/‘_'\

= %fhd v hdUT chno Igy (_,), KAUST

CS 380 - GPU and GPGPU Programming
Lecture 24: Scan Bank Conflicts;
CUDA Memory, Pt. 4

Markus Hadwiger, KAUST

4

Reading Assignment #14 (until Dec 6)

Read (required):

» Warp Shuffle Functions
— CUDA Programming Guide 11.5, Appendix B.22

» CUDA Cooperative Groups
— CUDA Programming Guide 11.5, Appendix C

— https://developer.nvidia.com/blog/cooperative-groups/

* Programming Tensor Cores
— CUDA Programming Guide 11.5, Appendix B.24 (Warp matrix functions)

— https://developer.nvidia.com/blog/programming-tensor-cores-cuda-9/
Read (optional):
« CUDA Warp-Level Primitives

— https://developer.nvidia.com/blog/using-cuda-warp-level-primitives/

* Warp-aggregated atomics

— https://developer.nvidia.com/blog/
cuda-pro-tip-optimized-filtering-warp-aggregated-atomics/

GPU Parallel Prefix Sum

Markus Hadwiger, KAUST 3

Parallel Prefix Sum (Scan)

« Definition:
The all-prefix-sums operation takes a binary associative operator
@ with identity /, and an array of n elements
[ap, @, --s @p4]
and returns the ordered set
[/, ay, (2,® a,), ..., (a, D a,©D ... D a,,)].

« Example:
if ® is addition, then scan on the set

[3170416 3]
returns the set
[03411111516 2

(From Blelloch, 1990, “Prefix
Sums and Their Applications)

Parallel08 — Control Flow

Work Efficiency Considerations

« The first-attempt Scan executes log(n) parallel
iterations

— Total adds: n * (log(n) — 1) + 1 > O(n*log(n)) work

« This scan algorithm is not very work efficient
— Sequential scan algorithm does n adds
— A factor of log(n) hurts: 20x for 10*6 elements!

A parallel algorithm can be slow when execution
resources are saturated due to low work efficiency

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Balanced Trees

« Forimproving efficiency
« A common parallel algorithm pattern:

— Build a balanced binary tree on the input data and sweep it to and from the

root
— Tree is not an actual data structure, but a concept to determine what each

thread does at each step

« For scan:
— Traverse down from leaves to root building partial sums at internal nodes
in the tree
* Root holds sum of all leaves
— Traverse back up the tree building the scan from the partial sums

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Typical Parallel Programming Pattern

« 2 log(n) steps

log(n)

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Typical Parallel Programming Pattern

« 2 log(n) steps

I I I I
| 1]
]
N

‘"N NN

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

O(n) Scan [Blelloch] “*m

%o |Zox)| x2 |ZGox)| x4 |EEexs)| %6 | E(xe.x7)
d=2 /T
% |Zex)| x |Zeo.x)| x| S(xs)| xe Z(X;..XT)
d=1 /7 /'T
%0 |Zxex)| % Z(x;..xs) Xy |TEex)| z(x;..x7)
d=0 /T /T /T /T
% N Xz “ 5 | x s |
%o |ZGox)| % |Exexs)| x |ZGexs)| x| ECe.xs)
|
Z$O
Xo | S(xo.%1)
d=0
o |l
d=1 N

* Work efficient (O(n) work) W | 0
. d=2 / / /
® Bank conflicts, and lots of ‘em e == = =
0 X 2% %) | B(Xp..X2) | 2(Xg. X3) | 2(Xg.. %) | 2(Xg.. X5) | 2(Xg..Xe)

Build the Sum Tree

T | 3
Stride 2
T | 3
Stride 4
T | 3
Stride 8 Iteration log(n), 1 thread
T | 3

lterate log(n) times. Each thread adds value stride /2 elements away to its own vaIL'Je.

Note that this algorithm operates in-place: no need for double buffering

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Down-Sweep Variant 1: Exclusive Scan

We now have an array of partial sums. Since this is an exclusive scan,
set the last element to zero. It will propagate back to the first element.

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Build Scan From Partial Sums

T | 3

4

7

11

4

5

6

0

Parallel08 — Control Flow

Hendrik Lensch and Robert Strzodka

Build Scan From Partial Sums

Iteration 1
1 thread

Stride 8

Iterate log(n) times. Each thread adds value stride /2 elements away to its own value.
and sets the value stride elements away to its own previous value.

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Build Scan From Partial Sums

ride 8

Iteration 2
2 threads

ride 4

Iterate log(n) times. Each thread adds value stride /2 elements away to its own value.
and sets the value stride /2 elements away to its own previous value.

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Build Scan From Partial Sums

T 3 4
Stride 8
T 3 4
Stride 4 ;>'\)®
T 3 0
swide 1 >4 e
T 0 3

Done! We now have a completed scan that we can write out to device memory.

Total steps: 2 * log(n).
Total work: 2 * (n-1) adds = O(n) Work Efficient!

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Down-Sweep Variant 2: Inlusive Scan

25

We now have an array of partial sums. Let’s propagate the sums back.

Parallel08 — Control Flow

Hendrik Lensch and Robert Strzodka

Build Scan From Partial Sums

11

Stride 8 —>§ no operation

11

Iterate log(n) times. Each thread adds value stride /2 elements away to its own value.
First element adds zero.

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Build Scan From Partial Sums

11
ride 8 —>?
4 11 5
Y Y .
. Iteration 2
e ? ? 2 threads
4 6

lterate log(n) times. Each thread adds value stride /2 elements away to its own value.
First element adds zero.

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Build Scan From Partial Sums

- 3 25
Stride 8
~ 3 25
Stride
T : 25
g borton kg
- 2 25

Done! We now have a completed scan that we can write out to device memory.

Total steps: 2 * log(n).
Total work: <2 *(n-1) adds = O(n) Work Efficient!

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Bank Conflicts in Scan
- Non-power-of-two -

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Initial Bank Conflicts on Load

« Each thread loads two shared mem data elements

 Tempting to interleave the loads
temp[2*thid] = g 1datal[2*thid];
temp[2*thid+1l] = g idatal[Z*thid+1];

* Threads:(0,1,2,...,8,9,10,...)>banks:(0,2,4,...,0,2,4,...)

« Better to load one element from each half of the array
temp[thid] = g idatalthid];
temp[thid + (n/2)] = g 1datal[thid + (n/2)];

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Bank Conflicts in the tree algorithm

« When we build the sums, each thread reads two shared
memory locations and writes one:

« Th(0,8) access bank 0

10|11 |12 |13 |14 | 15 1 2 |

(X
w
5
2
.
~
o0
w0

Bank: 1

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

thm

the tree algori

IN

ICtS |

Bank Confl

tes one:

d wr
Th(1,9) access bank 2, etc.

