A
= %fhd v hdUT chn fygyf (((‘)), KAUST

S

CS 380 - GPU and GPGPU Programming
Lecture 23: GPU Parallel Prefix Sum / Scan

Markus Hadwiger, KAUST |

Reading Assignment #14 (until Dec 6)

Read (required):

» Warp Shuffle Functions
— CUDA Programming Guide 11.5, Appendix B.22

» CUDA Cooperative Groups
— CUDA Programming Guide 11.5, Appendix C

— https://developer.nvidia.com/blog/cooperative-groups/

* Programming Tensor Cores
— CUDA Programming Guide 11.5, Appendix B.24 (Warp matrix functions)

— https://developer.nvidia.com/blog/programming-tensor-cores-cuda-9/
Read (optional):
« CUDA Warp-Level Primitives

— https://developer.nvidia.com/blog/using-cuda-warp-level-primitives/

* Warp-aggregated atomics

— https://developer.nvidia.com/blog/
cuda-pro-tip-optimized-filtering-warp-aggregated-atomics/

GPU Parallel Prefix Sum

Markus Hadwiger, KAUST 3

Parallel Prefix Sum (Scan)

« Definition:
The all-prefix-sums operation takes a binary associative operator
@ with identity /, and an array of n elements
[ap, @, --s @p4]
and returns the ordered set
[/, ay, (2,® a,), ..., (a, D a,©D ... D a,,)].

« Example:
if ® is addition, then scan on the set

[3170416 3]
returns the set
[03411111516 2

(From Blelloch, 1990, “Prefix
Sums and Their Applications)

Parallel08 — Control Flow

Applications of Scan

« Scan is a simple and useful parallel building block

— Convert recurrences from sequential :
for (j=1;3<n; j++)

out[j] = out[J-1]1 + £(J);
— Into parallel:
forall(j) { templ[j] = £(3) }:

scan (out, temp);
+ Useful for many parallel algorithms:
* radix sort * Polynomial evaluation

* quicksort * Solving recurrences

* String comparison Tree operations

* Lexical analysis Range Histograms

Etc.

* Stream compaction

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Scan on the CPU

void scan(float* scanned, float* input, int length)

{
scanned[0] = 0;
for(int 1 = 1; 1 < length; ++1)
{

scanned[i] = input[i-1] + scanned[i-1];
}
}

 Just add each element to the sum of the elements
before it

* Trivial, but sequential
« Exactly n adds: optimal in terms of work efficiency

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Prefix Sum Application
- Compaction -

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Parallel Data Compaction

« Given an array of marked values
30107142156

3101
OMNO[Oo]O[OMNO[O0

« Output the compacted list of marked values

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Using Prefix Sum

« Calculate prefix sum on index array
L4 2 s el 3l

OB 0[0[0]|0 00
011222]2]2]3]3

 For each marked value lookup the destination index in
the prefix sum

« Parallel write to separate destination elements

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Prefix Sum Application
- Range Histogram -

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Range Histogram

* A histogram calculate the occurance of each value in an
array.

hii]=|J| J={] vl = i}
 Range query: number over elements in interval [a,b].

+ Slow answer:
hrange = 0;
for (1 = a; i<=b,; ++1)
hrange += h[i];

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Fast Range Histogram

« Compute prefix sum of histogram

 Fast answer:
hrange = pref[B] - pref[A];

= D Hlil= D hlil= Y hli]

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Prefix Sum Application
- Summed Area Tables -

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Summed Area Tables

* Per texel, store sum from (0, 0) to (u, v)

A B

G
 Many bits per texel (sum!)

« Evaluation of 2D integrals in constant time!
AxAy

| [1e.y)dxdy=A4-B-C+D

BxCy
:H C
D

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Summed Area Table with Prefix Sums

* One possible way:
« Compute prefix sum horizontally

« ... then vertically on the resulit

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Work Efficiency

Guy E. Blelloch and Bruce M. Maggs:
Parallel Algorithms, 2004 (https://www.cs.cmu.edu/~guyb/papers/BMo4.pdf)

In designing a parallel algorithm, it is more important to make it efficient than to make it
asymptotically fast. The efficiency of an algorithm is determined by the total number of
operations, or work that it performs. On a sequential machine, an algorithm's work is the
same as its time. On a parallel machine, the work is simply the processor-time product.
Hence, an algorithm that takes time t on a P-processor machine performs work W = Pt. In
either case, the work roughly captures the actual cost to perform the computation, assuming
that the cost of a parallel machine is proportional to the number of processors in the
machine.

