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Reading Assignment #15++

Further suggested reading:

• Raihan et al., arXiv, Feb 2019, Modeling Deep Learning Accelerator Enabled GPUs
– https://arxiv.org/abs/1811.08309

– See also GPGPU-SIM: http://www.gpgpu-sim.org/

• CUTLASS 2.8 template library (last update Nov 2021)
– https://developer.nvidia.com/blog/cutlass-linear-algebra-cuda/

– https://github.com/NVIDIA/cutlass

• Register Cache: Caching for Warp-Centric CUDA Programs
– https://developer.nvidia.com/blog/register-cache-warp-cuda/

• cuSPARSE library description in the CUDA SDK

• CUSP library: http://cusplibrary.github.io/

• Incomplete-LU and Cholesky Preconditioned Iterative Methods Using
CUSPARSE and CUBLAS, Maxim Naumov

– https://developer.download.nvidia.com/assets/cuda/files/psts_white_paper_final.pdf
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NVIDIA Volta SM

Multiprocessor: SM

• 64 FP32 + INT32 cores

• 32 FP64 cores

• 8 tensor cores
(FP16/FP32 mixed-precision)

4 partitions inside SM

• 16 FP32 + INT32 cores each

• 8 FP64 cores each

• 8 LD/ST units each

• 2 tensor cores each

• Each has: warp scheduler,
dispatch unit, register file



NVIDIA Turing SM

Multiprocessor: SM

• 64 FP32 + INT32 cores

• 2 (!) FP64 cores

• 8 Turing tensor cores
(FP16/32, INT4/8 mixed-precision)

• 1 RT (ray tracing) core

4 partitions inside SM

• 16 FP32 + INT32 cores each

• 4 LD/ST units each

• 2 Turing tensor cores each

• Each has: warp scheduler,
dispatch unit, 16K register file



NVIDIA GA100 SM

Multiprocessor: SM

• 64 FP32 + 64 INT32 cores

• 32 FP64 cores

• 4 3rd gen tensor cores

• 1 2nd gen RT (ray tracing) core

4 partitions inside SM

• 16 FP32 + 16 INT32 cores

• 8 FP64 cores

• 8 LD/ST units each

• 1 3rd gen tensor core each

• Each has: warp scheduler,
dispatch unit, 16K register file



NVIDIA GA102 SM

Multiprocessor: SM

• 128 (64+64) FP32 + 64 INT32 cores

• 2 (!) FP64 cores

• 4 3rd gen tensor cores

• 1 2nd gen RT (ray tracing) core

4 partitions inside SM

• 16+16 FP32 + 16 INT32 cores

• 4 LD/ST units each

• 1 3rd gen tensor core each

• Each has: warp scheduler,
dispatch unit, 16K register file



Tensor Cores

Mixed-precision, fast matrix-matrix multiply and accumulate (mma)

From this, build larger shapes (sizes), higher dimensionalities, ...

API currently only allows using larger shapes (16x16, ...) in warps (wmma)
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Tensor Cores

Fused matrix multiply and accumulate

• Input matrices can be (at most) half-precision (FP16); (Ampere has more!)

• Accumulate can be FP16 or FP32; (Ampere has more!)
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Ampere Tensor Cores: Mixed Precision
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New in Ampere: TF32, BF16, FP64

plus FP64 (new in Ampere; GA100 only)

plus INT4/INT8/binary data types (experimental; introduced in Turing)



Ampere Tensor Cores: Sparsity Support
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Sparse MMA instructions

2:4 structured sparsity



Tensor Core APIs

Low-level options

• CUDA C WMMA (warp-level matrix multiply and accumulate)

• PTX wmma and mma (needed for some features) instructions

• SASS hmma instructions (not documented)

High-level options

• NVIDIA CUTLASS (template abstractions for hi-perf matrix-multiplies)

• NVIDIA cuBLAS

• NVIDIA cuDNN

• Integration into TensorFlow, ...
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CUDA C Warp Matrix Functions (WMMA)

Warp Level Matrix Multiply Accumulate (WMMA)

CUDA C Programming Guide (11.5), Appendix B.24

namespace nvcuda::wmma (and nvcuda::wmma::experimental)

Concept of a matrix fragment (section of a matrix split across threads in a warp)

Dimensions m,n,k:   m x k matrix_a;   k x n matrix_b;   m x n accumulator
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CUDA C Warp Matrix Functions (WMMA)

Data types (T)

wmma API splits

this into fragments
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Volta, Turing, and Ampere:



CUDA C Warp Matrix Functions (WMMA)

Data types (T)

wmma API splits

this into fragments

Markus Hadwiger, KAUST 15

Ampere only:

Turing and Ampere:



CUDA C Warp Matrix Functions (WMMA)

Warp Level Matrix Multiply Accumulate (WMMA)

CUDA C Programming Guide (11.5), Appendix B.24
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PTX ISA 7.5, Section 9.7.13

PTX WMMA and MMA Instructions
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PTX ISA 7.5

PTX WMMA and MMA Instructions
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Load and store: wmma

PTX WMMA and MMA Instructions
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Load and store: wmma

PTX WMMA and MMA Instructions
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wmma example

PTX WMMA and MMA Instructions
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mma: fixed assigments of matrix fragments to registers in each thread of warp

PTX WMMA and MMA Instructions
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mma: fixed assigments of matrix fragments to registers in each thread of warp

PTX WMMA and MMA Instructions
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mma: fixed assignments of matrix fragments to registers in each thread of warp

PTX WMMA and MMA Instructions
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Sparse matrices: mma.sp

PTX WMMA and MMA Instructions
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Load and store: mma ldmatrix

Warp-wide load matrix instruction

PTX WMMA and MMA Instructions
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PTX WMMA to SASS

Raihan et al., 2019

Get SASS code from cuobjdump disassembly

Micro-benchmarking
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PTX WMMA to SASS

Raihan et al., 2019

Get SASS code from cuobjdump disassembly
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PTX WMMA to SASS

Raihan et al., 2019

Get SASS code from cuobjdump disassembly
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PTX WMMA to SASS

Raihan et al., 2019, reverse-engineered matrix fragment assignment



PTX WMMA to SASS

Raihan et al., 2019, reverse-engineered Tensor core microarchitecture















































































































Thank you.

• Md Aamir Raihan, Negar Goli, Tor Aamodt

• Andrew Kerr et al., NVIDIA

• NVIDIA


