B ooy ((())), KAUST

CS 380 - GPU and GPGPU Programming
Lecture 21: CUDA Memory, Pt. 3

Markus Hadwiger, KAUST |

Reading Assignment #13 (until Nov 29)

Read (required):

« Programming Massively Parallel Processors book, 3™ edition
Chapter 9 (Parallel patterns — parallel histogram computation)

* Programming Massively Parallel Processors book, 3 edition
Chapter 13 (CUDA dynamic parallelism)

Read (optional):

* Prefix Sums and Their Applications, Guy Blelloch
https://www.cs.cmu.edu/~guyb/papers/Ble93.pdf

CUDA Memory:
Shared Memory

Markus Hadwiger, KAUST 3

Parallel Memory Architecture

e In a parallel machine, many threads access memory
— Therefore, memory is divided into banks
— Essential to achieve high bandwidth

* Each bank can service one address per cycle

— A memory can service as many simultaneous
accesses as it has banks

e Multiple stmultaneous accesses to a bank
result in a bank conflict

— Conflicting accesses are serialized

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 4
ECE 498AL, University of lllinois, Urbana-Champaign

Memory Banks

o=

Fermi/Kepler/Maxwell

and newer:

32 banks

4B / bank
Kepler or newer:

configurable

to 8B / bank

Shared Memory

Uses:
Inter-thread communication within a block
Cache data to reduce redundant global memory accesses
Use it to improve global memory access patterns

Performance:
smem accesses are issued per warp
Throughput is 4 (or 8) bytes per bank per clock per multiprocessor

serialization: if N threads of 32 access different words in the same bank,
N accesses are executed serially

multicast: N threads access the same word in one fetch

* Could be different bytes within the same word

Shared Memory Organization

Organized in 32 independent banks

Optimal access: no two words from
same bank

Separate banks per thread
Banks can multicast

Multiple words from same bank serialize

Bank Addressing Examples

e No Bank Conflicts e No Bank Conflicts
— Linear addressing — Random 1:1 Permutation
stride ==

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Thread 15 Thread 15

Bank 15

Bank 15

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of lllinois, Urbana-Champaign

Bank Addressing Examples

e 2-way Bank Conflicts

— Linear addressing
stride ==

Thread O
Thread 1 ‘
Thread 2 ~

Thread 3 "‘

Thread 4

/"4

Thread 9
Thread 10
Thread 11

e &8-way Bank Conflicts

— Linear addressing
stride ==

Thread O

Thread 1
Thread 2
Thread 3

Thread 4 "
Thread 5 \
Thread 6 [

Thread 7

x8

Thread 15

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of lllinois, Urbana-Champaign

How addresses map to banks on G80

* Each bank has a bandwidth of 32 bits per clock cycle

* Successive 32-bit words are assigned to successive
banks

e (G&0 has 16 banks
— So bank = address % 16

— Same as the size of a half-warp

* No bank conflicts between different half-warps, only within a
single half-warp

Fermi and newer have 32 banks,
considers full warps instead of half warps!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 10
ECE 498AL, University of lllinois, Urbana-Champaign

Shared Memory Bank Conflicts

« Shared memory is as fast as registers if there are no bank
conflicts

« The fast case:
— If all threads of a half-warp access different banks, there is no bank conflict
— If all threads of a half-warp access the identical address, there is no bank

conflict (broadcast)
+ The slow case:

— Bank Conflict: multiple threads in the same half-warp access the same
bank

— Must serialize the accesses
— Cost = max # of simultaneous accesses to a single bank

full warps instead of half warps on Fermi and newer!

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

Linear Addressing

« Given:

__shared float shared[256];
float foo =
shared[baseIndex + s * threadIdx.x];

« This is only bank-conflict-free if s
shares no common factors with the

number of banks
— 16 on G80, so s must be odd

Thread O
Thread 1
Thread 2
Thread 3

Thread 4
Thread 5
Thread 6
Thread 7

Bank 15

Thread 15

Thread O
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Thread 15 Bank 15

Parallel08 — Memory Access

Hendrik Lensch and Robert Strzodka

Data Types and Bank Conflicts

« This has no conflicts if type of shared is 32-bits:

foo = shared[baseIndex + threadIdx.x]

« But not if the data type is smaller

— 4-way bank conflicts:
shared char shared]|];

foo = shared[baselIndex + threadIdx.x];

not true on Fermi, because of multi-cast!

