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Reading Assignment #15++

Further suggested reading:

» Raihan et al., arXiv, Feb 2019, Modeling Deep Learning Accelerator Enabled GPUs
- https://arxiv.org/abs/1811.08309

— See also GPGPU-SIM: http://www.gpgpu-sim.org/

 CUTLASS 2.8 template library (last update Nov 2021)

- https://developer.nvidia.com/blog/cutlass-linear-algebra-cuda/
- https://github.com/NVIDIA/cutlass

* Register Cache: Caching for Warp-Centric CUDA Programs

- https://developer.nvidia.com/blog/register-cache-warp-cuda/
* cuSPARSE library description in the CUDA SDK
« CUSP Iibrary: http://cusplibrary.github.io/

* Incomplete-LU and Cholesky Preconditioned Iterative Methods Using
CUSPARSE and CUBLAS, Maxim Naumov

— https://developer.download.nvidia.com/assets/cuda/files/psts_white paper final.pdf



Global Memory Accesses

 Memory coalescing

« Cached memory access



Compute Capab. 3.x (Kepler, Part 3)

Global memory accesses for devices of compute capability 3.x are cached in L2 and for
devices of compute capability 3.5 or 3.7, may also be cached in the read-only data cache
described in the previous section; they are normally not cached in L1. Some devices of
compute capability 3.5 and devices of compute capability 3.7 allow opt-in to caching of
global memory accesses in L1 via the -Xptxas -dlcm=ca option to nvcc.

A cache line is 128 bytes and maps to a 128 byte aligned segment in device memory.
Memory accesses that are cached in both L1 and L2 are serviced with 128-byte memory
transactions whereas memory accesses that are cached in L2 only are serviced with
32-byte memory transactions. Caching in L2 only can therefore reduce over-fetch, for
example, in the case of scattered memory accesses.



Global Memory Access

Aligned accesses (sequential/non-sequential)

all recent —
compute capabilities | | | —]
-8 XTSI
Compute capability.: 2%, 3%, 5
Memory transac tions: Uncached Cached
Beware:
Uncached here means
nOt CaChed in L1 Mis-aligned accesses (sequential/non-sequential)
Addresses: %

the L2 cache is ///////////W////////W///////

always used! fhreacs

Compute capability: 2%, 3% 5X
Memory transac tions: Uncached Cached

X a
1x 32B at 256
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Maximize Byte Use

SM

SM

SM

DRAM

* Two things to keep in mind:
— Memory accesses are per warp

— Memory is accessed in discrete
chunks
* lines/segments

* want to make sure that bytes
that travel from DRAM to SMs
get used

— For that we should understand
how memory system works

* Note: not that different from CPUs

— 86 needs SSE/AVX memory
instructions to maximize performance
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GPU Memory System

\

s

\—

DRAM

* All data lives in DRAM
— Global memory
— Local memory
— Textures

— Constants
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GPU Memory System

-
SM

\

s

\—

L2

U
5

DRAM

 All DRAM accesses go
through L2

* Including copies:
— P2P
— CPU-GPU
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GPU Memory System

(’

\

J

s

\—

L2

SM-
1T
T

DRAM

* Once inan SM, data
goes into one of 3
caches/buffers

* Programmer’s choice
— L1 is the “default”

— Read-only, Const
require explicit code
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Access Path

L1 path

— Global memory

* Memory allocated with cudaMalloc()
* Mapped CPU memory, peer GPU memory
* Globally-scoped arrays qualified with __ global

— Local memory
» allocation/access managed by compiler so we’ll ignore

* Read-only/TEX path

— Data in texture objects, CUDA arrays

— CC 3.5 and higher:
* Global memory accessed via intrinsics (or specially qualified kernel arguments)

* Constant path
— Globally-scoped arrays qualified with __constant___
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Access Via L1

* Natively supported word sizes per thread:
— 1B, 2B, 4B, 8B, 16B
* Addresses must be alighed on word-size boundary
— Accessing types of other sizes will require multiple instructions

* Accesses are processed per warp
— Threads in a warp provide 32 addresses
* Fewer if some threads are inactive

— HW converts addresses into memory transactions

* Address pattern may require multiple transactions for an instruction
* If N transactions are needed, there will be (N-1) replays of the instruction

38



Compute Capab. 3.x (Kepler, Part 4)

If the size of the words accessed by each thread is more than 4 bytes, a memory
request by a warp is first split into separate 128-byte memory requests that are issued
independently:

» Two memory requests, one for each half-warp, if the size is 8 bytes,
» Four memory requests, one for each quarter-warp, if the size is 16 bytes.

Each memory request is then broken down into cache line requests that are issued
independently. A cache line request is serviced at the throughput of L1 or L2 cache in
case of a cache hit, or at the throughput of device memory, otherwise.

Note that threads can access any words in any order, including the same words.

Data that is read-only for the entire lifetime of the kernel can also be cached in the read-
only data cache described in the previous section by reading it using the _ 1dg ()
function (see Read-Only Data Cache Load Function). When the compiler detects that
the read-only condition is satisfied for some data, it will use __1dg() to read it. The
compiler might not always be able to detect that the read-only condition is satisfied

for some data. Marking pointers used for loading such data with both the const and
__restrict _ qualifiers increases the likelihood that the compiler will detect the read-
only condition.



Vectorized Memory Access

See https://devblogs.nvidia.com/cuda-pro-tip-increase-
performance-with-vectorized-memory-access/

__global _ void device copy_vector2 kernel(int* d_in, int* d_out, int N) {
int idx = blockIdx.x * blockDim.x + threadIdx.Xx;
for (int i = idx; i < N/2; i += blockDim.x * gridDim.x) {
reinterpret_cast<int2*>(d_out)[i] = reinterpret_cast<int2*>(d_in)[i];

}

// in only one thread, process final element (if there is one)
if (idx==N/2 && N%2==1)
d_out[N-1] = d_in[N-1];
Iy
void device copy_vector2(int* d_in, int* d_out, int n) {
threads = 128;

blocks = min((N/2 + threads-1) / threads, MAX_BLOCKS);

device copy vector2 kernel<<<blocks, threads>>>(d_in, d_out, N);

}

/*0088*/ IMAD R1@.CC, R3, R5, c[exe][ex14e]

/*¥0090% / IMAD.HI.X R11, R3, R5, c[0x®][ex144] SASS

/*@098*/ IMAD R8.CC, R3, R5, c[ex8][ex148]

/*eeae*/ LD.E.64 R6, [R10] LD.E.64, LD.E.128,
/*@0ag*/ IMAD.HI.X R9, R3, R5, c[@xe][exlac] ST.E.64, ST.E.128

/*eec8*/ ST.E.64 [R8], R6




Vectorized Memory Access

See https://devblogs.nvidia.com/cuda-pro-tip-increase-
performance-with-vectorized-memory-access/

__global  void device copy vector4 kernel(int* d_in, int* d_out, int N) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
for(int 1 = idx; i < N/4; i += blockDim.x * gridDim.x) {
reinterpret_cast<int4*>(d_out)[i] = reinterpret_cast<int4*>(d_in)[i];

}

// in only one thread, process final elements (if there are any)
int remainder = N%4;
if (idx==N/4 && remainder!=@) {
while(remainder) {
int idx = N - remainder--;
d_out[idx] = d_in[idx];
¥
}
}

void device_copy vector4(int* d_in, int* d_out, int N) {
int threads = 128;

int blocks = min((N/4 + threads-1) / threads, MAX_BLOCKS);

device_copy_vectord_kernel<<<blocks, threads>>>(d_in, d_out, N);