When we build the sums, each thread reads two shared

memory locations an

0

15

0

14

16

13

14

12

13

11

12

10

11

9

10

9

8

1

0

hAAEAEAREAAELALE

3|11(7|/0{4(1|16[3(5|8(2|0(3(3|1(9(4|5|7

Bank

314(7|7|14,5|6(9|5(13/2|2(3|6|1(10|14 |97

RS
s
R
oo Bong
e
¢ 5
HEONEd
ERREREE

SO

g
G
e R
T
2 8 % s

G888 mooae
s
i

e

s
s
o
&%]

G
ot e
] 2
o
S I——
Griris
SR
B
CRELRER

Hendrik Lensch and Robert Strzodka

Parallel08 — Control Flow

thm

the tree algori

ICtS In

Bank Confl

2nd jteration

for example

even worse

H

ts

4-way bank conflic

etc.

H

access Bank 5

13)

9

H

5

!

(1

Th

]

Th(0,4,8,12) access bank 1

0

15

0

14

16

13

14

12

13

11

12

10

11

10

9

8

314(7|4|14|5|6(9|5(13|/2|2(3|6|1(1014(9|7

ST

Bank

314(7|11|145|6(14|5(13|/2|15(3|6|1(16|/4 |9 |7

£
e
[B
HEEM
Siiipg

5 i
B

o
M
Bhaees

e

g

Hendrik Lensch and Robert Strzodka

Parallel08 — Control Flow

« A full binary tree with 64 leaf nodes:

Scan Bank Conflicts (1)

Scale (s) Thread addresses
1 o[2T4]e6[8[10]12]14]16]18]20]22]24] 262830 32]34[36]38[40[42[44]46]48[50]52]54[56]58 6062]
2 0O[4]8|12)168]20]24(28(32|36(40]|44]48]52|56(60
4 0|8 |16]24|32]140]|48|36
8 0[16]32]48
16 0|32
32 0
Conflicts | Banks
2way [O0[2[4]6 10]12 TH 10]12 HEEE HBEFE BEERE EiE
4way [0[32 12104 12014 4
4-way 0 0 0 0
4-way 0|l0]0]0
2-way 0|0
None 0

« Multiple 2-and 4-way bank conflicts

« Shared memory cost for whole tree
1 32-thread warp = 6 cycles per thread w/o conflicts
Counting 2 shared mem reads and one write (s[a] += s[b])

6 * (2+4+4+4+2+1) = 102 cycles

36 cycles if there were no bank conflicts (6 * 6)

Parallel08 — Control Flow

Hendrik Lensch and Robert Strzodka

Scan Bank Conflicts (2)

+ It’s much worse with bigger trees!

« A full binary tree with 128 leaf nodes
— Only the last 6 iterations shown (root and 5 levels below)

Scale (s) Thread addresses

2 0|4 [8]12]16]20]24]28]32]36]40]44]48]52]56]| 60| 64]68] 72| 76]80] 84]88] 92 | 96 |100]104[108]112]116]120]122]
4 0 | 8 [16]24[32[40[48] 56|64 72| 80| 88 96 [104]112[120

8 0 1632 48[64[80] 96112

16 0 [32]64] 9%

32 0 |64

64 0

Conflicts Banks

4way [0 [4 2] 0 8 2] 04 2] 04 2] 04 2] 04 B 2] 0 [4 I8l 2] 0 [4 el 10]
8-way 0 [O | 0 0 0 [O [N O R8N O |

gway [0 |0[0|0[0]J0[0]O

4-way 0l0j0]0O

2-way g]0

None 0

« Cost for whole tree:
— 12%2 + 6*(4+8+8+4+2+1) = 186 cycles
— 48 cycles if there were no bank conflicts! 12*1 + (6*6)

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Bank Conflicts in the tree algorithm

« We can use padding to prevent bank conflicts
— Just add a word of padding every 16 words:

« No more conflicts! 32 for full warps!

o [10|11]12]|13]14] 15 123
8(2(0(3(3(1(9 4(5(7|...
o111z 2 s 67 ozt 1] 15 T2 15T
314 7145|169 1312123 (6(1(10 4(9(7]...

Now, within a 16-thread half-warp, all threads access different banks.

32-thread full warp!
(Note that only arrows with the same color happen simultaneously.)

Bank:

o
—
(X
w
5
2
.
~
o0

w
-
~l
=
5
-
N
w

P
I
R |

~J
&)

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Use Padding to Reduce Conflicts

« This is a simple modification to the last exercise

« After you compute a shared mem address like this:
Address = stride * thid;

« Add padding like this:

Address += (Address >> 4);

 This removes most bank conflicts
— Not all, in the case of deep trees

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Fixing Scan Bank Conflicts

« Insert padding every NUM_BANKS elements

const int LOG NUM BANKS = 4; // 16 banks
int tid = threadIdx.x;
int s = 1;
// Traversal from leaves up to root
for (d = n>>1; 4 > 0; d >>= 1)
{
if (thid <= d)
{
int a = s*¥(2*¥tid); int b = s* (2*tid+1)
a += (a >> LOG NUM BANKS); // insert pad word
b += (b >> LOG NUM BANKS); // insert pad word
shared[a] += shared[b]:;

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Fixing Scan Bank Conflicts

« A full binary tree with 64 leaf nodes

Leaf Nodes Scale (s) Thread addresses

64 1 ol2[4fse]af10[12]1417[18]21[23]25[27[25]31[34|36]|38]40[42]44]|46]48[51]|53]55]57]|59]61]63]

2 0481217 |21]|25]|29]|34|38|42|46]51|55|59(63

4 08 |17]125]134|42]|51]| 5%

8 0117]34 51

16 [0 [34)= Padding inserted
32 0

Conflicts Banks

None

None

None

None

None

None

« No more bank conflicts!
— However, there are ~8 cycles overhead for addressing
+ Foreach s[a] += s[b] (8 cycles/iter. * 6 iter. = 48 extra cycles)
— Sojust barely worth the overhead on a small tree
+ 84 cycles vs. 102 with conflicts vs. 36 optimal

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Fixing Scan Bank Conflicts

A full binary tree with 128 leaf nodes
— Only the last 6 iterations shown (root and 5 levels below)

