

KAUST

CS 380 - GPU and GPGPU Programming Lecture 1: Introduction

Markus Hadwiger, KAUST

Lecture Overview

Goals

- Learn GPU architecture and programming; both for graphics and for compute (GPGPU)
- Shading languages (GLSL, HLSL, MSL, Cg), compute APIs (CUDA, OpenCL, DirectCompute)

Time and location

• Sunday + Wednesday, 14:30 - 16:00, Room 3128, Bldg. 9

Webpage:

https://vccvisualization.org/CS380_GPU_and_GPGPU_Programming/

Contact

- Markus Hadwiger: markus.hadwiger@kaust.edu.sa
- Peter Rautek (main contact assignments): peter.rautek@kaust.edu.sa
- Amani Ageeli (programming questions): amani.a

amani.ageeli@kaust.edu.sa

Prerequisites

• C/C++ programming (!), basic computer graphics, basic linear algebra

Lecture Structure

Lectures

- Part 1: GPU Basics and Architecture (both: graphics, compute)
- Part 2: GPUs for Graphics
- Part 3: GPUs for Compute

Some lectures might be on research papers (both seminal and current)

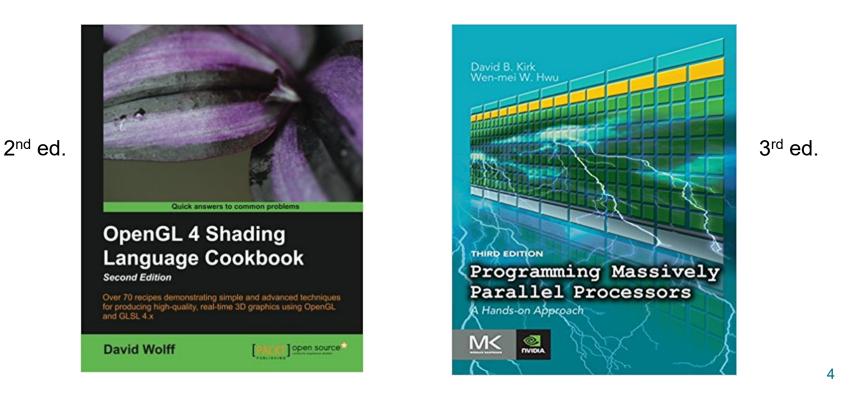
Assignments

- 5 programming assignments
- Weekly reading assignments (required; also some optional)

Quizzes

- 4 quizzes, throughout the semester, 30 min each; announced at least a week in advance
- From lectures and (required) reading assignments

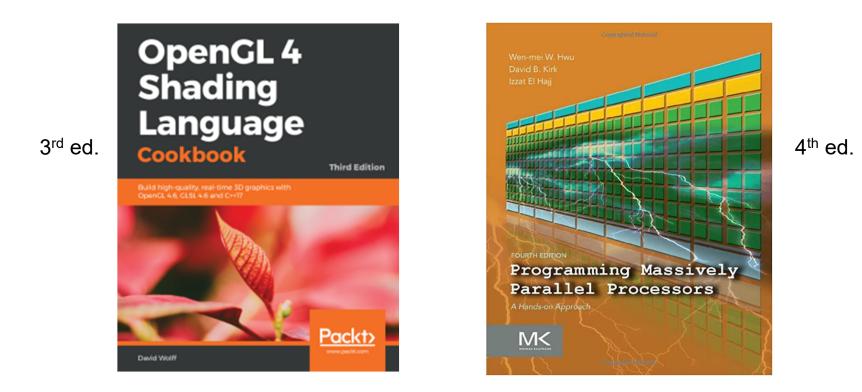
Semester project + final presentations, but no mid-term/final exam!


Grading: 40% programming assignments; 30% semester project; 30% quizzes

Resources (1)

Textbooks

- GPUs for Graphics: OpenGL 4 Shading Language Cookbook, 2nd or 3rd ed.
- GPU Computing / GPGPU: Programming Massively Parallel Processors, 4th ed.



Resources (1)

Textbooks

- GPUs for Graphics: OpenGL 4 Shading Language Cookbook, 2nd or 3rd ed.
- GPU Computing / GPGPU: Programming Massively Parallel Processors, 4th ed.