}

/*0090%*/ IMAD R10.CC, R3, R13, c[exe][ex14e]

/*0098%/ IMAD.HI.X R11, R3, R13, c[ox@][ex144] SASS

/*00ae*/ IMAD R8.CC, R3, R13, c[@x@][ox148]

/*00as*/ LD.E.128 R4, [R1@] LD.E.64, LD.E.128,
/*00be*/ IMAD.HI.X R9, R3, R13, c[exe][exl4c] ST.E.c4, ST.E.128

/*0edo*/ ST.E.128 [R8], R4




GMEM Writes

Not cached in the SM
— Invalidate the line in L1, go to L2

Access is at 32 B segment granularity
Transaction to memory: 1, 2, or 4 segments
— Only the required segments will be sent
If multiple threads in a warp write to the same address

— One of the threads will “win”
— Which one is not defined
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Kernel Optimizations: Global Memory Throughput




Kepler Memory Hierarchy

SIvVl-1

Registe Registers
Nsmem] Read |
& | only
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Global Memory




Load Operation

Memory operations are issued per warp (32 threads)
Just like all other instructions

Operation:
Threads in a warp provide memory addresses

Determine which lines/segments are needed
Request the needed lines/segments




Memory Throughput Analysis

Two perspectives on the throughput:
Application’s point of view:
count only bytes requested by application
HW point of view:
* count all bytes moved by hardware
The two views can be different:

Memory is accessed at 32 byte granularity
* Scattered/offset pattern: application doesn’t use all the hw transaction bytes

Broadcast: the same small transaction serves many threads in a warp
Two aspects to inspect for performance impact:

Address pattern
Number of concurrent accesses in flight




Global Memory Operation

Memory operations are executed per warp
32 threads in a warp provide memory addresses
Hardware determines into which lines those addresses fall

Memory transaction granularity is 32 bytes

There are benefits to a warp accessing a contiguous aligned region of 128 or
256 bytes

¢ Access word size
Natively supported sizes (per thread): 1, 2, 4, 8, 16 bytes
* Assumes that each thread’s address is aligned on the word size boundary

If you are accessing a data type that’s of non-native size, compiler will
generate several load or store instructions with native sizes




Access Patterns vs. Memory Throughput

Scenario:

Warp requests 32 aligned, consecutive 4-byte words
Addresses fall within 4 segments

Warp needs 128 bytes

128 bytes move across the bus
Bus utilization: 100%

addresses from a warp

Hlll — 2

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses




Access Patterns vs. Memory Throughput

Scenario:

Warp requests 32 aligned, permuted 4-byte words
Addresses fall within 4 segments

Warp needs 128 bytes

128 bytes move across the bus
Bus utilization: 100%

addresses from a warp
s

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses




Access Patterns vs. Memory Throughput

Scenario:

Warp requests 32 misaligned, consecutive 4-byte words
Addresses fall within at most 5§ segments

Warp needs 128 bytes

At most 160 bytes move across the bus

Bus utilization: at least 80%
* Some misaligned patterns will fall within 4 segments, so 100% utilization

addresses from a warp

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses




Access Patterns vs. Memory Throughput

Scenario:

All threads in a warp request the same 4-byte word
Addresses fall within a single segment

Warp needs 4 bytes

32 bytes move across the bus
Bus utilization: 12.5%

addresses from a warp

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses




Access Patterns vs. Memory Throughput

Scenario:
Warp requests 32 scattered 4-byte words
Addresses fall within N segments
Warp needs 128 bytes

N*32 bytes move across the bus
Bus utilization: 128 / (N*32)

addresses from a warp

P T _

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses




Structures of Non-Native Size

Say we are reading a 12-byte structure per
thread

struct Position

{
float x, v, z;

i

__global  wvoid kernel( Position *data, ... )
{

int idx = blockIdx.x * blockDim.x + threadIdx.x;
Position temp = data[idx];




Structure of Non-Native Size

Compiler converts temp = data[idx] into 3 loads:

Each loads 4 bytes

Can’t do an 8 and a 4 byte load: 12 bytes per element means that every
other element wouldn’t align the 8-byte load on 8-byte boundary

Addresses per warp for each of the loads:
Successive threads read 4 bytes at 12-byte stride




First Load Instruction

addresses from a warp

N S T T O

O 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64




Second Load Instruction

addresses from a warp

N S S Y T O

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64




Third Load Instruction

addresses from a warp

I A S O T O I

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64




Performance and Solutions

Because of the address pattern, we end up moving 3x more bytes
than application requests
We waste a lot of bandwidth, leaving performance on the table

Potential solutions:

Change data layout from array of structures to structure of arrays
* In this case: 3 separate arrays of floats
* The most reliable approach (also ideal for both CPUs and GPUs)
Use loads via read-only cache
* As long as lines survive in the cache, performance will be nearly optimal

Stage loads via shared memory




Global Memory Access Patterns

» SOA vs AoS: “'”
Cieloleh palptell] —l——
Not so good: point]i].x
» Strided array access:
~OK: x[i] = a[i+1] - ali]
Slower: x[i] = a[64*1] — a[i]
' .

* Random array access: /
Slower: a[rand(i)] [ l_l_




Summary: GMEM Optimization

Strive for perfect address coalescing per warp
Align starting address (may require padding)
A warp will ideally access within a contiguous region

Avoid scattered address patterns or patterns with large strides between
threads

Analyze and optimize address patterns:
Use profiling tools (included with CUDA toolkit download)
Compare the transactions per request to the ideal ratio
Choose appropriate data layout (prefer SoA)
If needed, try read-only loads, staging accesses via SMEM




A note about caches

L1 and L2 caches

Ignore in software design

Thousands of concurrent | ¢Regi;‘ers$ |
threads — cache blocking | L1 | fomen Read
difficult at best 3

Registers Registers

3t 1 T 1

Read Read

SMEM SMEM
L1 , | .Oﬂly | L1 . || only

* Read-only Data Cache
Shared with texture pipeline
* Useful for uncoalesced reads

* Handled by compiler when
const _ restrict__ is used, or
use _1ldg() primitive




Read-only Data Cache

Go through the read-only cache
Not coherent with writes
Thus, addresses must not be written by the same kernel

Two ways to enable:

Decorating pointer arguments as hints to compiler:
Pointer of interest: const _ restrict
* All other pointer arguments: __ restrict__
— Conveys to compiler that no aliasing will occur
Using __Idg() intrinsic
Requires no pointer decoration




Read-only Data Cache

Go through the read-only cache

Not coherent with writes

Thus, addresses must not be written by the same kernel

Two ways to enable:

Decorating pointer argumen”

Pointer of interest: const

* All other pointer argumer
— Conveys to compiler |

Using __Idg() intrinsic
* Requires no pointer deco

__global  void kernel (

int* restrict  output,
const int*  restrict  input )
{
output[idx] = input[idx];




Read-only Data Cache

Go through the read-only cache

Not coherent with writes

Thus, addresses must not be written by the same kernel

Two ways to enable:

Decorating pointer argumen”

Pointer of interest: const

* All other pointer argumer
— Conveys to compiler |

Using __Idg() intrinsic
* Requires no pointer deco

__global  wvoid kernel( int *output,
int *input )

{

output[idx] = 1ldg( &input[idx]




Blocking for L1, Read-only, L2 Caches

Short answer: DON’T

GPU caches are not intended for the same use as CPU caches
Smaller size (especially per thread), so not aimed at temporal reuse

Intended to smooth out some access patterns, help with spilled registers,
etc.