Scale (s) Thread addresses

2 [o[aJ s8] 12Ta7[21] 25| 29 [34]38]42]46] 51 55 [59 [63 [68] 72]76[80]85]39] 93[97[102] 106] 110] 114]118] 123] 127] 131]
4 o] 8|47] 25 [34] 42|51 59 |68]76]85] 93] 102] 110[118] 127
8 |o[17]34] 51 [e8]85] 102|119
16 |0]|34]68] 102
32 [ofes []= Padding inserted
64 |0]
Conflicts Banks
None [0]4 A HE 2610%3 12[o[5]oJiS] 6 [10]14] 2
None [0 o |2[10] 3 4[12] 5 6
None |O 21 314]|5] 6
None |0l 2| 4] 6
None |0]| 4
None |0|

« No more bank conflicts!
— Significant performance win:
+ 106 cycles vs. 186 with bank conflicts vs. 48 optimal

ParallelO

8 — Control Flow

Hendrik Lensch and Robert Strzodka

Fixing Scan Bank Conflicts

« A full binary tree with 512 leaf nodes
— Only the last 6 iterations shown (root and 5 levels below)

Scale (s) Thread addresses

8 [o[17]34]51]68] 85 [102[119]136]153[170]187[204[221] 238 [255] 272 [289 [306 [323 [340[357 [374] 391 [408 [425[442 [459 476 [483 [510 527 |
16 (o] 34 [68 [102[136]170[204|238 | 272|306 | 340|374 | 408 | 442|476 | 510
32 [o] 68136204272 340(408] 476
64 [0[136]272]408
128 |0|272 = Padding inserted
256 [0
Conflicts |Banks
None [0 6 9 [10 7 14196 0 2131405 [[s o a2 el < 5]
2-way |0 2140 2[4a] 5 10 [FEY 12
2-way |0 12
2-way |0
2-way |0
MNone E

 Wait, we still have bank conflicts
— Method is not foolproof, but still much improved
— 304 cycles vs. 570 with bank conflicts vs. 120 optimal

« But it does not pay of to optimize for the rest. Address
calculations are getting too expensive

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Summary

« Parallel Programming requires careful planning
— of the branching behavior
— of the memory access patterns
— of the work efficiency

* Vector Reduction
— branch efficient
— bank efficient

« Scan Algorithm
— based in Balanced Tree principle:
bottom up, top down traversal

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

CUDA Memory
Continued

Markus Hadwiger, KAUST 34

Memory and Cache Types

Global memory
« [Device] L2 cache
* [SM] L1 cache (shared mem carved out; or L1 shared with tex cache)

« [SM/TPC] Texture cache (separate, or shared with L1 cache)

« [SM] Read-only data cache (storage might be same as tex cache)

Shared memory

« [SM] Shareable only between threads in same thread block

Constant memory: Constant (uniform) cache

Unified memory programming: Device/host memory sharing

Markus Hadwiger, KAUST 35

Constants

« |Immediate address constants

* |ndexed address constants
I$

« Constants stored in DRAM, and cached L1
on chip !
- L1 per SM
« A constant value can be broadcast to all v
threads in a Warp > R
— Extremely efficient way of accessing a . v v
value that is common for all threads in a Operand Select
block! | |
L o LS SR o5 i .
device constant float gpuGammal[2] ;

M N — v

cudaMemcpyToSymbol (gpuGamma, &gamma, sizeof (float)) ;

res = gpuGamma[0] * threadIdx.x;

Texture Memory

Cached, potentially exhibiting higher bandwidth if there is
locality in the texture fetches;

They are not subject to the constraints on memory access
patterns that global or constant memory reads must respect
to get good performance

The latency of addressing calculations is hidden better,
possibly improving performance for applications that perform
random accesses to the data

No penalty when accessing float4

Optional

— 8-bit and 16-bit integer input data may be optionally converted to 32-
bit floatingpoint

— Packed data may be broadcast to separate variables in a single
operation;

— values in the range [0.0, 1.0] or [-1.0, 1.0]

— texture filtering

— address modes, e.g. wrapping / texture borders

> L
0O
(@)=
L
26
i
—O
=
Q.
o

Additional Texture Functionality

All of these are “free”
— Dedicated hardware

— Must use CUDA texture objects
» See CUDA Programming Guide for more details
» Texture objects can interoperate graphics (OpenGL, DirectX)

Out-of-bounds index handling: clamp or wrap-around
Optional interpolation
— Think: using fp indices for arrays

— Linear, bilinear, trilinear
* Interpolation weights are 9-bit

Optional format conversion
— {char, short, int, fp16} -> float

&7

> L
0O
(@)=
L
26
i
—O
=
Q.
o

12013, NVIDIA

Examples of Texture Object Indexing

‘ i (2.5, 0.5)

(1.0, 1.0)

w N O

Index Wrap:

0o 1 2 3 4

0
1
2 -
3

Integer indices fall between elements

Optional interpolation:
Weights are determined by coordinate distance

Index Clamp:

w M= O

O 1 2 3 4

(5.5, 1.5)

L--J

al5]

Native Memory Layout — Data

Locality
CPU GPU
* 1D input * 2D 1nput
* 1D output e 2D output
 Other dimensions e Other dimensions with
Wlth offsets offsets
Input Input Output

Color coded locality
red (near), blue (far)

4

_ Output

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka 22

Space-Filling Curves: Morton Order (Z Order)

Map higher-dimensional space to 1D

AR
<

« Z-order: Equivalent to quadtree (octree in 3D) depth-first traversal order

0 1
0800, 0
OBRO0, 0

0 1

22

0000

0001

0010

0011

0100

0101

0110

0111

=— 1
H s

1000

1001

1010

1011

1,0

1,0

4
0,0
0,0

2

1100

1101

1110

1111

5 2 3 6 7 8 9 12 13 10 11 14 15
1, 0850, 0841, OO0, Of1, 1860, 1881, 1480, 1461, 1840, 1081, 150, 1
1, ORS0, O 1,080, O, 1880, 1881, 1880, 1881, 1880, 1881, 1880, 1

3 4 3) 6 7 8 9 10 11 12 13 14 15

1D Access

Access to linear Cuda memory
floatd* pos; cudaMalloc((void**) &pos, x*sizeof (floatd)
Texture reference

— type
— access/filtering mode

texture< floatd, 1, cudaReadModeElementType> texPos;
Bind to linear array

cudaBindTexture (0, texPos, pos, x*sizeof (floatd))):;

cudaUnbindTexture (texPos) ;

Within kernel

floatd pal = texlDfetch(texPos, threadIdx.x)

Writing to a texture that is currently read by some
threads is undefined!!!