Resources (2)

https://vccvisualization.org/CS380_GPU_and_GPGPU_Programming/

• OpenGL (4.6): www.opengl.org

www.khronos.org/files/opengl46-quick-reference-card.pdf

- CUDA (11.7): developer.nvidia.com/cuda-toolkit/
- Vulkan (1.3): www.vulkan.org
- OpenCL (3.0): www.khronos.org/opencl/

Very nice resources for examples:

- GPU Gems books 1-3 (available online)
- GPU Computing Gems, Vol. 1 + 2 (Emerald/Jade edition)
- Ray Tracing Gems (2019) and Ray Tracing Gems II (2021)

Resources (3)

Nice recent introduction to OpenGL

Webpage:

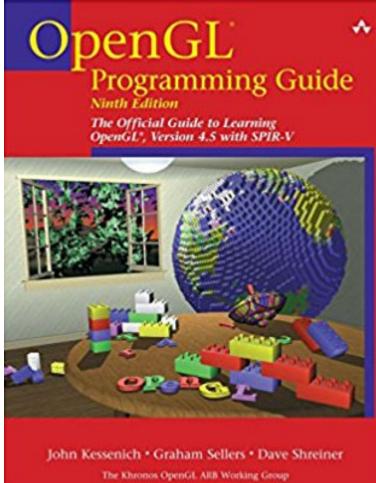
https://learnopengl.com/

Free book as pdf:

https://learnopengl.com/book/book_pdf.pdf

Learn OpenGL - Graphics Programming Learn modern OpenGL graphics programming in a step-by-step fashion. Joey de Vries

Resources (4)


OpenGL Programming Guide (red book)

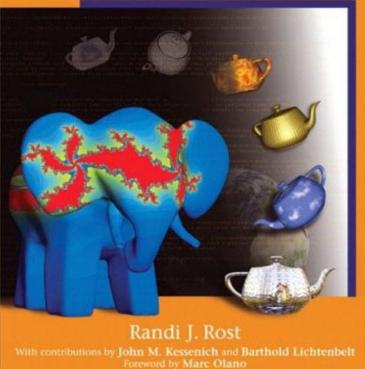
http://www.opengl-redbook.com/

Computer graphics and OpenGL

Current edition: 9th OpenGL 4.5 (with SPIR-V) contains extended chapters on GLSL

Available in the KAUST library also electronically

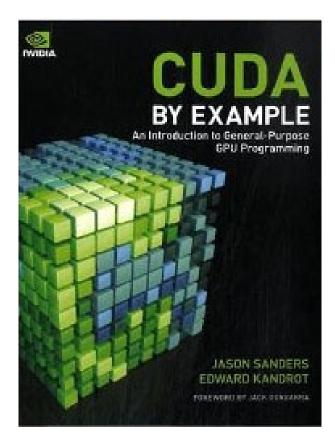
Resources (5)


OpenGL Shading Language (orange book)

Current edition: 3rd OpenGL 3.1, GLSL 1.4 no geometry shaders

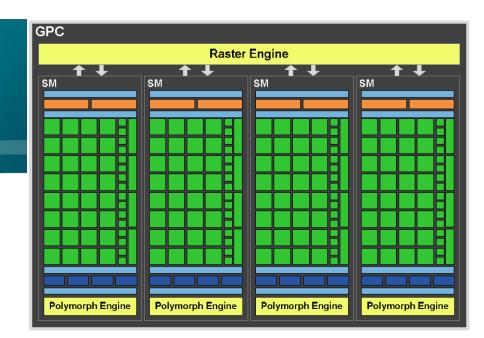
(outdated in several aspects, but the basics are still very nice!)

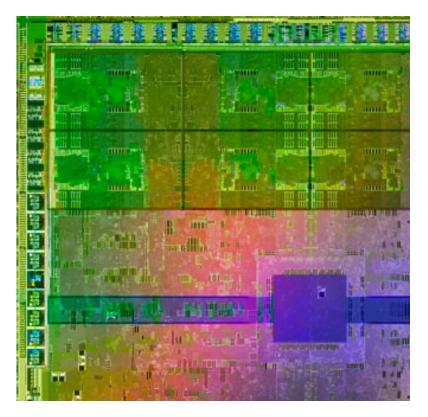
Available in the KAUST library also electronically



Resources (6)

CUDA by Example: An Introduction to General-Purpose GPU Programming, Jason Sanders, Edward Kandrot


See reference section of KAUST library



Syllabus (1)

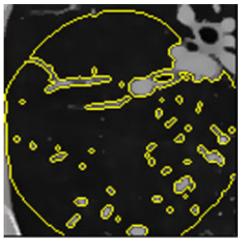
GPU Basics and Architecture (~August, September)

- Introduction
- GPU architecture
- How shader cores work
- GPU shading and GPU compute APIs
 - General concepts and overview
 - Learn syntax details on your own !
 - GLSL book
 - CUDA book
 - Online resources, ...