Usually not worth trying to cache-block like you would on CPU
100s to 1,000s of run-time scheduled threads competing for the cache

If it is possible to block for L1 then it’s possible block for SMEM
¢ Same size
* Same or higher bandwidth
* Guaranteed locality: hw will not evict behind your back
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Some Store Pattern Examples

addresses fromawarp  one 4-segment transaction

il 4

96 128 160 192 224 256 288 320 352 384
Memory addresses

416

448
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Some Store Pattern Examples

addresses fromawarp  three 1-segment transactions

N T~

96 128 160 192 224 256 288 320 352 384 4le
Memory addresses

448
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Some Store Pattern Examples

addresses fromawarp  one 2-segment transaction

bl

96 128 160 192 224 256 288 320 352 384
Memory addresses

416

448
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Some Store Pattern Examples

addresses fromawarp 2 1-segment transactions

$

4
I [ 1 [ 1 [ [ | |

96 128 160 192 224 256 288 320 352 384
Memory addresses

416

448
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£r2013, NV DIA

GMEM Reads

Attempt to hit in L1 depends on programmer choice and compute capability

HW ability to hit in L1:
— CCl.xnoll
— CC2.¢canhitin L1
— CC3.0, 3.5: cannot hitin L1
* L1 is used to cache LMEM (register spills, etc.), buffer reads
Read instruction types
— Caching:
* Compileroption: -Xptxas -dlcm=ca
* On Ll miss goto L2, on L2 miss go to DRAM
* Transaction: 128 B line
— Non-caching:
= Compileroption: -Xptxas -dlcm=cg
» Godirectly to L2 (invalidate line in L1), on L2 miss go to DRAM
* Transaction: 1, 2, 4 segments, segment = 32 B (same as for writes)
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Caching Load

Scenario:

— Warp requests 32 aligned, consecutive 4-byte words
Addresses fall within 1 cache-line

— No replays

— Bus utilization: 100%

» Warp needs 128 bytes
* 128 bytes move acrossthe bus on a miss

addresses from a warp

RE2 I T

32 64 96 128 180 192 224 256 288
Memory addresses

320

352

384

416

448
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Non-caching Load

* Scenario:

— Warp requests 32 aligned, consecutive 4-byte words
* Addresses fall within 4 segments

— No replays

— Bus utilization: 100%

» Warp needs 128 bytes
* 128 bytes move acrossthe bus on a miss
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addresses from a warp

Ll ol
N I I S S S S S S S S —

32 64 96 128 180 192 224 256 288 320 352 384 416 448
Memory addresses

CI2012, NVIDIA
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Caching Load

Scenario:

— Warp requests 32 aligned, permuted 4-byte words
Addresses fall within 1 cache-line

— No replays

— Bus utilization: 100%

» Warp needs 128 bytes
* 128 bytes move acrossthe bus on a miss

addresses from a warp

32 64 96 128 180 192 224 256 288
Memory addresses

320

352

384

416

448
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CI2012, NVIDIA

Non-caching Load

* Scenario:

— Warp requests 32 aligned, permuted 4-byte words
* Addresses fall within 4 segments

— No replays

— Bus utilization: 100%

» Warp needs 128 bytes
* 128 bytes move acrossthe bus on a miss

addresses from a warp

32 64 96 128 180 192 224 256 288
Memory addresses

320

352

384

416

448
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CI2012, NVIDIA

Caching Load

* Scenario:
— Warp requests 32 consecutive 4-byte words, offset from perfect alignment
+ Addresses fall within 2 cache-lines

— 1 replay (2 transactions)

— Bus utilization: 50%
» Warp needs 128 bytes
» 256 bytes move acrossthe bus on misses

addresses from a warp

0 32 64 96 128 1e0 192 224 256 288 320 352 384 416

Memory addresses

448
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Non-caching Load

Scenario:
— Warp requests 32 consecutive 4-byte words, offset from perfect alignment
Addresses fall within at most 5 segments

— 1 replay (2 transactions)

— Bus utilization: at least 80%
» Warp needs 128 bytes
* At most 160 bytes move acrossthe bus
» Some misaligned patterns will fall within 4 segments, so 100% utilization

addresses from a warp

32 64 96 128 180 192 224 256 288 320 352 384 416 448
Memory addresses

a0
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Caching Load

Scenario:

— All threads in a warp request the same 4-byte word
Addresses fall within a single cache-line

— No replays

— Bus utilization: 3.125%

» Warp needs 4 bytes
* 128 bytes move acrossthe bus on a miss

addresses from a warp

32 64 96 128 180 192 224 256 288
Memory addresses

320

352

384

416

448

a1
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Non-caching Load

Scenario:

— All threads in a warp request the same 4-byte word
Addresses fall within a single segment

— No replays

— Bus utilization: 12.5%

» Warp needs 4 bytes
* 32 bytes move across the bus on a miss

addresses from a warp

32 64 96 128 1e0 192 224 256 288 320
Memory addresses

352

384

416

448
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CI2012, NVIDIA

Caching Load

* Scenario:

— Warp requests 32 scattered 4-byte words
+ Addresses fall within N cache-lines

— {N-1) replays (N transactions)

— Bus utilization: 32*4B / (N*128B)

*» Warp needs 128 bytes
» A*128 bytes move across the bus on a miss

addresses from a warp
% \ )

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448

Memory addresses
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Non-caching Load

Scenario:
— Warp requests 32 scattered 4-byte words
Addresses fall within N segments
— (N-1) replays (N transactions)
* Could be lower some segments can be arranged into a single transaction

— Bus utilization: 128 / (N*32) (4x higher than caching loads)
* Warp needs 128 bytes
* [N*32 bytes move across the bus on a miss

addresses from a warp

o 1

—

T ]

2 64 96 128 1e0 192 224 256 288 320
Memory addresses

352

384 4le 448
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Caching vs Non-caching Loads

 Compute capabilities that can hit in L1 {(CC 2.x)
— Caching loads are better if you count on hits

— Non-caching loads are better if:

* Warp address pattern is scattered
* When kernel uses lots of LMEM (register spilling)

 Compute capabilities that cannot hit in L1 {(CC 1.x, 3.0, 3.5)
— Does not matter, all loads behave like non-caching

* In general, don’t rely on GPU caches like you would on CPUs:

— 100s of threads sharing the same L1
— 1000s of threads sharing the same L2
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£r2013, NV DIA

L1 Sizing

* Fermi and Kepler GPUs split 64 KB RAM between L1 and SMEM
— Fermi GPUs {CC 2.x): 16:48, 48:16
— Kepler GPUs {CC 3.x):16:48, 48:16, 3232

* Programmer can choose the split:
— Default: 16 KB L1, 48 KB SMEM

— Run-time API functions:
* cudaDeviceSetCacheConfig(), cudaFuncSetCacheConfig()

— Kernels that require different L1:SMEM sizing cannot run concurrently
 Making the choice:

— Large L1 can help when using lots of LMEM ({spilling registers)

— Large SMEM can help if occupancy is limited by shared memory

5B



> L
€D
Q=
— L
o =
52
=5
-
o

Cr2013, NVIDIA

‘Ll!