) ;

2D Access

« Optimized for 2D / 3D locality

texture< floatd, 2, cudaReadModeElementType> texImg;

* Requires binding to special Array memory -
special memory layout

cudaChannelFormatDesc floatTex =
cudaCreateChannelDesc<floatd>() ;

floatd* src;
cudaArray* img;
cudaMallocArray(&img, &floatTex, w, h);

cudaMemcpyToArray (img, 0, O, src, w*h*sizeof(floatd),
cudaMemcpyHostToDevice) ;

cudaBindTextureToArray(texImg, img, floatTex)) ;

cudaUnbindTexture (texImg) ;

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

2D Access

 Within kernel

floatd r = tex2D(texImg, x +xoff, y+yoff);

* Pros
— optimized for 2D locality (optimized memory layout / spacefilling curve)

« Cons

— |If the result of some kernel should be used as 2D texture
cudaMemcpyToArray IS required

— You cannot write to a texture which is currently read from

e CUDA “surfaces” are writeable textures!

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

Texture performance

Texture :

Provides hardware accelerated filtered
sampling of data (1D, 2D, 3D)

Read-only data cache holds fetched samples
Backed up by the L2 cache

SMX vs Fermi SM :

4x filter ops per clock
4x cache capacity

Read-only
Data Cache

1

L2

Texture Cache Unlocked

SMX
Added a new path for compute I 7 3
Avoids the texture unit |
Allows a global address to be fetched and cached Tex
Eliminates texture setup |
Why use it? 2
Separate pipeline from shared/L1 Read-only
- : : Data Cache
Highest miss bandwidth
Flexible, e.g. unaligned accesses T
Managed automatically by compiler L2
“const __ restrict” indicates eligibility

Global Memory Accesses

 Memory coalescing

« Cached memory access

47

Memory Layout of a Matrix in C

My, M, M,, M3,

MO,3 M1,3 M2,3 M3,3

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of lllinois, Urbana-Champaign

48

Memory Coalescing

* When accessing global memory, peak performance
utilization occurs when all threads 1n a half warp (full
warp on Fermi1) access continuous memory locations.

* Requirements relaxed on >=1.2 devices; L1 cache on Fermi!

Not coalesced coalesced

Thread >
Thread 2=

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 49
ECE 498AL, University of lllinois, Urbana-Champaign

Memory Layout of a Matrix in C

Access
direction in

Kernel
COde Mo,z M1,2 Mz,z M3,2

MO,3 M1,3 M2,3 M3,3

Time Period 1 Time Period 2

T, T, T, T,||T, T, T, T,

; MO,l 1\/Il,l M2,1 M3,1 MO,Z M1,2 M2,2 M3,2 MO,3 M1,3 M2,3 M3,3

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of lllinois, Urbana-Champaign

50

Memory Layout of a Matrix in C

Access
direction in

Kernel
COde Mo,z M1,2 Mz,z M3,2

MO,3 M1,3 M2,3 M3,3
Time Period 2
T T, T,
y Y

> —
T

i
Tikne Period 1
T, T, T,

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of lllinois, Urbana-Champaign

51

Aligned and sequential

Addresses: 96 128

Global Memory Acc. _ (MM H

Compute capability: 1.0and 1.1 ‘ 1.2and 1.3 2.x and 3.x

o

Memory transactions: Uncached Uncached Cached

1x 64B at 192 1x 64B at 192 1x 32B at 160
CUDA 6 5 CC 1 O —_ 3 X 1% 32B at 192
)))) 1x 32B at 224

Aligned and non-sequential

Addresses: 96 128

R

Cached on Fermi (cc. 2.x)

and higher TR,

Threads: ©
S Compute capability: 1.0and 1.1 ‘ 1.2and 1.3 2.x and 3.x
L 1 Ca Ch e p e r M Memory transactions: Uncached Uncached Cached
8x 32B at 128 1x 64B at 128 1x 32B at 128 1x 128B at 128
Global L2 cache |
8x 32B at 224 1x 32B at 224

Compile time flag can choose:

Mis-aligned and sequential

« Caching in both L1 and L2 s

288

xR

+ Caching only in L2 ///////////////___///////////////{Z

Threads: ¢

CaCh e | i n e S ize (L 1 , L2) : Compute capability: 1.0 and 1.1 ‘ 1.2 and 1.3 2.x and 3.x

Memory transactions: Uncached Uncached Cached

° 1 28 b tes 7x 32B at 128 1x 128B at 128 1x 32B at 128
y 8x 32B at 160 1x 64B at 192 1x 32B at 160
8x 32B at 192 1x 32B at 256 1x 32B at 192

1x 32B at 256 1x 32B at 256

Global Memory Access Arch. Differences (1)

Aligned and sequential
Addresses: 96 128 160 192 224 256 288
—————
HIHTEHIT T A
Threads: 0 31
Compute capability: 1.0 and 1.1 1.2 and 1.3 2.x and 3.0
Memory transactions: Uncached Cached
1x 64Bat128|1x 64Bat128|1x128B at 128
1x 64Bat192|1x 64B at 192

Markus Hadwiger, KAUST 53

Addresses: 96 128 160 192 224 256 288

Threads:

Compute capability: 1.0 and 1.1 1.2 and 1.3 2.xand 3.0
Memory transactions: Uncached Cached

8x 32Bat128|1x 64Bat128(1x128Bat 128
8x 32Bat160|1x 64B at 192
8x 32Bat 192
8x 32Bat 224

Markus Hadwiger, KAUST 54

Global Memory Access Arch. Differences (3)

Misaligned and sequential

Addresses: 96 128 160 192 224

256 288

|_[_l |

M

Threads:
Compute capability: 1.0and 1.1 1.2 and 1.3 2.x and 3.0
Memory transactions: Uncached Cached

/7x 32Bat128|1x128B at 128
8x 32Bat160|1x 64B at 192
8x 32Bat192|1x 32B at 256

8x 32Bat 224
1x 32B at 256

1x128B at 128
1x128B at 256

Markus Hadwiger, KAUST

55

Compute Capab. 3.x (Kepler, Part 3)

Global memory accesses for devices of compute capability 3.x are cached in L2 and for
devices of compute capability 3.5 or 3.7, may also be cached in the read-only data cache
described in the previous section; they are normally not cached in L1. Some devices of
compute capability 3.5 and devices of compute capability 3.7 allow opt-in to caching of
global memory accesses in L1 via the -Xptxas -dlcm=ca option to nvcc.