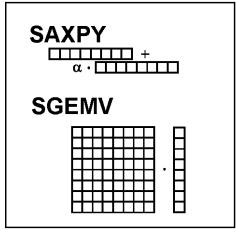
Syllabus (2)

GPUs for Graphics (~October)

- GPU texturing, filtering
- GPU (texture) memory management
- GPU frame buffers
- Virtual texturing



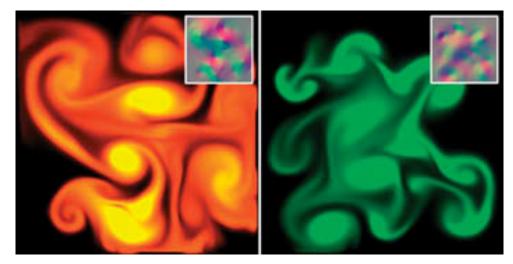
Syllabus (3)


GPU Computing (~November, December)

- GPGPU, important parallel programming concepts
- CUDA memory access
- Reduction, scan
- Linear algebra on GPUs
- Deep learning on GPUs
- Combining graphics and compute
 - Display the results of computations
 - Interactive systems (fluid flow, ...)

Semester project presentations

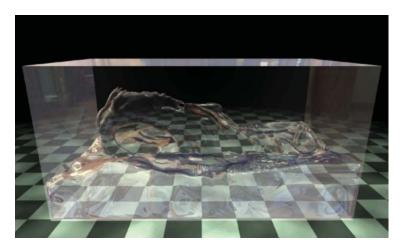
segmentation



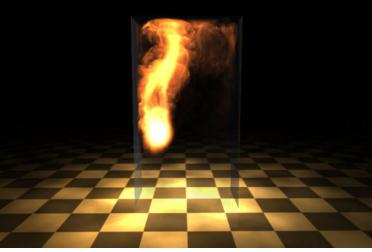
linear algebra

Example: Fluid Simulation and Rendering

- Compute advection of fluid
 - (Incompressible) Navier-Stokes solvers
 - Lattice Boltzmann Method (LBM)
- Discretized domain; stored in 2D/3D textures
 - Velocity, pressure
 - Dye, smoke density, vorticity, …
- Updates in multi-passes
- Render current frame



Courtesy Mark Harris


Example: Volumetric Special Effects

- NVIDIA Demos
 - Smoke, water
 - Collision detection with voxelized solid (Gargoyle)
- Ray-casting
 - Smoke: direct volume rendering
 - Water: level set / isosurface

Courtesy Keenan Crane 15

Example: Ray Tracing

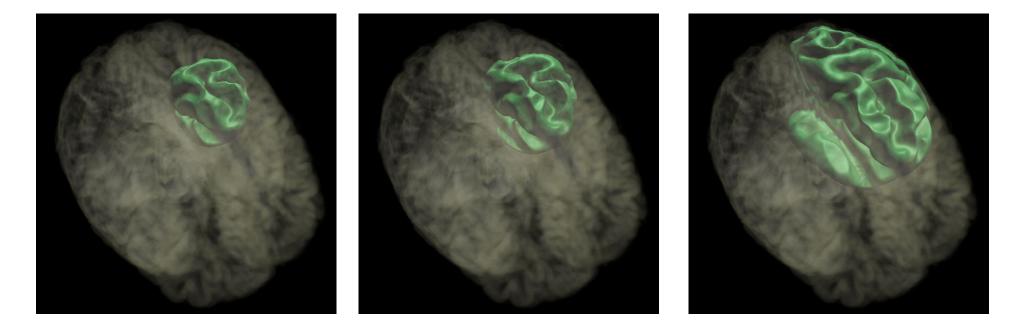
Ray tracing in hardware (ray tracing cores: ray/triangle isect, BVH)