Read-Only Cache

* An alternative to L1 when accessing DRAM
— Also known as texture cache: all texture accesses use this cache
— CC 3.5 and higher also enable global memory accesses
* Should not be used if a kernel reads and writes to the same addresses
* Comparing to L1:

— Generally better for scattered reads than L1
* Cachingis at 32 B granularity (L1, when caching operates at 128 B granularity)
» Does not require replay for multiple transactions (L1 does)

— Higher latency than L1 reads, also tends to increase register use

 Aggregate 48 KB per SM: 4 12-KB caches
— One 12-KB cache per scheduler
* Warps assigned to a scheduler refer to only that cache
— Caches are not coherent — data replication is possible
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Cr2013, NVIDIA

Read-Only Cache Operation

Always attempts to hit
Transaction size: 32 B queries

Warp addresses are converted to queries 4 threads at
a time
— Thus a minimum of 8 queries per warp

— If data within a 32-B segment is needed by multiple threads
In @ warp, segment misses at most once

Additional functionality for texture objects
— Interpolation, clamping, type conversion
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Read-Only Cache Operation

addresses from a warp 15t Query

LWL~ |
C—IT 1T 1T e T T 1T T T 1T 71T 71 ]

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
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Read-Only Cache Operation

addresses from a warp 15t Query

LWL~ |
[ 1T T ey 1 1 1T T T T T T ]

32 64 96 128 160 192 224 256 288 320 352 384 416 448

R - S
[ T T T T T T T T T T T ]

32 64 96 128 1e0 192 224 256 288 320 352 384 416 448
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Read-Only Cache Operation

addresses from a warp 15t Query

N - U
1T 1T 1T W T T T T T 1T 71T 71 ]

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448

> Lu
(S0 i 52
o=z
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=
G2
O
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o
=
%
. =
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> LL
DO
o=z
—
=
0Z
O
=
Q.
o

%

- 8

Read-Only Cache Operation

addresses from a warp 15t Query

Nl
[ T T Ty 1 1T T T T T T T ]

32 64 96 128 160 192 224 256 288 320 352 384 416 448

addresses from a warp 2nd angd 3 Queries

N - U
[ T T s 1 T T 17 1T 1T T ]

32 64 96 128 1e0 192 224 256 288 320 352 384 416 448
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> L
DO
o=z
—
S
05
—O
=
o
o

Read-Only Cache Operation

addresses from a warp

Nl
I I N S I I S S N

32 64 96 128 160 192 224 256 288 320 352

addresses from a warp

2" and 3 Queries

N - U
[ T T D 1 T T 1 7]

32 64 96 12 le0 192 224 256 288 320 352

Note this segment was already requested in the 1°* query:
cache hit, no redundant requests to L2

384

416

448
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PTX State Spaces (1)

Memory type/access etc. organized using notion of state spaces

Table 6 State Spaces

Name Description
.reg Registers, fast.
.sreg Special registers. Read-only; pre-defined; platform-specific.
.const Shared, read-only memory.
.global Global memory, shared by all threads.
.local Local memory, private to each thread.
-param Kernel parameters, defined per-grid; or
Function or local parameters, defined per-thread.
.shared Addressable memory shared between threads in 1 CTA.
.tex Global texture memory (deprecated).
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PTX State Spaces (2)

Table 7 Properties of State Spaces

Name Addressable Initializable Access Sharing

.reg No No R/W per-thread

.sreg No No RO per-CTA

.const Yes Yes' RO per-grid

.global Yes Yes' R/W Context

.local Yes No R/W per-thread
.param (as input Yes? No RO per-grid

to kernel)

.param (used in Restricted’ No R/W per-thread
functions)

.shared Yes No R/W per-CTA

.tex No4 Yes, via driver RO Context

Notes:

! Variables in .const and .global state spaces are initialized to zero by default.

2 Accessible only via the 1d.param instruction. Address may be taken via mov instruction.

3 Accessible via ld.param and st.param instructions. Device function input and return parameters may
have their address taken via mov; the parameter is then located on the stack frame and its address is in
the .local state space.

* Accessible only via the tex instruction.
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PTX Cache Operators

Table 27

Cache Operators for Memory Load Instructions

Operator

Meaning

.ca

Cache at all levels, likely to be accessed again.

The default load instruction cache operation is ld.ca, which allocates cache lines in all
levels (L1 and L2) with normal eviction policy. Global data is coherent at the L2 level,

but multiple L1 caches are not coherent for global data. If one thread stores to global
memory via one L1 cache, and a second thread loads that address via a second L1 cache
with 1d.ca, the second thread may get stale L1 cache data, rather than the data stored
by the first thread. The driver must invalidate global L1 cache lines between dependent
grids of parallel threads. Stores by the first grid program are then correctly fetched by the
second grid program issuing default 1d. ca loads cached in L1.

.cg

Cache at global level (cache in L2 and below, not L1).

Use 1d.cg to cache loads only globally, bypassing the L1 cache, and cache only in the L2
cache.

.CS

Cache streaming, likely to be accessed once.

The 1d. cs load cached streaming operation allocates global lines with evict-first policy
in L1 and L2 to limit cache pollution by temporary streaming data that may be accessed
once or twice. When 1d.cs is applied to a Local window address, it performs the 1d.1u
operation.

.1u

Last use.

The compiler/programmer may use 1d.1lu when restoring spilled registers and popping
function stack frames to avoid needless write-backs of lines that will not be used again.
The 1d. 1u instruction performs a load cached streaming operation (1d.cs) on global
addresses.

.CV

Don't cache and fetch again (consider cached system memory lines stale, fetch again).

The ld.cv load operation applied to a global System Memory address invalidates (discards)
a matching L2 line and re-fetches the line on each new load.
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SASS LD/ST Instructions

ArCh |te Ctu re-d e p . Compute Load/Store Instructions

LDC Load from Constant
LD Load from Memory
LDG Non-coherent Global Memory Load
LDL Load from Local Memory
LDS Load from Shared Memory
LDSLK Load from Shared Memory and Lock
ST Store to Memory

Kep I er. STL Store to Local Memory
STS Store to Shared Memory
STSCUL Store to Shared Memory Conditionally and Unlock
ATOM Atomic Memory Operation
RED Atomic Memory Reduction Operation
CCTL Cache Control
CCTLL Cache Control (Local)
MEMBAR Memory Barrier

(see also LDG.CI etc.)
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Shuffle: Tips and Tricks

Julien Demouth, NVIDIA




Glossary

= Warp

— tmplicitly-synchrenized group of threads (32 on current HW)

= Warp ID (warpid)
— ldentifier of the warp in a block: threadidx.x / 32

= Lane ID (1aneid)
— Coordinate of the thread in a warp: threadIidx.x % 32

— Special register (available from PTX): %¥1aneid




Shuffle (SHFL)

» [nstruction to exchange data in a warp

* Threads can “read” other threads’ registers

« " No shared memory is needed

= |t is available starting from SM 3.0




Variants

» 4 variants (idx, up, down, bfly):

alblcidle|flglh]|

/
shil.idx shflLup

pra "4

hid fleacch ghabcderf

Indexed Shift right to nt
any-to-any neighbour

N T

shfl.down shil.bfly

\

€ifiaglh

Shift left to n Butterfly (XOR)
neighbour exchange




Instruction (PTX)

Optional dst. predicate Lane/offset/mask

shfl.mode.b32 d[|p]l, a, b, c;

