
CS 380 - GPU and GPGPU Programming
Lecture 26: Programming Tensor Cores

Markus Hadwiger, KAUST

2

Reading Assignment #15++

Further suggested reading:

• Raihan et al., arXiv, Feb 2019, Modeling Deep Learning Accelerator Enabled GPUs
– https://arxiv.org/abs/1811.08309

– See also GPGPU-SIM: http://www.gpgpu-sim.org/

• CUTLASS 2.8 template library (last update Nov 2021)
– https://developer.nvidia.com/blog/cutlass-linear-algebra-cuda/

– https://github.com/NVIDIA/cutlass

• Register Cache: Caching for Warp-Centric CUDA Programs
– https://developer.nvidia.com/blog/register-cache-warp-cuda/

• cuSPARSE library description in the CUDA SDK

• CUSP library: http://cusplibrary.github.io/

• Incomplete-LU and Cholesky Preconditioned Iterative Methods Using
CUSPARSE and CUBLAS, Maxim Naumov

– https://developer.download.nvidia.com/assets/cuda/files/psts_white_paper_final.pdf

Programming Tensor Cores

Markus Hadwiger, KAUST 3

NVIDIA Volta SM

Multiprocessor: SM

• 64 FP32 + INT32 cores

• 32 FP64 cores

• 8 tensor cores
(FP16/FP32 mixed-precision)

4 partitions inside SM

• 16 FP32 + INT32 cores each

• 8 FP64 cores each

• 8 LD/ST units each

• 2 tensor cores each

• Each has: warp scheduler,
dispatch unit, register file

NVIDIA Turing SM

Multiprocessor: SM

• 64 FP32 + INT32 cores

• 2 (!) FP64 cores

• 8 Turing tensor cores
(FP16/32, INT4/8 mixed-precision)

• 1 RT (ray tracing) core

4 partitions inside SM

• 16 FP32 + INT32 cores each

• 4 LD/ST units each

• 2 Turing tensor cores each

• Each has: warp scheduler,
dispatch unit, 16K register file

NVIDIA GA100 SM

Multiprocessor: SM

• 64 FP32 + 64 INT32 cores

• 32 FP64 cores

• 4 3rd gen tensor cores

• 1 2nd gen RT (ray tracing) core

4 partitions inside SM

• 16 FP32 + 16 INT32 cores

• 8 FP64 cores

• 8 LD/ST units each

• 1 3rd gen tensor core each

• Each has: warp scheduler,
dispatch unit, 16K register file

NVIDIA GA102 SM

Multiprocessor: SM

• 128 (64+64) FP32 + 64 INT32 cores

• 2 (!) FP64 cores

• 4 3rd gen tensor cores

• 1 2nd gen RT (ray tracing) core

4 partitions inside SM

• 16+16 FP32 + 16 INT32 cores

• 4 LD/ST units each

• 1 3rd gen tensor core each

• Each has: warp scheduler,
dispatch unit, 16K register file

Tensor Cores

Mixed-precision, fast matrix-matrix multiply and accumulate (mma)

From this, build larger shapes (sizes), higher dimensionalities, ...

API currently only allows using larger shapes (16x16, ...) in warps (wmma)

Markus Hadwiger, KAUST 8

Tensor Cores

Fused matrix multiply and accumulate

• Input matrices can be (at most) half-precision (FP16); (Ampere has more!)

• Accumulate can be FP16 or FP32; (Ampere has more!)

Markus Hadwiger, KAUST 9

Ampere Tensor Cores: Mixed Precision

Markus Hadwiger, KAUST 10

New in Ampere: TF32, BF16, FP64

plus FP64 (new in Ampere; GA100 only)

plus INT4/INT8/binary data types (experimental; introduced in Turing)

Ampere Tensor Cores: Sparsity Support

Markus Hadwiger, KAUST 11

Sparse MMA instructions

2:4 structured sparsity

Tensor Core APIs

Low-level options

• CUDA C WMMA (warp-level matrix multiply and accumulate)

• PTX wmma and mma (needed for some features) instructions

• SASS hmma instructions (not documented)

High-level options

• NVIDIA CUTLASS (template abstractions for hi-perf matrix-multiplies)

• NVIDIA cuBLAS

• NVIDIA cuDNN

• Integration into TensorFlow, ...

Markus Hadwiger, KAUST 12

CUDA C Warp Matrix Functions (WMMA)

Warp Level Matrix Multiply Accumulate (WMMA)

CUDA C Programming Guide (11.5), Appendix B.24

namespace nvcuda::wmma (and nvcuda::wmma::experimental)

Concept of a matrix fragment (section of a matrix split across threads in a warp)

Dimensions m,n,k: m x k matrix_a; k x n matrix_b; m x n accumulator

Markus Hadwiger, KAUST 13

CUDA C Warp Matrix Functions (WMMA)

Data types (T)

wmma API splits

this into fragments

Markus Hadwiger, KAUST 14

Volta, Turing, and Ampere:

CUDA C Warp Matrix Functions (WMMA)

Data types (T)

wmma API splits

this into fragments

Markus Hadwiger, KAUST 15

Ampere only:

Turing and Ampere:

CUDA C Warp Matrix Functions (WMMA)

Warp Level Matrix Multiply Accumulate (WMMA)

CUDA C Programming Guide (11.5), Appendix B.24

Markus Hadwiger, KAUST 16

PTX ISA 7.5, Section 9.7.13

PTX WMMA and MMA Instructions

Markus Hadwiger, KAUST 17

PTX ISA 7.5

PTX WMMA and MMA Instructions

18

Load and store: wmma

PTX WMMA and MMA Instructions

19

Load and store: wmma

PTX WMMA and MMA Instructions

20

wmma example

PTX WMMA and MMA Instructions

21

mma: fixed assigments of matrix fragments to registers in each thread of warp

PTX WMMA and MMA Instructions

22

mma: fixed assigments of matrix fragments to registers in each thread of warp

PTX WMMA and MMA Instructions

23

mma: fixed assignments of matrix fragments to registers in each thread of warp

PTX WMMA and MMA Instructions

24

Sparse matrices: mma.sp

PTX WMMA and MMA Instructions

25

Load and store: mma ldmatrix

Warp-wide load matrix instruction

PTX WMMA and MMA Instructions

26

PTX WMMA to SASS

Raihan et al., 2019

Get SASS code from cuobjdump disassembly

Micro-benchmarking

Markus Hadwiger, KAUST 27

PTX WMMA to SASS

Raihan et al., 2019

Get SASS code from cuobjdump disassembly

Markus Hadwiger, KAUST 28

PTX WMMA to SASS

Raihan et al., 2019

Get SASS code from cuobjdump disassembly

Markus Hadwiger, KAUST 29

PTX WMMA to SASS

Raihan et al., 2019, reverse-engineered matrix fragment assignment

PTX WMMA to SASS

Raihan et al., 2019, reverse-engineered Tensor core microarchitecture

Thank you.

• Md Aamir Raihan, Negar Goli, Tor Aamodt

• Andrew Kerr et al., NVIDIA

• NVIDIA