- Microsoft DXR (DX12 Ultimate API), Vulkan, NVIDIA OptiX
- NVIDIA Turing: "World's First Ray Tracing GPU" Quadro RTX, Geforce RTX
- AMD RDNA 2 (also in PS5, Xbox Series X), upcoming Intel Arc (Alchemist, 2022)



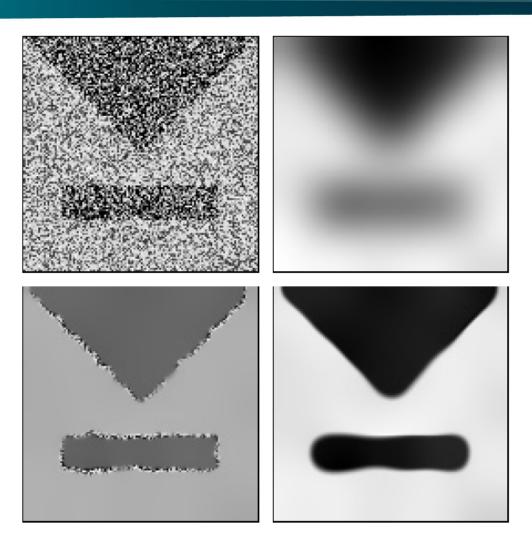
Epic Games Unreal Engine 4 with MS DXR

Example: Particle Simulation and Rendering


NVIDIA Particle Demo

Example: Level-Set Computations

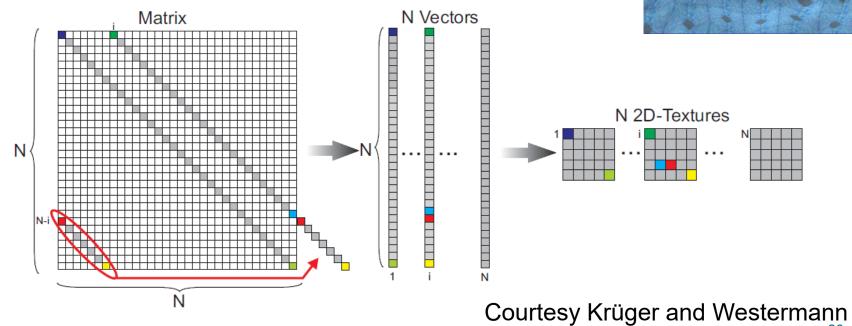
- Implicit surface represented by distance field
- The level-set PDE is solved to update the distance field
- Basic framework with a variety of applications

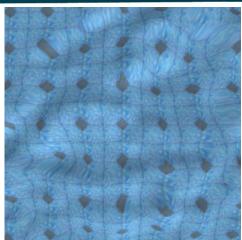


Example: Diffusion Filtering

De-noising

- Original
- Linear isotropic
- Non-linear isotropic
- Non-linear anisotropic


Example: Linear Algebra Operators



20

Vector and matrix representation and operators

- Early approach based on graphics primitives
- Now CUDA makes this much easier (+ lots of libraries)
- Linear systems solvers

Example: Machine Learning / Deep Learning

Perfect fit for massively parallel computation

- NVIDIA Volta Architecture: Tensor Cores (mixed-prec. 4x4 matrix mult plus add)
- NVIDIA Turing and Ampere architectures: Improved tensor cores, ...

Frameworks

. . .

 TensorFlow, PyTorch, Caffe,

```
WHY ARE GPUS GOOD FOR DEEP LEARNING?
                      Neural
                                                                                                     Higher layer
                                           GPUs
                     Networks
                                                                                                     (Model V3?)
   Inherently
                         \checkmark
                                             \checkmark
    Parallel
     Matrix
                                                                                                     Higher layer
                         \checkmark
   Operations
                                                                                                     (Model V2?)
                         1
    FLOPS
                                             \checkmark
                         \checkmark
                                                                                                      Model V1
   Ban dwidth
                                                                             \mathbf{a}_2
                                                                 \mathbf{a}_1
GPUs deliver --

    same or better prediction accuracy

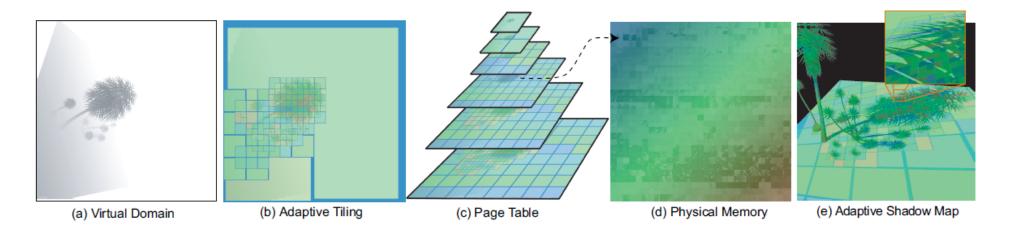
                                                                                                     Input image

    faster results

    smaller footprint

    lower power

                                                                  [Lee, Ranganath & Ng, 2007]


    lower cost
```