Dst. register Src. register  Bound



Implement SHFL for 64b Numbers

__device__ __inline__ double shfl(double x, int lane)
{
// split the double number into 2 32b registers.
int lo, hi;
asm volatile( “mov.b32 {%0,%1}, %2;” : “=r"(10), “=r”(hi) : “d”(xX));
// Shuffle the two 32b registers.
lo = _shfl(lo, lane);
. hi = __shfl1Chi, lane);
-
e // Recreate the 64b number.
?f,_'“i’ asm volatile( “mov.b64 %0, {%1,%2%};” : “=d0)” : “r’(lo), “r”Chi));
%;;;&   return Xx;
§§h£b§;p

%~ = Generic SHFL: https://github.com/BryanCatanzaro/generics




Performance Experiment

= One element per thread

1 12 '3 4 5 9 10 11 12 13 14 15 .,

thread: 0 6 7 8

= Each thread takes its right neighbor

10 B2 s 48 e RGN B8

thread: O

90 00| L L2 PLsE Rl TS |



Performance Experiment

= We run the following test on a K20

T X = input[tidx];

for(int 1 =0 ; 1 < 4096 ; ++1)
X = get_right_neighbor(x);

output[tidx] = x;

.« " We launch 26 blocks of 1024 threads

— On K20, we have 13 SMs
— We need 2048 threads per SM to have 100% of occupancy

i " We time different variants of that kernel




Performance Experiment

» Shared memory (SMEM)

smem[threadIdx.x] = smem[32*warpid + ((laneid+1l) % 32)];

__syncthreads();

= Shuffle (SHFL)

X = __shfl(x, (laneid+1l) % 32);

= Shared memory without __syncthreads + volatile (unsafe)

__shared__ volatile T *smem = ...;

smem[threadIdx.x] = smem[32*%warpid + ((laneid+1) % 32)];




Performance Experiment (fp32)

Execution Time (ms)

1.4

(W

0.8

e
.' ] EM (unsafe) SHFL
S, —

4
> : 0.6
R
;, > 0.4
:‘f .;::}.-’,' .--. . 0.2 !
P
e . |

4.5 -

SMEM per Block (KB)

SMEM (unsafe) SHFL




1.4

(W

0.8

0.6

0.4

0.2

Execution Time (ms)

Performance Experiment (fp64)

SMEM per Block (KB)

SHFL




Performance Experiment

= Always faster than shared memory

* Much safer than using no __syncthreads (and volatile)

— And never slower

= Does not require shared memory

— Useful when occupancy is limited by SMEM usage




Broadcast

= All threads read from a single lane

x = __shfl{x, 0); // All the threads read x from laneid O.

* More complex example

// All threads evaluate a predicate.
int predicate = ...;

- . // All threads vote.
<3 unsigned vote = __ballot(predicate);
:’f'._ g &
= // All threads get x from the “last” lane which evaluated the predicate to true.
il if(vote)
3 x = __shfl(x, _bfind(vote));
cC
Froes
> // __bind(unsigned i): Find the most significant bit in a 32/64 number (PTX).

: iaﬁi: _bfind(&b, 1) { asm volatile(“bfind.u32 %0, %1;” : “=r”(b) : “r’(i)); }




.
>

o
--..":.’,_,

e P
e
e gl

Reduce

= Code

// Threads want to reduce the value in x.

float x =

#pragma unroll
for{(int mask = WARP_SIZE / 2 ; mask > 0 ; mask >>= 1)

X +=

_ shfl_xor(x, mask);

// The x variable of laneid 0 contains the reduction.

= Performance
— Launch 26 blocks of 1024 threads
— Run the reduction 4096 times

Execution Time fp32 (ms)

QO = MW ho; O~

SHFL
(unsafe)

SMEM per Block fp32 (KB)

QO = MW R o O~

SHFL

unsafe




Execution Time fp32 (ms)

Yet-1p 7
6
5
4
= Code 3
2
#pragma unroll 1 .—
for( int offset = 1 ; offset < 32 ; offset <<= 1 ) 0
{ SHFL
float y = __shfl_up(x, offset); “”Safe
if(laneid() >= offset)
X += Y; SMEM per Block fp32 (KB)
3 7
> q & -
> 2
2= = Performance .
e — Launch 26 blocks of 1024 threads .
S 2
o e — Run the reduction 4096 times 1
- e
S °
e SHFL

~ unsafe
3 e 3. .




et-1p

» Use the predicate from SHFL

#pragma unroll
for( int offset = 1 ; offset < 32 ; offset <<= 1 )
{
asm volatile( "{"
.reg .32 roO;"
.reg .pred p;"
shfl.up.b32 rO|/p, %0, %1, Ox0;"
4 a add.f32 rO, r0, %0;"
" mov.f32 %0, rO;"

PR G 1 e

f = Use CUB:
=73 https://nvlabs.github.com/cub

Execution Time fp32 (ms)

2.3

Intrinsics With predicate




Bitonic Sort

stride=1 3

stride=2 3

il

5 10

11 10

jias 15
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i5

i5
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12
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Bitonic Sort

stride=4 3 5 8 7 LlamstigtlEdl 14 13 6 12 SO S NG

stride=2 3 5 FgeSE ¢ 10 iSiEdl 14 13 goaeks 4 2 NON NS

s stride=1 3 B58 7 S8° 9 g6 11 5 14 @3y 12 g6 4 *2¢ 1 N0
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Bitonic Sort

int swap(int x, int mask, int dir)
{
int y = __shfl_xor(x, mask);
return x <y == dir ? y : x;
1
X = swap(x, 0x01, bfe(laneid, 1) A bfe(laneid, 0)); // 2
X = swap(x, 0x02, bfe(laneid, 2) A bfe(laneid, 1)); // 4
X = swap(x, 0x01, bfe(laneid, 2) A bfe(laneid, 0));
X = swap(x, 0x04, bfe(laneid, 3) A bfe(laneid, 2)); // 8
X = swap(x, 0x02, bfe(laneid, 3) A bfe(laneid, 1));
X = swap(x, 0x01, bfe(laneid, 3) A bfe(laneid, 0));
X = swap(x, 0x08, bfe(laneid, 4) A bfe(laneid, 3)); // 16
X = swap(x, 0x04, bfe(laneid, 4) A bfe(laneid, 2));
X = swap(x, 0x02, bfe(laneid, 4) A bfe(laneid, 1));
X = swap(x, 0x01, bfe(laneid, 4) A bfe(laneid, 0));
X = swap(x, 0x10, bfe(laneid, 4)); // 32
X = swap(x, 0x08, bfe(laneid, 3));
X = swap(x, 0x04, bfe(laneid, 2));
X = swap(x, 0x02, bfe(laneid, 1));
X = swap(x, 0x01, bfe(laneid, 0)):

// int bfe(int 1,

THE )

Extract k-th bit from i

// PTX: bfe dst, src, start, len (see p.81, ptx_isa_3.1)

Execution Time int32 (ms)

35
30
25
20
15
10
; .
0 . . .
SMEM SMEM SHFL
{unsafe)
SMEM per Block (KB)

4.5

4
3.5

3
2.5

p
1.5

1
0.5

0 - ! .