We call an algorithm work-efficient (or just efficient) if it performs the same amount of
work, to within a constant factor, as the fastest known sequential algorithm.

For example, a parallel algorithm that sorts n keys in O(sqrt(n) log(n)) time using sqgqrt(n)
processors is efficient since the work, O(n log(n)), is as good as any (comparison-based)
sequential algorithm.

However, a sorting algorithm that runs in O(log(n)) time using n”?2 processors is not
efficient.

The first algorithm is better than the second - even though it is slower - because its work,
or cost, is smaller. Of course, given two parallel algorithms that perform the same amount of
work, the faster one is generally better.

16

Vector Reduction

Array elements ——

VARV VERVERvVERV
or] 2 e 6]]

L
x:

iterations

IIIIIIIIIIIIIIIIIIIIII

Typical Parallel Programming Pattern

* log(n) steps

v
iterations -

Helpful fact for counting nodes of full binary trees:
If there are N leaf nodes, there will be N-1 non-leaf nodes

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Courtesy John Owens

Kogge-Stone Scan
Circuit family
*o X 45 X3 X4 X5 Xs * X3 X5 X0 *n X1z 13 14 *is

A Parallel Algorithm for the Efficient Solution of a General Class of
Recurrence Equations, Kogge and Stone, 1973

See “carry lookahead” adders vs. “ripple carry” adders

O(n log n) Scan

a=

a=

1

2

d=3

Courtesy John Owens

Xo

X1

X2

X3

X4

X5

X6

X7

B e e e e R

2(X..X)

2(Xp..X1)

2(X1..X2)

2(Xz..X3)

2(X3..Xy)

2(X4..Xs)

¥(Xs..X6)

¥(X¢..X7)

2(Xq..Xq)

2(Xo..X1)

2(Xq..X2)

Z(X¢..X3)

2(X1..Xy)

2(X3..X5)

2(X3..X6)

2(X4..X7)

Ea

Z(Xo. .X())

Z(Xo..Xl)

Z(Xo. .Xz)

Z(Xo..Xg)

Z(Xo. .X4)

Z(Xo..X5)

Z(Xo. .X6)

Z(Xo. .X7)

e Step efficient (log n steps)
e Not work efficient (n log n work)
¢ Requires barriers at each step (WAR dependencies)

Courtesy John Owens
Hillis-Steele Scan Implementation

No WAR conflicts, O(2N) storage

\

€

-
)

& (&)

H
;“\' m

A First-Attempt Parallel Scan
Algorithm

1 6 3 1. Read input from

~ N device memory to
\\\\\N\\ shared memory. Set
0 4 1 6 first element to zero
and shift others right

by one.

Each thread reads one value from the input
array in device memory into shared memory array TO.
Thread O writes 0 into shared memory array.

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

A First-Attempt Parallel Scan

Algorithm

ol In| 3 | 1

7

0

6

3

\\\\\\\\

1.

2.

(previous slide)

Iterate log(n)

times: Threads stride
to n: Add pairs of
elements stride
elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

TO [O 3 1
Stride 1 l\n \@\»@\n
1 0
lteration #1 » Active threads: stride to n-1 (n-stride threads)
Setr?“ dlon_ 1 » Thread j adds elements j and j-stride from TO and
ride = writes result into shared memory buffer T1 (ping-pong)

Parallel08 — Control Flow

Hendrik Lensch and Robert Strzodka

A First-Attempt Parallel Scan
Algorithm

In | 3 | 1 710 4|1 6 | 3 1. Read input from

0 device memory to
\\\ \\\ \\ shared memory. Set

0| 0 | 3 | 1 710 4|1 6 first element to zero

and shift others right

1 \ \ Y \ \
Stride 1 \)@ 1 & by one.

T1 0 2. lterate log(n)

_ . times: Threads stride

Stride 2 to n: Add pairs of

To | © 3 4 | 1 1 12 | 12 | 1 _l elements stride
elements apart.

Double stride at each

iteration. (note must

double buffer shared

mem arrays)

lteration #2
Stride =2

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

A First-Attempt Parallel Scan
Algorithm

In 3 1 7 0 6 3 1. Read input from
0 device memory to
\\\ \\\\\ shared memory. Set
TO 6 first element to zero
and shift others right

Stride 1 M\@\).\).\-»@\).\)@ by one.

