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Reading Assignment #2 (until Sep 11)

Read (required):
• Orange book (GLSL), Chapter 4

(The OpenGL Programmable Pipeline)

• Nice brief overviews of GLSL and legacy assembly shading language
https://en.wikipedia.org/wiki/OpenGL_Shading_Language

https://en.wikipedia.org/wiki/ARB_assembly_language

• GPU Gems 2 book, Chapter 30
(The GeForce 6 Series GPU Architecture)

http://download.nvidia.com/developer/GPU_Gems_2/GPU_Gems2_ch30.pdf
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Programming Assignments: Schedule (tentative)

Assignment #1:
• Querying the GPU (OpenGL/GLSL and CUDA) due Sep 4

Assignment #2:
• Phong shading and procedural texturing (GLSL) due Sep 18

Assignment #3:
• Deferred Shading and Image Processing with GLSL due Oct 2

Assignment #4:
• Image Processing with CUDA

• Convolutional layers with CUDA due Oct 23

Assignment #5:
• Linear Algebra (CUDA) due Nov 13
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What is in a GPU?

Lots of floating point processing power
• Processors, different names:

ALUs,
stream processors (SP),
CUDA cores,
FP32 cores, FP64 cores, ...

• Was vector processing, now scalar cores!

Still lots of fixed graphics functionality
• Attribute interpolation (per-vertex → per-fragment)

• Rasterization (triangles → fragments/pixels)

• Texture sampling and filtering

• Depth buffering (per-pixel visibility)

• Blending/compositing (semi-transparent geometry, ...)

• Frame buffers (and implicit atomic operations in ROPs)



NVIDIA Volta SM

Multiprocessor: SM
• 64 FP32 + INT32 cores

• 32 FP64 cores

• 8 tensor cores
(FP16/FP32 mixed-precision)

4 partitions inside SM
• 16 FP32 + INT32 cores each

• 8 FP64 cores each

• 8 LD/ST units each

• 2 tensor cores each

• Each has: warp scheduler,
dispatch unit, register file



Example for “Special Cores”: Tensor Cores

Mixed-precision, fast matrix-matrix multiply and accumulate

From this, build larger sizes, higher dimensionalities, ...

Newer versions have additional precisions/formats, …
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What can the hardware do?

Rasterization
Decomposition into fragments
Interpolation of color
Texturing

Interpolation/filtering 
Fragment shading

Fragment operations
(or: raster operations)

Depth test (Z-test)
Alpha blending (compositing)
...



Pixels

Graphics Pipeline

Vertices Primitives Fragments

Geometry
Processing

Fragment
Operations

Scene Description Raster Image

Rasterization



Geometry Processing
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Geometry
Processing Rasterization Fragment

Operations
Fragment
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Combination of
primary color with

texture color

Fragment (Raster) Operations
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Pixels
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ROPs = raster operations
(render output units)
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Direct3D 10 Pipeline (~OpenGL 3.2)

New geometry shader stage:
• Vertex -> geometry -> pixel shaders

• Stream output after geometry shader

Courtesy David Blythe, Microsoft
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Direct3D 11 Pipeline (~OpenGL 4.x)

New tessellation stages
• Hull shader

(OpenGL: tessellation control)

• Tessellator
(OpenGL: tessellation primitive generator)

• Domain shader
(OpenGL: tessellation evaluation)

Outside this pipeline
• Compute shader

• (Ray tracing cores, D3D 12)

• (Mesh shader pipeline, D3D 12.2)
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Direct3D 12 Traditional Geometry Pipeline

• First version 2015 (Windows 10)

• New from March 2018: DXR (DX12 ray tracing)

• DX 12 Ultimate (March 2020; PC and Xbox Series X)
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Direct3D 12 Mesh Shader Pipeline

Reinventing the Geometry Pipeline

• Mesh and amplification shaders: new high-performance geometry pipeline based on compute shaders

(DX 12 Ultimate / feature level 12.2)

• Compute shader-style replacement of IA/VS/HS/Tess/DS/GS

See talk by Shawn Hargreaves: https://www.youtube.com/watch?v=CFXKTXtil34



Vulkan (1.3)



Vulkan (1.3)

• Mesh and task shaders: new high-performance geometry pipeline based on compute shaders

(Mesh and task shaders also available as OpenGL 4.5/4.6 extension: GL_NV_mesh_shader)

vulkan.org
github.com/KhronosGroup/Vulkan‐Guide
https://www.khronos.org/blog/mesh‐shading‐for‐vulkan



Motivational Examples

Doom (2016)
http://www.adriancourreges.com/blog/2016/09/09/

doom‐2016‐graphics‐study/

Doom Eternal
https://simoncoenen.com/blog/programming/graphics/

DoomEternalStudy.html

Unreal Engine 5
https://www.unrealengine.com/en‐US/unreal‐engine‐5 
https://www.unrealengine.com/en‐US/blog/

a‐first‐look‐at‐unreal‐engine‐5
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Thank you.