A cache line is 128 bytes and maps to a 128 byte aligned segment in device memory.
Memory accesses that are cached in both L1 and L2 are serviced with 128-byte memory
transactions whereas memory accesses that are cached in L2 only are serviced with
32-byte memory transactions. Caching in L2 only can therefore reduce over-fetch, for
example, in the case of scattered memory accesses.

Global Memory Access

Aligned accesses (sequential/non-sequential)

all recent —
compute capabilities | | | —]
-8 XTSI
Compute capability.: 2%, 3%, 5
Memory transac tions: Uncached Cached
Beware:
Uncached here means
nOt CaChed in L1 Mis-aligned accesses (sequential/non-sequential)
Addresses: %

the L2 cache is ///////////W////////W///////

always used! fhreacs

Compute capability: 2%, 3% 5X
Memory transac tions: Uncached Cached

X a
1x 32B at 256

> LuJ
(o1s)
(s
—
o =
O
-
e

Maximize Byte Use

SM

SM

SM

DRAM

* Two things to keep in mind:
— Memory accesses are per warp

— Memory is accessed in discrete
chunks
* lines/segments

* want to make sure that bytes
that travel from DRAM to SMs
get used

— For that we should understand
how memory system works

* Note: not that different from CPUs

— 86 needs SSE/AVX memory
instructions to maximize performance

33

> L
DO
o=z
—
S
05
—O
=
o
o

GPU Memory System

\

s

\—

DRAM

* All data lives in DRAM
— Global memory
— Local memory
— Textures

— Constants

34

> L
O
oz
- Lil
25
~O
-
(-
o

GPU Memory System

-
SM

\

s

\—

L2

U
5

DRAM

 All DRAM accesses go
through L2

* Including copies:
— P2P
— CPU-GPU

35

> L
(GYE)
QZ
L
=i
23
O
-
Q.
o

,|"I.I V
-_"'.__. \
D W

GPU Memory System

(’

\

J

s

\—

L2

SM-
1T
T

DRAM

* Once inan SM, data
goes into one of 3
caches/buffers

* Programmer’s choice
— L1 is the “default”

— Read-only, Const
require explicit code

36

> L
(S0 i 52
o=z
—
S
CE
=0
=
Q.
%
- o

013, NV DIA

Access Path

L1 path

— Global memory

* Memory allocated with cudaMalloc()
* Mapped CPU memory, peer GPU memory
* Globally-scoped arrays qualified with __ global

— Local memory
» allocation/access managed by compiler so we’ll ignore

* Read-only/TEX path

— Data in texture objects, CUDA arrays

— CC 3.5 and higher:
* Global memory accessed via intrinsics (or specially qualified kernel arguments)

* Constant path
— Globally-scoped arrays qualified with __constant___

37

> L
O
oz
- Lil
25
~O
-
(-
o

Access Via L1

* Natively supported word sizes per thread:
— 1B, 2B, 4B, 8B, 16B
* Addresses must be alighed on word-size boundary
— Accessing types of other sizes will require multiple instructions

* Accesses are processed per warp
— Threads in a warp provide 32 addresses
* Fewer if some threads are inactive

— HW converts addresses into memory transactions

* Address pattern may require multiple transactions for an instruction
* If N transactions are needed, there will be (N-1) replays of the instruction

38

Compute Capab. 3.x (Kepler, Part 4)

If the size of the words accessed by each thread is more than 4 bytes, a memory
request by a warp is first split into separate 128-byte memory requests that are issued
independently:

» Two memory requests, one for each half-warp, if the size is 8 bytes,
» Four memory requests, one for each quarter-warp, if the size is 16 bytes.

Each memory request is then broken down into cache line requests that are issued
independently. A cache line request is serviced at the throughput of L1 or L2 cache in
case of a cache hit, or at the throughput of device memory, otherwise.

Note that threads can access any words in any order, including the same words.

Data that is read-only for the entire lifetime of the kernel can also be cached in the read-
only data cache described in the previous section by reading it using the _ 1dg ()
function (see Read-Only Data Cache Load Function). When the compiler detects that
the read-only condition is satisfied for some data, it will use __1dg() to read it. The
compiler might not always be able to detect that the read-only condition is satisfied

for some data. Marking pointers used for loading such data with both the const and
__restrict _ qualifiers increases the likelihood that the compiler will detect the read-
only condition.

Vectorized Memory Access

See https://devblogs.nvidia.com/cuda-pro-tip-increase-
performance-with-vectorized-memory-access/

__global _ void device copy_vector2 kernel(int* d_in, int* d_out, int N) {
int idx = blockIdx.x * blockDim.x + threadIdx.Xx;
for (int i = idx; i < N/2; i += blockDim.x * gridDim.x) {
reinterpret_cast<int2*>(d_out)[i] = reinterpret_cast<int2*>(d_in)[i];

}

// in only one thread, process final element (if there is one)
if (idx==N/2 && N%2==1)
d_out[N-1] = d_in[N-1];
Iy
void device copy_vector2(int* d_in, int* d_out, int n) {
threads = 128;

blocks = min((N/2 + threads-1) / threads, MAX_BLOCKS);

device copy vector2 kernel<<<blocks, threads>>>(d_in, d_out, N);

}

/*0088*/ IMAD R1@.CC, R3, R5, c[exe][ex14e]

/*¥0090% / IMAD.HI.X R11, R3, R5, c[0x®][ex144] SASS

/*@098*/ IMAD R8.CC, R3, R5, c[ex8][ex148]

/*eeae*/ LD.E.64 R6, [R10] LD.E.64, LD.E.128,
/*@0ag*/ IMAD.HI.X R9, R3, R5, c[@xe][exlac] ST.E.64, ST.E.128

/*eec8*/ ST.E.64 [R8], R6

Vectorized Memory Access

See https://devblogs.nvidia.com/cuda-pro-tip-increase-
performance-with-vectorized-memory-access/

__global void device copy vector4 kernel(int* d_in, int* d_out, int N) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
for(int 1 = idx; i < N/4; i += blockDim.x * gridDim.x) {
reinterpret_cast<int4*>(d_out)[i] = reinterpret_cast<int4*>(d_in)[i];

}

// in only one thread, process final elements (if there are any)
int remainder = N%4;
if (idx==N/4 && remainder!=@) {
while(remainder) {
int idx = N - remainder--;
d_out[idx] = d_in[idx];
¥
}
}

void device_copy vector4(int* d_in, int* d_out, int N) {
int threads = 128;

int blocks = min((N/4 + threads-1) / threads, MAX_BLOCKS);

device_copy_vectord_kernel<<<blocks, threads>>>(d_in, d_out, N);