Example: GPU Data Structures

Glift: Generic, Efficient, Random-Access GPU Data Structures

- "STL" for GPUs
- Virtual memory management

Courtesy Lefohn et al.

Programming Assignments: Basics

5 assignments

• Based on C/C++, OpenGL, and CUDA

Organization

- 1. Explanation in readme, and during lecture (and Q&A sessions if required)
- 2. Get framework online (*bitbucket+git*)
- 3. Submit solution and report online (*bitbucket+git*) by submission deadline
- 4. Personal presentation after submission

Programming Assignments: People

Teaching Assistants:

• Peter Rautek (peter.rautek@kaust.edu.sa) – programming assignments; assignment presentations

• Amani Ageeli (amani.ageeli@kaust.edu.sa) – programming questions; general help

Need Help?

- 1. Google, Stackoverflow, ...
- Ask your fellow students!
 Discussions and explanations are encouraged! (but: copying code is not allowed)
- 3. Contact us: Peter <u>peter.rautek@kaust.edu.sa</u> Amani <u>amani.ageeli@kaust.edu.sa</u>

Playing with the GPU

GPU programming comes in different flavors:

- Graphics: OpenGL, Vulkan, DirectX
- Compute: CUDA, OpenCL, DirectX

In this course we will:

- Learn to use CUDA and OpenGL (you can use other APIs for semester project!)
- Wrap our heads around parallelism
- Learn the differences and commonalities of graphics and compute programming

Format:

- 5 Pre-specified programming assignments
- 1 Capstone (semester) project that you can define yourself

Programming Assignments: Where to Start

- Source code is hosted on bitbucket.org
- Register with your kaust.edu.sa email address (will give you unlimited plan – nice!)
- Go to the repo <u>https://bitbucket.org/rautek/cs380-2022/src/main</u>/ (or simply search on bitbucket for cs380) and fork it
- Get a git client http://git-scm.com/downloads and clone your own repo
- Follow the readme text-file
- Do your changes in the source code for assignment 1, commit, and push (to your own repo)
- Contact Peter Rautek if you have problems or questions (peter.rautek@kaust.edu.sa)

OpenGL Tutorial

One extra session (attendance optional, but highly recommended!)

To make it easier to get started with OpenGL

Amani will do the tutorial with you

If you already have some questions / problems when you come to the tutorial, that's even better!

Doodle link to find a date+time that is suitable for everyone:

https://doodle.com/meeting/participate/id/dRoO1kVe

Programming Assignment 1

Set up your development environment

- Visual Studio 2015, 2017, 2019, 2022 (<u>https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=Community&rel=16</u>)
- CUDA 11.7 (https://developer.nvidia.com/cuda-downloads)
- git (https://git-scm.com/downloads)
- Fork the CS 380 repository (https://bitbucket.org/rautek/cs380-2022/src/main/)
- Follow the readme and start coding

Query your graphics card for its capabilities (CUDA and OpenGL)

deviceQuery.exe Starting		
CUIM Device Query Chantine API) version (CUIMAR)	static linking)	
Detected 1 CHIN Capable device(s)		
	<pre>city(Life,Life). Have Journ inter(Life,Life). Life(Life). Lif</pre>	
MeviceQuary, CEDM Briver - CUDMRT, CUDM Driver U	ersion = 6.0, CUDA Buntime Version = 6.0, Numbers = 1, Device8 = GeForce GIX -	110
		•