SMEM SMEM SHFL

{unsafe)




Transpose

* When threads load or store arrays of structures, transposes
enable fully coalesced memory operations

= e.¢. when loading, have the warp perform coalesced loads,
then transpose to send the data to the appropriate thread

Memory Registers

m elements
per thread

n threads in warp (8 for illustration only)




Execution Time 7*int32

Transpose :
7
6
. . 2
* You can use SMEM to implement this 4
3
transpose, or you can use SHFL 2 I
1
’ SMEM | SMEM | SHFL
- Code: (unsafe)
http://github.com/bryancatanzaro/trove SMEM per Block (KB)
. ?
L > 6
2 = Performance .
= LF — Launch 104 blocks of 256 threads ;
~ _. ’23 N £ 1 -
=2 Run the transpose 4096 times 0 a—

: _._ s (unsafe)




q
L
>
“-‘.:f.-' -
ST
D <
e
e
-0-';:
S g
<. @

Array of Structures Access via Transpose

» Transpose speeds access to arrays of structures

* High-level interface: coalesced ptr<T»>

— Just dereference like any pointer

— Up to 6x faster than direct compiler generated access

Contiguous AoS Access

200
150 ¢ S
s SHFL Load
v
)
100 I e
S SHFL Store
= Direct Load
50 S . sDirect Store
.-'-’:’_"-:2'«.(&3_-‘_\?.\.;;_‘.\;.:.-= L
] 10 20 30 40 50 60 70

Size of structure in bytes

GB/s

140

120

100

Random AoS Access

smmnSHFL Gather

=——=SHFL Scatter

e Direct Gather

=Direct Scatter

10 20 30 40

Size of structure in bytes

50




Conclusion

= SHFL is available for SM >= SM 3.0

= [t is always faster than “safe” shared memory

. " Itis never slower than “unsafe” shared memory

= [t can be used in many different algorithms




WARP SYNCHRONOUS PROGRAMMING
IN CUDA 9.0



CUDA WARP THREADING MODEL

NVIDIA GPU multiprocessors create, manage, schedule and execute threads in warps
(32 parallel threads).

Threads in a warp may diverge and re-converge during execution.
diverged diverged

J
)
1 1]

L L

converged

|

time

Full efficiency may be realized when all 32 threads of a warp are converged.

25

NVIDIA.



WARP SYNCHRONOUS PROGRAMMING

Warp synchronous programming is a CUDA programming technique that leverages
warp execution for efficient inter-thread communication.

e.g. reduction, scan, aggregated atomic operation, etc.

CUDA C++ supports warp synchronous programming by providing warp synchronous
built-in functions and cooperative group collectives.

26 NVIDIA.



EXAMPLE: SUM ACROSS A WARP

val = input[lane_id];

val += _ shfl xor_sync(Oxffffffff,
val += _ shfl_xor_sync(@xffffffff,
val += _ shfl_xor_sync(Oxffffffff,
val += _ shfl_xor_sync(@xffffffff,
val += __shfl xor_sync(Oxffffffff,

L
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\
Wi

/

)

I
i

N

WX N>

VAV

5

Ve
AN
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X
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7
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.l l’l :'
A
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)

/\

i

A

] W<
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val,
val,
val,
val,
val,

i

1);
2);

4);

8);

16);

val =X72, input[i]
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HOW TO WRITE
WARP SYNCHRONOUS PROGRAMMING

Make Sync Explicit

Thread re-convergence dlverged dlverged

Use built-in functions to converge l ' l
threads explicitly
Do not rely on implicit thread re-

convergence.

converged
== time

28 <A NVIDIA.



HOW TO WRITE
WARP SYNCHRONOUS PROGRAMMING

diverged diverged

Use built-in functions to converge
threads explicitly

[

Do not rely on implicit thread re-
convergence.

|

Reading and writing the
same
memory location by
different threads

Use built-in functions to sync threads may cause data races.
and exchange data in one step.

When using shared memory, avoid data
races between convergence points.

29 NVIDIA.



WARP SYNCHRONOUS BUILT-IN FUNCTIONS

: which threads in a warp are active
__activemask

. exchange data between threads in warp
__all_sync, __any_sync, __uni_sync, _ ballot_sync
__shfl_sync, __shfl_up_sync, _ shfl_down_sync, _ shfl_xor_sync
__match_any_sync, __match_all_sync

: synchronize threads in a warp and provide a memory
fence

__syncwarp

30 NVIDIA.



EXAMPLE: ALIGNED MEMORY COPY

// pick the optimal memory copy based on the alignment
__device  void memorycopy(char *tptr, char *sptr, size t size) {
unsigned mask = activemask();

if (_ all sync(mask, is all aligned(tptr, sptr, 16))
return memcpy_aligned 16(tptr, sptr, size);

if (_all sync(mask, is all aligned(tptr, sptr, 8))
return memcpy_aligned 8(tptr, sptr, size);

3 NVIDIA.



EXAMPLE: ALIGNED MEMORY COPY

// pick the optimal memory copy based on the alignment Find the active threads
__device  void memorycopy(char *tptr, char *sptr, size t size) {

unsigned mask = activemask();

if (_ all sync(mask, is all aligned(tptr, sptr, 16))
return memcpy_aligned 16(tptr, sptr, size);

if (_all sync(mask, is all aligned(tptr, sptr, 8))
return memcpy_aligned 8(tptr, sptr, size);

32 NVIDIA.



EXAMPLE: ALIGNED MEMORY COPY

// pick the optimal memory copy based on the alignment Find the active threads

__device  void memorycopy(char *tptr, char *sptr, size t size) {

unsigned mask = _ activemask(); Returns true when all threads in ‘mask’

P have the same predicate value
if ( all sync(mask, is all aligned(tptr, sptr, 16))

return memcpy_aligned 16(tptr, sptr, size);

if (_ all sync(mask, is all aligned(tptr, sptr, 8))
return memcpy_aligned 8(tptr, sptr, size);

33 NVIDIA.



EXAMPLE: SHUFFLE

__shfl_sync, __shfl_down_sync

Broadcast: all threads get the value of ‘x’ from lane id 0

y = __shfl_sync(exffffffff, x, ); @

34 <A NVIDIA.



EXAMPLE: SHUFFLE

__shfl_sync, __shfl_down_sync

Broadcast: all threads get the value of ‘x’ from lane id 0

y = __shfl_sync(exffffffff, x, ); @
Reduction: )

35 <ZINVIDIA.

for (int offset = 16; offset > 0; offset /= 2)
val += _ shfl down_sync(oxffffffff, val, offset);




EXAMPLE: DIVERGENT BRANCHES

All *_sync built-in functions can be used in divergent branches on Volta

if ( lane_id < 16)

/\ #define FULLMASK exffffffff

__device  int get warp_sum(int v) {
= i for (int 1 = 1; i < 32; i = i*2)
. = get warp _sum(x); | | .. = get warp_sum(y); v += _ shfl xor_sync(FULLMASK, v, i);

- return v;
v }

36 <ZNVIDIA.



EXAMPLE: DIVERGENT BRANCHES

if ( lane_id < 16)

",////,///’/\\\\\\\\\\\\* #define FULLMASK oxffffffff

__device  int get warp_sum(int v) {
for (int 1 = 1; i < 32; i = i*2)

. = get warp _sum(x); | | .. = get warp_sum(y); v += _ shfl xor_sync(FULLMASK, v, i);

return v;

\/ }

Possible to write a library function that performs warp synchronous programming w/o
requiring it to be called convergently.

