_pipeline

Thank you.