T1 -- -- - 2. lterate log(n)
Vv times: Threads stride

Stride 2 to n: Add pairs of
T0 | O 3 11 | 1 2 | 12 | 1 elements stride
—— elements apart.
— D & &5 Double stride at each
\ 4 — — iteration. (note must
™ 0 3 4 | 1 il double buffer shared
mem arrays)
lteration #3
Stride =4

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

A First-Attempt Parallel Scan

Algorithm

1

6

3

4

°\\\\\;\\\

6

0 3 1 7 1
T . S
0 8 B 7

Stride 1
T1
Stride 2
T0 (| O 3
\ e T T T
i 1} D D &
™| 0 3 4 |11 | 1
S T N T A A
Out| 0 3 4 |11 |11 (15| 16 | 22

. Read input from

device memory to
shared memory. Set
first element to zero
and shift others right
by one.

. Iterate log(n)

times: Threads stride
to n: Add pairs of
elements stride
elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

. Write output to device

memory.

Parallel08 — Control Flow

Hendrik Lensch and Robert Strzodka

Work Efficiency Considerations

« The first-attempt Scan executes log(n) parallel
iterations

— Total adds: n * (log(n) — 1) + 1 > O(n*log(n)) work

« This scan algorithm is not very work efficient
— Sequential scan algorithm does n adds
— A factor of log(n) hurts: 20x for 10*6 elements!

A parallel algorithm can be slow when execution
resources are saturated due to low work efficiency

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Balanced Trees

« Forimproving efficiency
« A common parallel algorithm pattern:

— Build a balanced binary tree on the input data and sweep it to and from the

root
— Tree is not an actual data structure, but a concept to determine what each

thread does at each step

« For scan:
— Traverse down from leaves to root building partial sums at internal nodes
in the tree
* Root holds sum of all leaves
— Traverse back up the tree building the scan from the partial sums

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Typical Parallel Programming Pattern

« 2 log(n) steps

log(n)

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Typical Parallel Programming Pattern

« 2 log(n) steps

I I I I
| 1]
]
N

‘"N NN

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Courtesy John Owens
Brent Kung Scan

Circuit family

o X X X5 X X5 X X, Xy Xy X Xy Xy Xy Xy X5

N

Y
Upsweep phase

A\
A}

N NN
N |
\

NREAN

N

NNNNDN

XoXp .. XoiXz XoiXy XoXe XoiXg XoiXp XoiX12 X4 #
XpiXy XX X X5 XXy XpiXo *o:¥y Xo-¥13 XpiXys

§ /
Y
Downsweep phase

A Regular Layout for Parallel Adders, Brent and Kung, 1982

O(n) Scan [Blelloch] “*m

%o |Zox)| x2 |ZGox)| x4 |EEexs)| %6 | E(xe.x7)
d=2 /T
% |Zex)| x |Zeo.x)| x| S(xs)| xe Z(X;..XT)
d=1 /7 /'T
%0 |Zxex)| % Z(x;..xs) Xy |TEex)| z(x;..x7)
d=0 /T /T /T /T
% N Xz “ 5 | x s |
%o |ZGox)| % |Exexs)| x |ZGexs)| x| ECe.xs)
|
Z$O
Xo | S(xo.%1)
d=0
o |l
d=1 N

* Work efficient (O(n) work) W | 0
. d=2 / / /
® Bank conflicts, and lots of ‘em e == = =
0 X 2% %) | B(Xp..X2) | 2(Xg. X3) | 2(Xg.. %) | 2(Xg.. X5) | 2(Xg..Xe)

Build the Sum Tree

Assume array is already in shared memory

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Build the Sum Tree

Stride \‘ \‘ \>$ \é Iteration 1, n/2 threads

lterate log(n) times. Each thread adds value stride /2 elements away to its own value.

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Build the Sum Tree

ride \é \)é \>$ \é

ide 4 & \é eration 2, n/4 threads

ri
v
1

14

lterate log(n) times. Each thread adds value stride /2 elements away to its own value.

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Build the Sum Tree

T | 3
Stride 2
T | 3
Stride 4
T | 3
Stride 8 Iteration log(n), 1 thread
T | 3

lterate log(n) times. Each thread adds value stride /2 elements away to its own vaIL'Je.

