
CS 380 - GPU and GPGPU Programming
Lecture 3: Introduction, Pt. 3

Markus Hadwiger, KAUST



2

Reading Assignment #2 (until Sep 11)

Read (required):
• Orange book (GLSL), Chapter 4

(The OpenGL Programmable Pipeline)

• Nice brief overviews of GLSL and legacy assembly shading language
https://en.wikipedia.org/wiki/OpenGL_Shading_Language

https://en.wikipedia.org/wiki/ARB_assembly_language

• GPU Gems 2 book, Chapter 30
(The GeForce 6 Series GPU Architecture)

http://download.nvidia.com/developer/GPU_Gems_2/GPU_Gems2_ch30.pdf



3

Programming Assignments: Schedule (tentative)

Assignment #1:
• Querying the GPU (OpenGL/GLSL and CUDA) due Sep 4

Assignment #2:
• Phong shading and procedural texturing (GLSL) due Sep 18

Assignment #3:
• Deferred Shading and Image Processing with GLSL due Oct 2

Assignment #4:
• Image Processing with CUDA

• Convolutional layers with CUDA due Oct 23

Assignment #5:
• Linear Algebra (CUDA) due Nov 13



4

What is in a GPU?

Lots of floating point processing power
• Processors, different names:

ALUs,
stream processors (SP),
CUDA cores,
FP32 cores, FP64 cores, ...

• Was vector processing, now scalar cores!

Still lots of fixed graphics functionality
• Attribute interpolation (per-vertex → per-fragment)

• Rasterization (triangles → fragments/pixels)

• Texture sampling and filtering

• Depth buffering (per-pixel visibility)

• Blending/compositing (semi-transparent geometry, ...)

• Frame buffers (and implicit atomic operations in ROPs)



NVIDIA Volta SM

Multiprocessor: SM
• 64 FP32 + INT32 cores

• 32 FP64 cores

• 8 tensor cores
(FP16/FP32 mixed-precision)

4 partitions inside SM
• 16 FP32 + INT32 cores each

• 8 FP64 cores each

• 8 LD/ST units each

• 2 tensor cores each

• Each has: warp scheduler,
dispatch unit, register file



Example for “Special Cores”: Tensor Cores

Mixed-precision, fast matrix-matrix multiply and accumulate

From this, build larger sizes, higher dimensionalities, ...

Newer versions have additional precisions/formats, …

Markus Hadwiger, KAUST 6



Markus Hadwiger, KAUST 7Courtesy Kayvon Fatahalian, CMU



Markus Hadwiger, KAUST 8Courtesy Kayvon Fatahalian, CMU



What can the hardware do?

Rasterization
Decomposition into fragments
Interpolation of color
Texturing

Interpolation/filtering 
Fragment shading

Fragment operations
(or: raster operations)

Depth test (Z-test)
Alpha blending (compositing)
...



Pixels

Graphics Pipeline

Vertices Primitives Fragments

Geometry
Processing

Fragment
Operations

Scene Description Raster Image

Rasterization



Geometry Processing

Per-Vertex
Lighting

Clipping,
Perspect.Divide

Primitive
AssemblyTransformation

Multiplication with
Modelview and

Projection Matrix

Per-Vertex
Local Illumination

(Blinn/Phong)

Geometric
Primitives

(Points, Lines
Triangles)

Primitives

Clip Space
To

Screen Space

Vertices

Geometry
Processing Rasterization Fragment

Operations



Geometry
Processing Rasterization Fragment

Operations
Fragment

Operations

Texture
Fetch

Texture
Application

Polygon 
Rasterization

PrimitiveVertices

Decomposition
of primitives

into fragments

Interpolation of
texture coordinates

Filtering of
texture color

Primitives Fragments

Rasterization

Combination of
primary color with

texture color



Combination of
primary color with

texture color

Fragment (Raster) Operations

Stencil
Test

Alpha
Blending

Depth
Test

Alpha
Test

Discard all
fragments within

a certain 
alpha range

Discard a
fragment if
the stencil 
buffer is set

Discard all
occluded
fragments

Geometry
Processing Rasterization Fragment

Operations



Pixels

Graphics Pipeline

Vertices Primitives Fragments

Geometry
Processing

Fragment
Operations

Scene Description Raster Image

Rasterization
Vertex
Shader

Fragment
Shader

Programmable Pipeline



Pixels

Graphics Pipeline

Vertices Primitives Fragments

Geometry
Processing

Fragment
Operations

Scene Description Raster Image

Rasterization
Vertex
Shader

Fragment
Shader

Programmable Pipeline

ROPs = raster operations
(render output units)



Markus Hadwiger, KAUST 16Courtesy Kayvon Fatahalian, CMU



17

Direct3D 10 Pipeline (~OpenGL 3.2)

New geometry shader stage:
• Vertex -> geometry -> pixel shaders

• Stream output after geometry shader

Courtesy David Blythe, Microsoft



18

Direct3D 11 Pipeline (~OpenGL 4.x)

New tessellation stages
• Hull shader

(OpenGL: tessellation control)

• Tessellator
(OpenGL: tessellation primitive generator)

• Domain shader
(OpenGL: tessellation evaluation)

Outside this pipeline
• Compute shader

• (Ray tracing cores, D3D 12)

• (Mesh shader pipeline, D3D 12.2)



19

Direct3D 12 Traditional Geometry Pipeline

• First version 2015 (Windows 10)

• New from March 2018: DXR (DX12 ray tracing)

• DX 12 Ultimate (March 2020; PC and Xbox Series X)



20

Direct3D 12 Mesh Shader Pipeline

Reinventing the Geometry Pipeline

• Mesh and amplification shaders: new high-performance geometry pipeline based on compute shaders

(DX 12 Ultimate / feature level 12.2)

• Compute shader-style replacement of IA/VS/HS/Tess/DS/GS

See talk by Shawn Hargreaves: https://www.youtube.com/watch?v=CFXKTXtil34



Vulkan (1.3)



Vulkan (1.3)

• Mesh and task shaders: new high-performance geometry pipeline based on compute shaders

(Mesh and task shaders also available as OpenGL 4.5/4.6 extension: GL_NV_mesh_shader)

vulkan.org
github.com/KhronosGroup/Vulkan‐Guide
https://www.khronos.org/blog/mesh‐shading‐for‐vulkan



Motivational Examples

Doom (2016)
http://www.adriancourreges.com/blog/2016/09/09/

doom‐2016‐graphics‐study/

Doom Eternal
https://simoncoenen.com/blog/programming/graphics/

DoomEternalStudy.html

Unreal Engine 5
https://www.unrealengine.com/en‐US/unreal‐engine‐5 
https://www.unrealengine.com/en‐US/blog/

a‐first‐look‐at‐unreal‐engine‐5

Markus Hadwiger, KAUST 23



Thank you.