3 NVIDIA.



EXAMPLE: REDUCTION VIA SHARED MEMORY

Re-converge threads and perform memory fence

v += shmem[tid+16]; __ syncwarp();

shmem[tid] = v; __syncwarp();
v += shmem[tid+8]; _ syncwarp();
shmem[tid] = v; __syncwarp();
v += shmem[tid+4]; _ syncwarp();
shmem[tid] = v; __syncwarp();
v += shmem[tid+2]; _ syncwarp();
shmem[tid] = v; __syncwarp();
v += shmem[tid+1]; _ syncwarp();

shmem[tid] = v;

38 < NVIDIA.



BUT WHAT’S WRONG WITH THIS CODE?

v += shmem[tid+16];
shmem[tid] = v;

v += shmem[tid+8];

shmem[tid] = v;

vV += shmem[tid+4];

shmem[tid] = v;

v += shmem[tid+2];

shmem[tid] = v;

vV += shmem[tid+1];

shmem[tid] = v;

39 NVIDIA.



IMPLICIT WARP SYNCHRONOUS PROGRAMMING

Implicit warp synchronous programming builds upon two unreliable assumptions,
implicit thread re-convergence points, and

Implicit lock-step execution of threads in a warp.
Implicit warp synchronous programming is unsafe and unsupported.

Make warp synchronous programming safe by making synchronizations explicit.

40 NVIDIA.



IMPLICIT THREAD RE-CONVERGENCE

Example 1:

if (lane_id < 16)
A;
else
B
assert(__activemask() == Oxffffffff);



IMPLICIT THREAD RE-CONVERGENCE

Example 1:
if (lane_id < 16)
A;
else
B
assert(__activemask() == oxffffffff); not guaranteed to be true
Solution

Do not reply on implicit thread re-convergence

Use warp synchronous built-in functions to ensure convergence

42 NVIDIA.



IMPLICIT LOCK-STEP EXECUTION

Example 2

if (__activemask() == Oxffffffff) {
assert(__activemask() == Oxffffffff);

3

43 NVIDIA.



IMPLICIT LOCK-STEP EXECUTION

Example 2

if (__activemask() == Oxffffffff) {
assert(__activemask() == Oxffffffff); not guaranteed to be true

3

Solution
Do not reply on implicit lock-step execution

Use warp synchronous built-in functions to ensure convergence

44 NVIDIA.



IMPLICIT LOCK-STEP EXECUTION

Example 3  shmem[tid] += shmem[tid+16];
shmem[tid] += shmem|[tid+8];
shmem[tid] += shmem[tid+4];
shmem[tid] += shmem|[tid+2];
shmem[tid] += shmem[tid+1];

45 NVIDIA.



IMPLICIT LOCK-STEP EXECUTION

Example 3  shmem[tid] += shmem[tid+16];
shmem[tid] += shmem|[tid+8];

shmem[tid] += shmem[tid+4]; . data race
shmem[tid] += shmem|[tid+2];
shmem[tid] += shmem[tid+1];
Solution v += shmem[tid+16]; _ syncwarp();
.. shmem[tid] = v; __syncwarp();
Make sync explicit v += shmem[tid+8]; _ syncwarp();
shmem[tid] = v; __syncwarp();
v += shmem[tid+4]; _ syncwarp();
shmem[tid] = v; __syncwarp();
v += shmem[tid+2]; _ syncwarp();
shmem[tid] = v; __syncwarp();
v += shmem[tid+1];  syncwarp();

shmem[tid] =V, 46 <ANVIDIA.



LEGACY WARP-LEVEL BUILT-IN FUNCTIONS

Legacy built-in functions
__all(), __any(), __ballot(), __shfl(), __shfl_up(), __shfl_down(), __shfl_xor()

These legacy warp-level built-in functions can perform data exchange between the
active threads in a warp.

They do not ensure which threads are active.

They are deprecated in CUDA 9.0 on all architectures.

47 NVIDIA.



COOPERATIVE GROUPS VS BUILT-IN FUNCTIONS

// increment the value at ptr by 1 and return the old value

int mask = __activemask();

int rank = __popc(mask & 0));
int leader_lane = _ ffs(mask) - 1;

int res;

if (rank == 0)
res = atomicAdd(p, __popc(mask));

res = _ shfl_sync(mask, res, leader_lane);

__device__ int atomicAggInc(int *p);
coalesced _group g = ()
int res;
if (8. () ==9)
res = (p, g.size());
res = g. (res, 0);
return g. () + res;

return rank + res;

48 NVIDIA.




WARP SYNCHRONOUS PROGRAMMING
IN CUDA 9.0

New warp synchronous built-in functions ensure reliable synchronizations.
New warp synchronous built-in functions can be used divergently on Volta.

Legacy warp built-in functions are deprecated.

Cooperative groups offers
Higher-level abstraction of thread groups
Four levels of thread grouping

More scalable code and better software decomposition

49 NVIDIA.






BETTER COMPOSITION

Barrier synchronization hidden within functions

__device  int sum(int *x, int n)

{

}

__syncthreads();

All threads in thread block
must arrive at this barrier.

return total;

__global _ void parallel kernel(float *x)

{

// Entire thread block must call sum
sum(x, n);

Hidden constraint on
caller due to
implementation of sum.

51 < NVIDIA.



BETTER COMPOSITION

Explicit cooperative interfaces

__device_ int sum(thread group g, int *x, int n)

{
Participating thread group
provided by caller.
return total;
}
__global  void parallel kernel(...)
{
// Entlr'e thr‘ead block must call sum The need to synchronize
sum(t! thread_block(), x, n); in sum is visible in code.
}
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FUTURE ROADMAP

Partition by label or predicate, more complex scopes

At all scopes!

of1]o]1]o]1]o (Volta specific)

thread group cta = this _thread block();
thread group g = partition(cta, cta.thread rank() & 1);
Warp 32 Warp 32 Warp 32

SBbb..[ooon.. ooon.. |

thread group g = tiled partition(cta, 64);
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FUTURE ROADMAP

Library of collectives (sort, reduce, etc.)

template <int BlockThreads>
__global  int BlockReduce(float *d in, ...)

{
<BlockThreads> cta = ();
// Statically allocate shared reduction storage
__shared <decltype(cta), float> group reduce;
// Compute the block-wide sum for thread-©
float total = cooperative groups:: (
cta, d_in[cta.rank()], group_reduce);
}

On a simpler note:

// Collective key-value sort, default allocator
cooperative groups:: ( , myValues, myKeys);
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HONORABLE MENTION

The ones that didn’t make it into their own slide

_CG_DEBUG : Define to enable various runtime safety checks. This
helps debug incorrect APl usage, incorrect synchronization, or similar
issues (Automatically turned on with -G).

Tools help detect incorrect warp-synchronization with the racecheck
tool.

Match is a new Volta instruction that is able to return who in your
warp has the same 32 or 64 bit value
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Developers a flexible model for synchronization and communication
between groups of threads.

Shipping in CUDA 9.0
Provides safety, composability, and high performance
Flexibility to synchronize at various architecture and program defined scopes.

Deploy everywhere from Kepler to Volta
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COOPERATIVE GROUPS

Kyrylo Perelygin, Yuan Lin
GTC 2017
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Cooperative Groups: a flexible model for synchronization and
communication within groups of threads.