Note that this algorithm operates in-place: no need for double buffering

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Down-Sweep Variant 1: Exclusive Scan

We now have an array of partial sums. Since this is an exclusive scan,
set the last element to zero. It will propagate back to the first element.

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Build Scan From Partial Sums

T | 3

4

7

11

4

5

6

0

Parallel08 — Control Flow

Hendrik Lensch and Robert Strzodka

Build Scan From Partial Sums

Iteration 1
1 thread

Stride 8

Iterate log(n) times. Each thread adds value stride /2 elements away to its own value.
and sets the value stride elements away to its own previous value.

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Build Scan From Partial Sums

ride 8

Iteration 2
2 threads

ride 4

Iterate log(n) times. Each thread adds value stride /2 elements away to its own value.
and sets the value stride /2 elements away to its own previous value.

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Build Scan From Partial Sums

T 3 4
Stride 8
T 3 4
Stride 4 ;>'\)®
T 3 0
swide 1 >4 e
T 0 3

Done! We now have a completed scan that we can write out to device memory.

Total steps: 2 * log(n).
Total work: 2 * (n-1) adds = O(n) Work Efficient!

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Down-Sweep Variant 2: Inlusive Scan

25

We now have an array of partial sums. Let’s propagate the sums back.

Parallel08 — Control Flow

Hendrik Lensch and Robert Strzodka

Build Scan From Partial Sums

11

Stride 8 —>§ no operation

11

Iterate log(n) times. Each thread adds value stride /2 elements away to its own value.
First element adds zero.

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Build Scan From Partial Sums

11
ride 8 —>?
4 11 5
Y Y .
. Iteration 2
e ? ? 2 threads
4 6

lterate log(n) times. Each thread adds value stride /2 elements away to its own value.
First element adds zero.

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Build Scan From Partial Sums

- 3 25
Stride 8
~ 3 25
Stride
T : 25
g borton kg
- 2 25

Done! We now have a completed scan that we can write out to device memory.

Total steps: 2 * log(n).
Total work: <2 *(n-1) adds = O(n) Work Efficient!

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Application to Large Arrays

Scan Block 0 Scan Block 1 Scan Block 2

1
1
Scan Block 3 ‘
1
1

|
|

Store Block Sum to Auxiliary Array _

Add Scanned Block Sum i to All o + %
Values of Scanned Block i + 1 4 i

]

b4

_______ S
1 1
I]
1]
1 [}
1 1
1)
v v

ol
dueocoae

v Final Ar

[Mark Harris]

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Courtesy John Owens

Scan papers

L Daniel Horn, Stream Reduction Operations for GPGPU Applications, GPU Gems 2, Chapter 36, pp. 573-589, March 2005.

L Shubhabrata Sengupta, Aaron E. Lefohn, and John D. Owens. A Work-Efficient Step-Efficient Prefix Sum Algorithm. In
Proceedings of the 2006 Workshop on Edge Computing Using New Commodity Architectures, pages D-26-27, May 2006

® Mark Harris, Shubhabrata Sengupta, and John D. Owens.Parallel Prefix Sum (Scan) with CUDA. In Hubert Nguyen, editor,
GPU Gems 3, chapter 39, pages 851-876. Addison Wesley, August 2007.

L Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D. Owens. Scan Primitives for GPU Computing. In Graphics
Hardware 2007, pages 97—106, August 2007.

L Y. Dotsenko, N. K. Govindaraju, P. Sloan, C. Boyd, and]. Manferdelli, “Fast scan algorithms on graphics processors,” in ICS
'08: Proceedings of the 22nd Annual International Conference on Supercomputing, 2008, pp. 205—-213.

® Shubhabrata Sengupta, Mark Harris, Michael Garland, and John D. Owens. Efficient Parallel Scan Algorithms for many-core
GPUs. In Jakub Kurzak, David A. Bader, and Jack Dongarra, editors, Scientific Computing with Multicore and Accelerators,
Chapman & Hall/CRC Computational Science, chapter 19, pages 413—442. Taylor & Francis, January 2011.

L D. Merrill and A. Grimshaw, Parallel Scan for Stream Architectures. Technical Report CS2009-14, Department of Computer
Science, University of Virginia, 2009, 54pp.

L Shengen Yan, Guoping Long, and Yunquan Zhang. 2013. StreamScan: fast scan algorithms for GPUs without global barrier
synchronization. In Proceedings of the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP '13). ACM, New York, NY, USA, 229-238.

Thank you.