— 2-way bank conflicts:
shared short shared][];

foo = shared[baselIndex + threadldx.x];

not true on Fermi, because of multi-cast!

Thread O
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Thread O
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

| ——

-7
Thread 15 Bank 15

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

Structs and Bank Conflicts

« Struct assignments compile into as many memory accesses as there are
struct members:

Thread O

Thread 1 .
struct vector { float x, v, z; }; TErE=—D
t t T Thread 3
struct myType { Thread 4
float £f; Thread 5
int e¢; Thread 6
. Thread 7
}: . .
__shared struct vector vectors[64]; H .
__shared struct myType myTypes[64]; —’ Bank 15
« This has no bank conflicts for vector; struct size is 3 words /\

— 3 accesses per thread, contiguous banks (no common factor with 16)

struct vector v = vectors[baselndex + threadldx.x];

« This has 2-way bank conflicts for myType;
(each bank will be accessed by 2 threads simultaneously)
struct myType m = myTypes[baselndex + threadIdx.x];

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

Broadcast on Shared Memory

« Each thread loads the same
element — no bank conlict

Thread 0
x = shared|[0]; Thread 1

Thread 2

* Will be resolved implicitly Thread 3

Thread 4
Thread 5
Thread 6

Thread 7

multi-cast on Fermi and newer!

Bank 15

Thread 15

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

Common Array Bank Conflict Patterns
1D

» Each thread loads 2 elements into shared
mem:

— 2-way-interleaved loads result in

2-way bank conflicts:
Thread O

Thread 1

int tid = threadIdx.x; c——
rea

shared[2*tid] = global[2*tid]; Thread 3

shared[2*tid+1] = global[2*tid+1]; Thread 4

» This makes sense for traditional CPU

threads, locality in cache line usage and Thread 8

reduced sharing traffic. Thread 9
— Not in shared memory usage where there is VTRl pum———
no cache line effects but banking effects Thread 11

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

A Better Array Access Pattern

« Each thread loads one element in
every consecutive group of

blockDim elements. Thread 0

Thread 1
shared[tid] = globall[tid]; ra—
shared[tid + blockDim.x] = -

global[tid + blockDim.x];

Thread 4

Thread 5

Thread 6

Thread 7

Thread 15 Bank 15

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

OPTIMIZE

Kernel Optimizations: Shared Memory Accesses

Case Study: Matrix Transpose

* Coalesced read
¢ Scattered write (stride N)

— Process matrix tile, not single
row/column, per block

= Transpose matrix tile within block

Case Study: Matrix Transpose

* Coalesced read
¢ Scattered write (stride N)

* Transpose matrix tile within block

— Need threads in a block to cooperate:
use shared memory

Transpose with coalesced read/write

__global transpose(float in[], float out[])
{

shared float tile[TILE] [TILE] ;

int glob in = xIndex + (yIndex)*N;
int glob_out = xIndex + (yIndex) *N;

tile[threadTIdx.y] [threadTIdx.x] = in[glob in];
__syncthreads() ;

out[glob out] = tile[threadIdx.x] [threadIdx.y]’

Fixed GMEM coalescing, but introduced SMEM bank conflicts

transpose<<<grid, threads>>>(in, out) ;

Shared Memory: Avoiding Bank Conflicts

Example: 32x32 SMEM array

* Warp accesses a column:
* 32-way bank conflicts (threads in a warp access the same bank)

warps:
o 1 2 31
Bank O 2 |31
-
2 31
.
®
y 31
[N N]
®
A o] 31
®

Shared Memory: Avoiding Bank Conflicts

* Add a column for padding:

» 32x33 SMEM array

* Warp accesses a column:

* 32 different banks, no bank conflicts

Bank O

0

warps:

31

padding

31

Typical Parallel Programming Pattern

* log(n) steps

v
iterations -

Helpful fact for counting nodes of full binary trees:
If there are N leaf nodes, there will be N-1 non-leaf nodes

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Vector Reduction with Branch
Divergence

Thread O Thread 2 Thread 4 Thread 6 Thread 8 Thread 10

-
a4
o
INES
- .

/

ENERER

Array elements ——

A better implementation

Thread O

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

A better implementation

» Only the last 5 iterations will have divergence

« Entire warps will be shut down as iterations progress

— For a 512-thread block, 4 iterations to shut down all but one warp in
each block

— Better resource utilization, will likely retire warps and thus blocks
faster

 Recall, no bank conflicts either

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