At a glance Benefits all applications

Scalable Cooperation among groups of threads Examples include:
Persistent RNNs
Flexible parallel decompositions Physics
Search Algorithms

Composition across software boundaries Sorting

Deploy Everywhere
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LEVELS OF COOPERATION: TODAY

__syncthreads(): block level
synchronization barrier in CUDA
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LEVELS OF COOPERATION: CUDA 9.0

For current coalesced set of threads:
auto g = coalesced threads();
For warp-sized group of threads:
auto block = this thread block();
auto g = tiled partition<32>(block)

For CUDA thread blocks:
auto g = this thread block();

For device-spanning grid:
auto g = this grid();

For multiple grids spanning GPUs:
auto g = this multi grid();

All Cooperative Groups functionality is
within a cooperative_groups:: namespace
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THREAD GROUP

Base type, the implementation depends on its construction.
Unifies the various group types into one general, collective, thread group.

We need to extend the CUDA programming model with handles that can
represent the groups of threads that can communicate/synchronize

Thread Grid
Group ' Group
Thread
Block _
Tile Thread Coalesced Mlgti-G rid
Block . Group | roup
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THREAD BLOCK

Implicit group of all the threads in the launched thread block

Implements the same interface as

void // Synchronize the threads in the group

unsigned // Total number of threads in the group

unsigned // Rank of the calling thread within [0, size]

bool // Whether the group violated any API constraints
And additional specific functions:

dim3 // 3-dimensional block index within the grid

dim3 // 3-dimensional thread index within the block

6
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PROGRAM DEFINED DECOMPOSITION
IV VPPV . threads taunched

thread_block g = this_thread_block();

foobar(thread_block g) LWLLLLLULLLLVLLEELULELLLLLELLLLE - ALl threads in thread block

thread group tile32 = tiled partition(g, 32);

HHH

thread group tile4 = tiled partition(tile32, 4);

wloww ol ol ol ol ol Restricted to powers of two,
vy, [y v W yvvy vy v and <= 32 in initial release
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GENERIC PARALLEL ALGORITHMS

Per-Block Per-Warp
g = (); g-= ( (), 32);
reduce(g, ptr, myval); reduce(g, ptr, myval);
__device_ int reduce( g, int *x, int val) {
int lane = g. 1
for (int i = g. ()/2; 1i>0; 1/=2){
x[lane] = val; g. ();
val += x[lane + i]; g. ();
}
return val;

}
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THREAD BLOCK TILE

A subset of threads of a thread block, divided into tiles in row-major order

thread block tile<32> tile32 = tiled partition<32>(this thread block());

thread block tile<4> tile4 = tiled partition<4>(this thread block());

Exposes additional functionality: .shfl() .any()

.shfl down() .all()

.shfl up() .ballot()
Size known at compile time = fast! .shfl_xor()  .match_any()

.match all()
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STATIC TILE REDUCE

Per-Tile of 16 threads

g = 16> ( ());
tile reduce(g, myval);

template <unsigned size>

__device  int tile reduce( <size> g, int val) {
for (int i = g. ()/2; i>0; 1/=2){
val += g. (val, 1);
}

return val;

}
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GRID GROUP

A set of threads within the same grid, guaranteed to be resident on the device

New CUDA Launch API to opt-in:

cudalLaunchCooperativeKernel(...)

__global  kernel() {
grid group grid = this grid();
// load data
// loop - compute, share data
grid.sync();
// devices are now synced

Device needs to support the cooperativelaunch property.

cudaOccupancyMaxActiveBlocksPerMultiprocessor(&numBlocksPerSm, kernel, numThreads, ©));
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GRID GROUP

The goal: keep as much state as possible resident

Shortest Path / Search

Weight array perfect for
persistence
Iteration over vertices?
Fuse!

Genetic Algorithms /
Master driven algorithms

slave
iccal!gesl / .\
g N W
0° 2)
00 °oo
7 N 080
slave 5
(e nindividual
[+] o o u’pggulalim‘. (o] g o
X X7 o o‘o
slav slave
Synchronization
between a master block
and slaves

Particle Simulations

l i
Q
\ \j

“o
4

P
71
S

Synchronization
between update and
collision simulation
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MULTI GRID GROUP

A set of threads guaranteed to be resident on the same system, on multiple devices

__global  void kernel() {
multi grid group multi grid = this multi grid();
// load data
// loop - compute, share data
multi grid.sync();
// devices are now synced, keep on computing

GPU A GPU B
Block O Block 1 Block O Block 1

AAsd AAad Adaa YV
Synchronize
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MULTI GRID GROUP

Launch on multiple devices at once

New CUDA Launch API to opt-in:

cudalLaunchCooperativeKernelMultiDevice(...)

Devices need to support the cooperativeMultiDevicelLaunch property.

struct cudalaunchParams params[numDevices];
for (int i = @; 1 < numDevices; i++) {

params[i].
params[i].
params[i].
params[i].
params[i].
params[i].

}

func = (void *)kernel;

gridDim = dim3(..); // Use occupancy calculator
blockDim = dim3(..);

sharedMem = ..;

stream = ..; // Cannot use the NULL stream

args = ..;

cudalLaunchCooperativeKernelMultiDevice(params, numDevices);
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COALESCED GROUP

Discover the set of coalesced threads, i.e. a group of converged threads executing in SIMD

. ) (N W W W .
 active | reads AAA - Size: 8
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COALESCED GROUP

Discover the set of coalesced threads, i.e. a group of converged threads executing in SIMD

coalesced group active = coalesced threads();

YYVVVYVYYVYY

Size: 8

if () { // start block

: oup g1
Internal Lane Mask ........

Size: 3
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COALESCED GROUP

Discover the set of coalesced threads, i.e. a group of converged threads executing in SIMD

coalesced group active = coalesced threads(); VYYVYVYYYVYY Size: 8
if () { // start block
|coa1esced_gr‘oup gl = coalesced threads(); \ 2 \ 4 Size: 3

Internal Lane Mask ........
[o] [1] Bl e1 thread_rank();

Automatic translation to rank-in-group!
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COALESCED GROUP

Discover the set of coalesced threads, i.e. a group of converged threads executing in SIMD

coalesced group active = coalesced threads(); VYYVYVYYYVYY Size: 8
if () { // start block
|coa1esced_gr‘oup gl = coalesced threads(); \ 2 \ 4 Size: 3

Internal Lane Mask ........

gl.thread rank();

B

Automatic translation from rank-in-group to

SIMD lane!
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COALESCED GROUP

Discover the set of coalesced threads, i.e. a group of converged threads executing in SIMD

coalesced_group active = coalesced_threads(); YYVVVYYYY Size: 8
if () { // start block
|coa1esced_gr‘oup gl = coalesced threads(); \ 2 \ 4 Size: 3
Internal Lane Mask ........
! gl.thread rank();
gl.shfl(value, @);
. . 0 | gl, 2 Size: 2 and 1
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COALESCED GROUP

Discover the set of coalesced threads, i.e. a group of converged threads executing in SIMD

coalesced group active = coalesced threads(); VYYVYVYYYVYY Size: 8
if () { // start block
|coa1esced_gr‘oup gl = coalesced threads(); \ 2 \ 4 Size: 3
Internal Lane Mask ........
! gl.thread rank();
gl.shfl(value, @);
. . 0]l g2 = tiled partition(gl, 2); Size: 2 and 1

} // end block

active AAA Al
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ATOMIC AGGREGATION

Opportunistic cooperation within a warp

inline _ device  int atomicAggInc(int *p)

{

coalesced group g = ()
int prev;
if (g. () == 0) {
prev = (p, g.size());
}
prev = g. () +8. (prev, 0);

return prev;
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ARCHITECTURE