Programming Assignment 1 – Setup

- Programming
 - Query hardware capabilities (OpenGL and CUDA)
 - Instructions in readme.txt file
- Submission (via bitbucket)
 - Program
 - Short report (1-2 pages, pdf), including short explanation of program, problems and solutions, how to run it, screenshots, etc.
- Personal assessment
 - (Zoom) meeting with Peter
 - Max. 15 minutes, present program + source code

OpenGL Check	Driver Supports and Inf	80_2012_Assignment_1_Solution\CS380_2012_Assignment_1\bin\Rele		
	GL Vendor GL Renderer GL Version	: NUIDIA Corporation : Quadro 6000/PCI/SSE2 : 4.1.0		
	GLEW Version	: 1.7.0		
	3D Texture 1D Texture Array 2D Texture Array 2D Texture Size 3D Texture Size Framebuffer Objects	: Supported : Supported : Supported : 16384 : 2048 : Supported		
	Max Draw Buffers Max Tex Units Uert Max Tex Units Geom Max Tex Units Frag Max Uertex Attributes Max Uarying Floats	: 8 : 32 : 32 : 32 : 32 : 16 : 60		
	GLSL GLSL Version GLSL Geom Shader (ARB) GLSL Geom Shader (EXT)	: Supported : 4.10 NUIDIA via Cg compiler : Supported : Supported		
CudaCheck	There are 2 devices sur	oporting CUDA		
Device 1	Quadro 6000			
	CUDA Capability CUDA MP Count CUDA Cores	: 2.0 : 14 : 448		
	Global Memory Shared Memory Registers / Block	= 4.000 GB = 48.00 KB = 32768		
	Clock rate GPU Clock rate Memory	: 1.147 GHz : 1.494 GHz		
	Warp Size	: 32		
	CUDA Threads / Block CUDA Threads / Block CUDA Blocks / Grid	: 1024 : 1024 × 1024 × 64 : 65535 × 65535 × 65535		
	2D Texture Size 3D Texture Size	= 65536 × 65535 = 2048 × 2048 × 2048		
	CUDA Timeout	: true		
Device 2	Quadro 6000			
	CUDA Capability CUDA MP Count CUDA Cores	= 2.0 = 14 = 448		
	Global Memory Shared Memory Registers / Block	= 4.000 GB = 48.00 KB = 32768		
	Clock rate GPU Clock rate Memory	: 1.147 GHz : 1.494 GHz		
	Warp Size	: 32		
	CUDA Threads / Block CUDA Threads / Block CUDA Blocks / Grid	: 1024 : 1024 × 1024 × 64 : 65535 × 65535 × 65535		
	2D Texture Size 3D Texture Size	= 65536 × 65535 = 2048 × 2048 × 2048		
	CUDA Timeout	: true		
GudaCheck	Driver Supports and Information			
	CUDA Driver Version CUDA Driver Version	: 4.0 : 4.0		

Programming Assignments: Grading

- Submission complete, code working for all the required features
- Documentation complete (report, but also source code comments!)
- Personal presentation
- Optional features, coding style, clean solution
- Every day of late submission reduces points by 10%
- No direct copies from the Internet! You have to understand what you program: your explanations during the presentations will be part of the grade!

Programming Assignments: Schedule (tentative)

Assignment #1:

 Querying the GPU (OpenGL/GLSL and CUDA) 	due Sep 4	
Assignment #2:		
 Phong shading and procedural texturing (GLSL) 	due Sep 18	
Assignment #3:		
 Deferred Shading and Image Processing with GLSL 	due Oct 2	
Assignment #4:		
 Image Processing with CUDA 		
 Convolutional layers with CUDA 	due Oct 23	
Assignment #5:		
• Linear Algebra (CUDA)	due Nov 13	

Semester / Capstone Project

- Choosing your own topic encouraged! (we will also suggest some topics)
 - Pick something that you think is really cool!
 - Can be completely graphics or completely computation, or both combined
 - Can be built on CS 380 frameworks, NVIDIA OpenGL SDK, CUDA SDK, ...
- Write short (1-2 pages) project proposal by end of Sep (announced later)
 - Talk to us before you start writing! (content and complexity should fit the lecture)
- Submit semester project with report (deadline: Dec 8)
- Present semester project, event in final exams week: Dec 12 (tentative!)

Reading Assignment #1 (until Sep 4)

Read (required):

- Orange book, chapter 1 (Review of OpenGL Basics)
- Orange book, chapter 2 (*Basics*)

Thank you.