}

/*0090%*/ IMAD R10.CC, R3, R13, c[exe][ex14e]

/*0098%/ IMAD.HI.X R11, R3, R13, c[ox@][ex144] SASS

/*00ae*/ IMAD R8.CC, R3, R13, c[@x@][ox148]

/*00as*/ LD.E.128 R4, [R1@] LD.E.64, LD.E.128,
/*00be*/ IMAD.HI.X R9, R3, R13, c[exe][exl4c] ST.E.c4, ST.E.128

/*0edo*/ ST.E.128 [R8], R4

GMEM Writes

Not cached in the SM
— Invalidate the line in L1, go to L2

Access is at 32 B segment granularity
Transaction to memory: 1, 2, or 4 segments
— Only the required segments will be sent
If multiple threads in a warp write to the same address

— One of the threads will “win”
— Which one is not defined

35

OPTIMIZE

Kernel Optimizations: Global Memory Throughput

Kepler Memory Hierarchy

SIvVl-1

Registe Registers
Nsmem] Read |
& | only

SIVI-N

I Registers I
oo : , y:

Global Memory

Load Operation

Memory operations are issued per warp (32 threads)
Just like all other instructions

Operation:
Threads in a warp provide memory addresses

Determine which lines/segments are needed
Request the needed lines/segments

Memory Throughput Analysis

Two perspectives on the throughput:
Application’s point of view:
count only bytes requested by application
HW point of view:
* count all bytes moved by hardware
The two views can be different:

Memory is accessed at 32 byte granularity
* Scattered/offset pattern: application doesn’t use all the hw transaction bytes

Broadcast: the same small transaction serves many threads in a warp
Two aspects to inspect for performance impact:

Address pattern
Number of concurrent accesses in flight

Global Memory Operation

Memory operations are executed per warp
32 threads in a warp provide memory addresses
Hardware determines into which lines those addresses fall

Memory transaction granularity is 32 bytes

There are benefits to a warp accessing a contiguous aligned region of 128 or
256 bytes

¢ Access word size
Natively supported sizes (per thread): 1, 2, 4, 8, 16 bytes
* Assumes that each thread’s address is aligned on the word size boundary

If you are accessing a data type that’s of non-native size, compiler will
generate several load or store instructions with native sizes

Access Patterns vs. Memory Throughput

Scenario:

Warp requests 32 aligned, consecutive 4-byte words
Addresses fall within 4 segments

Warp needs 128 bytes

128 bytes move across the bus
Bus utilization: 100%

addresses from a warp

Hlll — 2

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

Access Patterns vs. Memory Throughput

Scenario:

Warp requests 32 aligned, permuted 4-byte words
Addresses fall within 4 segments

Warp needs 128 bytes

128 bytes move across the bus
Bus utilization: 100%

addresses from a warp
s

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

Access Patterns vs. Memory Throughput

Scenario:

Warp requests 32 misaligned, consecutive 4-byte words
Addresses fall within at most 5§ segments

Warp needs 128 bytes

At most 160 bytes move across the bus

Bus utilization: at least 80%
* Some misaligned patterns will fall within 4 segments, so 100% utilization

addresses from a warp

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

Access Patterns vs. Memory Throughput

Scenario:

All threads in a warp request the same 4-byte word
Addresses fall within a single segment

Warp needs 4 bytes

32 bytes move across the bus
Bus utilization: 12.5%

addresses from a warp

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

Access Patterns vs. Memory Throughput

Scenario:
Warp requests 32 scattered 4-byte words
Addresses fall within N segments
Warp needs 128 bytes

N*32 bytes move across the bus
Bus utilization: 128 / (N*32)

addresses from a warp

P T _

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

Structures of Non-Native Size

Say we are reading a 12-byte structure per
thread

struct Position

{
float x, v, z;

i

__global wvoid kernel(Position *data, ...)
{

int idx = blockIdx.x * blockDim.x + threadIdx.x;
Position temp = data[idx];

Structure of Non-Native Size

Compiler converts temp = data[idx] into 3 loads:

Each loads 4 bytes

Can’t do an 8 and a 4 byte load: 12 bytes per element means that every
other element wouldn’t align the 8-byte load on 8-byte boundary

Addresses per warp for each of the loads:
Successive threads read 4 bytes at 12-byte stride

First Load Instruction

addresses from a warp

N S T T O

O 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Second Load Instruction

addresses from a warp

N S S Y T O

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Third Load Instruction

addresses from a warp

I A S O T O I

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Performance and Solutions

Because of the address pattern, we end up moving 3x more bytes
than application requests
We waste a lot of bandwidth, leaving performance on the table

Potential solutions:

Change data layout from array of structures to structure of arrays
* In this case: 3 separate arrays of floats
* The most reliable approach (also ideal for both CPUs and GPUs)
Use loads via read-only cache
* As long as lines survive in the cache, performance will be nearly optimal

Stage loads via shared memory

Global Memory Access Patterns

» SOA vs AoS: “'”
Cieloleh palptell] —l——
Not so good: point]i].x
» Strided array access:
~OK: x[i] = a[i+1] - ali]
Slower: x[i] = a[64*1] — a[i]
' .

* Random array access: /
Slower: a[rand(i)] [l_l_

Summary: GMEM Optimization

Strive for perfect address coalescing per warp
Align starting address (may require padding)
A warp will ideally access within a contiguous region

Avoid scattered address patterns or patterns with large strides between
threads

Analyze and optimize address patterns:
Use profiling tools (included with CUDA toolkit download)
Compare the transactions per request to the ideal ratio
Choose appropriate data layout (prefer SoA)
If needed, try read-only loads, staging accesses via SMEM

A note about caches

L1 and L2 caches

Ignore in software design

Thousands of concurrent | ¢Regi;‘ers$ |
threads — cache blocking | L1 | fomen Read
difficult at best 3

Registers Registers

3t 1 T 1

Read Read

SMEM SMEM
L1 , | .Oﬂly | L1 . || only

* Read-only Data Cache
Shared with texture pipeline
* Useful for uncoalesced reads

* Handled by compiler when
const _ restrict__ is used, or
use _1ldg() primitive

Read-only Data Cache

Go through the read-only cache
Not coherent with writes
Thus, addresses must not be written by the same kernel

Two ways to enable:

Decorating pointer arguments as hints to compiler:
Pointer of interest: const _ restrict
* All other pointer arguments: __ restrict__
— Conveys to compiler that no aliasing will occur
Using __Idg() intrinsic
Requires no pointer decoration

Read-only Data Cache

Go through the read-only cache

Not coherent with writes

Thus, addresses must not be written by the same kernel

Two ways to enable:

Decorating pointer argumen”

Pointer of interest: const

* All other pointer argumer
— Conveys to compiler |

Using __Idg() intrinsic
* Requires no pointer deco

__global void kernel (

int* restrict output,
const int* restrict input)
{
output[idx] = input[idx];

Read-only Data Cache

Go through the read-only cache

Not coherent with writes

Thus, addresses must not be written by the same kernel

Two ways to enable:

Decorating pointer argumen”

Pointer of interest: const

* All other pointer argumer
— Conveys to compiler |

Using __Idg() intrinsic
* Requires no pointer deco

__global wvoid kernel(int *output,
int *input)

{

output[idx] = 1ldg(&input[idx]

Blocking for L1, Read-only, L2 Caches

Short answer: DON’T

GPU caches are not intended for the same use as CPU caches
Smaller size (especially per thread), so not aimed at temporal reuse

Intended to smooth out some access patterns, help with spilled registers,
etc.

Usually not worth trying to cache-block like you would on CPU
100s to 1,000s of run-time scheduled threads competing for the cache

If it is possible to block for L1 then it’s possible block for SMEM
¢ Same size
* Same or higher bandwidth
* Guaranteed locality: hw will not evict behind your back

> Lu
(S0 i 52
o=z
- L]
=
G2
O
-
Q.
o
: ~
%
. =

Some Store Pattern Examples

addresses fromawarp one 4-segment transaction

il 4

96 128 160 192 224 256 288 320 352 384
Memory addresses

416

448

40

> Lu
(S0 i 52
o=z
- L]
=
G2
O
-
Q.
o
: ~
%
. =

Some Store Pattern Examples

addresses fromawarp three 1-segment transactions

N T~

96 128 160 192 224 256 288 320 352 384 4le
Memory addresses

448

41

> Lu
(S0 i 52
o=z
- L]
=
G2
O
-
Q.
o
: ~
%
. =

Some Store Pattern Examples

addresses fromawarp one 2-segment transaction

bl

96 128 160 192 224 256 288 320 352 384
Memory addresses

416

448

42

> Lu
(S0 i 52
o=z
- L]
=
G2
O
-
Q.
o
: ~
%
. =

Some Store Pattern Examples

addresses fromawarp 2 1-segment transactions

$

4
I [1 [1 [[| |

96 128 160 192 224 256 288 320 352 384
Memory addresses

416

448

43

> L
(S0 i 52
o=z
—
S
CE
=0
=
Q.
%
- o

£r2013, NV DIA

GMEM Reads

Attempt to hit in L1 depends on programmer choice and compute capability

HW ability to hit in L1:
— CCl.xnoll
— CC2.¢canhitin L1
— CC3.0, 3.5: cannot hitin L1
* L1 is used to cache LMEM (register spills, etc.), buffer reads
Read instruction types
— Caching:
* Compileroption: -Xptxas -dlcm=ca
* On Ll miss goto L2, on L2 miss go to DRAM
* Transaction: 128 B line
— Non-caching:
= Compileroption: -Xptxas -dlcm=cg
» Godirectly to L2 (invalidate line in L1), on L2 miss go to DRAM
* Transaction: 1, 2, 4 segments, segment = 32 B (same as for writes)

44

> LU
()
o=z
L
2 i
T L
o2
—0O
-
(.
=2
- --.
- ‘__ -

Caching Load

Scenario:

— Warp requests 32 aligned, consecutive 4-byte words
Addresses fall within 1 cache-line

— No replays

— Bus utilization: 100%

» Warp needs 128 bytes
* 128 bytes move acrossthe bus on a miss

addresses from a warp

RE2 I T

32 64 96 128 180 192 224 256 288
Memory addresses

320

352

384

416

448

45

Non-caching Load

* Scenario:

— Warp requests 32 aligned, consecutive 4-byte words
* Addresses fall within 4 segments

— No replays

— Bus utilization: 100%

» Warp needs 128 bytes
* 128 bytes move acrossthe bus on a miss

> L
D0
[
L
2L
T L
0Z
—O
-
.
o
%
- = >

addresses from a warp

Ll ol
N I I S S S S S S S S —

32 64 96 128 180 192 224 256 288 320 352 384 416 448
Memory addresses

CI2012, NVIDIA

> LU
()
o=z
L
2 i
T L
o2
—0O
-
(.
=2
- --.
- ‘__ -

Caching Load

Scenario:

— Warp requests 32 aligned, permuted 4-byte words
Addresses fall within 1 cache-line

— No replays

— Bus utilization: 100%

» Warp needs 128 bytes
* 128 bytes move acrossthe bus on a miss

addresses from a warp

32 64 96 128 180 192 224 256 288
Memory addresses

320

352

384

416

448

47

> L
D0
[
L
2L
T L
0Z
—O
-
.
o
%
- = >

CI2012, NVIDIA

Non-caching Load

* Scenario:

— Warp requests 32 aligned, permuted 4-byte words
* Addresses fall within 4 segments

— No replays

— Bus utilization: 100%

» Warp needs 128 bytes
* 128 bytes move acrossthe bus on a miss

addresses from a warp

32 64 96 128 180 192 224 256 288
Memory addresses

320

352

384

416

448

43

> LU
()
o=z
L
2 i
T L
o2
—0O
-
(.
=2
- --.
- ‘__ -

CI2012, NVIDIA

Caching Load

* Scenario:
— Warp requests 32 consecutive 4-byte words, offset from perfect alignment
+ Addresses fall within 2 cache-lines

— 1 replay (2 transactions)

— Bus utilization: 50%
» Warp needs 128 bytes
» 256 bytes move acrossthe bus on misses

addresses from a warp

0 32 64 96 128 1e0 192 224 256 288 320 352 384 416

Memory addresses

448

49

> L
DO
o=z
—
S
05
—O
=
o
o

Non-caching Load

Scenario:
— Warp requests 32 consecutive 4-byte words, offset from perfect alignment
Addresses fall within at most 5 segments

— 1 replay (2 transactions)

— Bus utilization: at least 80%
» Warp needs 128 bytes
* At most 160 bytes move acrossthe bus
» Some misaligned patterns will fall within 4 segments, so 100% utilization

addresses from a warp

32 64 96 128 180 192 224 256 288 320 352 384 416 448
Memory addresses

a0

> LU
()
o=z
L
2 i
T L
o2
—0O
-
(.
=2
- --.
- ‘__ -

Caching Load

Scenario:

— All threads in a warp request the same 4-byte word
Addresses fall within a single cache-line

— No replays

— Bus utilization: 3.125%

» Warp needs 4 bytes
* 128 bytes move acrossthe bus on a miss

addresses from a warp

32 64 96 128 180 192 224 256 288
Memory addresses

320

352

384

416

448

a1

> L
(S0 i 52
o=z
—
S
CE
=0
=
Q.
%
- o

Non-caching Load

Scenario:

— All threads in a warp request the same 4-byte word
Addresses fall within a single segment

— No replays

— Bus utilization: 12.5%

» Warp needs 4 bytes
* 32 bytes move across the bus on a miss

addresses from a warp

32 64 96 128 1e0 192 224 256 288 320
Memory addresses

352

384

416

448

52

> L
(2 i 5

(@)
—I
S5
i
O
-
e
o

=

%
. -

CI2012, NVIDIA

Caching Load

* Scenario:

— Warp requests 32 scattered 4-byte words
+ Addresses fall within N cache-lines

— {N-1) replays (N transactions)

— Bus utilization: 32*4B / (N*128B)

*» Warp needs 128 bytes
» A*128 bytes move across the bus on a miss

addresses from a warp
% \)

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448

Memory addresses

53

> LU
()
o=z
L
2 i
T L
o2
—0O
-
(.
=2
- --.
- ‘__ -

Non-caching Load

Scenario:
— Warp requests 32 scattered 4-byte words
Addresses fall within N segments
— (N-1) replays (N transactions)
* Could be lower some segments can be arranged into a single transaction

— Bus utilization: 128 / (N*32) (4x higher than caching loads)
* Warp needs 128 bytes
* [N*32 bytes move across the bus on a miss

addresses from a warp

o 1

—

T]

2 64 96 128 1e0 192 224 256 288 320
Memory addresses

352

384 4le 448

54

> LuJ
(o1s)
(s
—
o =
O
-
e

A l! \

Caching vs Non-caching Loads

 Compute capabilities that can hit in L1 {(CC 2.x)
— Caching loads are better if you count on hits

— Non-caching loads are better if:

* Warp address pattern is scattered
* When kernel uses lots of LMEM (register spilling)

 Compute capabilities that cannot hit in L1 {(CC 1.x, 3.0, 3.5)
— Does not matter, all loads behave like non-caching

* In general, don’t rely on GPU caches like you would on CPUs:

— 100s of threads sharing the same L1
— 1000s of threads sharing the same L2

55

> L
DO
o=z
—
S
05
—O
=
o
o

£r2013, NV DIA

L1 Sizing

* Fermi and Kepler GPUs split 64 KB RAM between L1 and SMEM
— Fermi GPUs {CC 2.x): 16:48, 48:16
— Kepler GPUs {CC 3.x):16:48, 48:16, 3232

* Programmer can choose the split:
— Default: 16 KB L1, 48 KB SMEM

— Run-time API functions:
* cudaDeviceSetCacheConfig(), cudaFuncSetCacheConfig()

— Kernels that require different L1:SMEM sizing cannot run concurrently
 Making the choice:

— Large L1 can help when using lots of LMEM ({spilling registers)

— Large SMEM can help if occupancy is limited by shared memory

5B

> L
€D
Q=
— L
o =
52
=5
-
o

Cr2013, NVIDIA

‘Ll!

Read-Only Cache

* An alternative to L1 when accessing DRAM
— Also known as texture cache: all texture accesses use this cache
— CC 3.5 and higher also enable global memory accesses
* Should not be used if a kernel reads and writes to the same addresses
* Comparing to L1:

— Generally better for scattered reads than L1
* Cachingis at 32 B granularity (L1, when caching operates at 128 B granularity)
» Does not require replay for multiple transactions (L1 does)

— Higher latency than L1 reads, also tends to increase register use

 Aggregate 48 KB per SM: 4 12-KB caches
— One 12-KB cache per scheduler
* Warps assigned to a scheduler refer to only that cache
— Caches are not coherent — data replication is possible

57

> LuJ
(o1s)
(s
—
o =
O
-
e

Cr2013, NVIDIA

Read-Only Cache Operation

Always attempts to hit
Transaction size: 32 B queries

Warp addresses are converted to queries 4 threads at
a time
— Thus a minimum of 8 queries per warp

— If data within a 32-B segment is needed by multiple threads
In @ warp, segment misses at most once

Additional functionality for texture objects
— Interpolation, clamping, type conversion

58

Read-Only Cache Operation

addresses from a warp 15t Query

LWL~ |
C—IT 1T 1T e T T 1T T T 1T 71T 71]

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448

> Lu
(S0 i 52
o=z
- L]
=
G2
O
-
Q.
o
=
%
- =

55

> LL
DO
o=z
—
=
0Z
O
=
Q.
o

%

- - -

Read-Only Cache Operation

addresses from a warp 15t Query

LWL~ |
[1T T ey 1 1 1T T T T T T]

32 64 96 128 160 192 224 256 288 320 352 384 416 448

R - S
[T T T T T T T T T T T]

32 64 96 128 1e0 192 224 256 288 320 352 384 416 448

B0

Read-Only Cache Operation

addresses from a warp 15t Query

N - U
1T 1T 1T W T T T T T 1T 71T 71]

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448

> Lu
(S0 i 52
o=z
- L]
=
G2
O
-
Q.
o
=
%
. =

Cr2013, NVIDIA o

> LL
DO
o=z
—
=
0Z
O
=
Q.
o

%

- 8

Read-Only Cache Operation

addresses from a warp 15t Query

Nl
[T T Ty 1 1T T T T T T T]

32 64 96 128 160 192 224 256 288 320 352 384 416 448

addresses from a warp 2nd angd 3 Queries

N - U
[T T s 1 T T 17 1T 1T T]

32 64 96 128 1e0 192 224 256 288 320 352 384 416 448

b2

> L
DO
o=z
—
S
05
—O
=
o
o

Read-Only Cache Operation

addresses from a warp

Nl
I I N S I I S S N

32 64 96 128 160 192 224 256 288 320 352

addresses from a warp

2" and 3 Queries

N - U
[T T D 1 T T 1 7]

32 64 96 12 le0 192 224 256 288 320 352

Note this segment was already requested in the 1°* query:
cache hit, no redundant requests to L2

384

416

448

b3

