CS 380 - GPU and GPGPU Programming
Lecture 20: CUDA Memory, Pt. 2

kﬁnarku . : -

Reading Assignment #12 (until Nov 22)

Read (required):
» Optimizing Parallel Reduction in CUDA, Mark Harris,

https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

« Programming Massively Parallel Processors book, 3™ edition
Chapter 8 (Parallel Patterns: Prefix Sum)

* GPU Gems 3 book, Chapter 39: Parallel Prefix Sum (Scan) with CUDA
https://developer.nvidia.com/gpugems/GPUGems3/gpugems3 ch39.html

Read (optional):

» Faster Parallel Reductions on Kepler, Justin Luitjens
https://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/

CUDA Memory:
Shared Memory

L1 Cache vs. Shared Memory

Different configs (on Fermi and Kepler; carveout on Maxwell and newer)

* 64KB total

— 16KB shared, 48KB L1 cache
— 48KB shared, 16KB L1 cache
— 32KB shared, 32KB L1 cache (Kepler only)

» Set per kernel

// Device code

__global void MyKernel ()

{

p—

// Runtime API

// cudaFuncCachePreferShared: shared memory is 48 KB
// cudaFuncCachePreferLl: shared memory is 16 KB

// cudaFuncCachePreferNone: no preference

cudaFuncSetCacheConfig (MyKernel, cudaFuncCachePreferShared)

L1 Cache vs. Shared Memory

Different configs (on Fermi and Kepler; carveout on Maxwell and newer)
» More shared memory on newer GPUs (64KB, 96KB, 100KB, 164KB, ...)
Carveout from unified data cache
(See CUDA C Programming Guide!)

// Device code

__global void MyKernel(...)

{
__shared float buffer[BLOCK DIM];
}
// Host code
int carveout = 50; // prefer shared memory capacity 5 of maximum
// Named Carveout Values:
// carveout = cudaSharedmemCarveoutDefault; // (-1)
// carveout = cudaSharedmemCarveoutMaxLl; [/ (0)
// carveout = cudaSharedmemCarveoutMaxShared; // (100)
cudaFuncSetAttribute (MyKernel, cudaFuncAttributePreferredSharedMemoryCarveout,

carveout) ;
MyKernel <<<gridDim, BLOCK DIM>>>(...);

Shared Memory Allocation

« 2 modes

» Static size within kernel
shared float vec([256];

« Dynamic size when calling the kernel

// in main

int VecSize = MAX THREADS * sizeof (float4);

vecMat<<< blockGrid, threadBlock, VecSize >>>(pl, p2, ..);

7 7 3 - . e - L1 -
/ / o ra oo ~v+ AT w71 +h 1 1 =% a T =}
/ eclare as eXtern witnlin Kernel

Yavi L 4 — SN Y -

extern shared float vec[];

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

Shared Memory

Accessible by all threads in a block

Fast compared to global memory

Low access latency
High bandwidth

Common uses:
Software managed cache
Data layout conversion

| Registers |

EX1

; Registers |

EE

Shared Memory/L1 Sizing

Shared memory and L1 use the same 64KB

Program-configurable split:

Fermi: 48:16, 16:48
*» Kepler: 48:16, 16:48, 32:32

CUDA API: cudaDeviceSetCacheConfig(), cudaFuncSetCacheConfig()
Large L1 can improve performance when:

Spilling registers (more lines in the cache -> fewer evictions)
Large SMEM can improve performance when:

Occupancy is limited by SMEM

Shared Memory

Uses:
Inter-thread communication within a block
Cache data to reduce redundant global memory accesses
Use it to improve global memory access patterns

Organization:
32 banks, 4-byte (or 8-byte) banks
Successive words accessed through different banks

Parallel Memory Architecture

e In a parallel machine, many threads access memory
— Therefore, memory 1s divided into banks
— Essential to achieve high bandwidth

* Each bank can service one address per cycle

— A memory can service as many simultaneous
accesses as 1t has banks

* Multiple simultaneous accesses to a bank .
result in a bank conflict Bank 15
— Conlflicting accesses are serialized
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 10

ECE 498AL, University of lllinois, Urbana-Champaign

Memory Banks

Fermi/Kepler/Maxwell
and newer:

32 banks

default: g '
4B / bank S

Kepler or newer:
configurable
to 8B / bank

Shared Memory

Uses:
Inter-thread communication within a block
Cache data to reduce redundant global memory accesses
Use it to improve global memory access patterns

Performance:
smem accesses are issued per warp

Throughput is 4 (or 8) bytes per bank per clock per multiprocessor

serialization: if N threads of 32 access different words in the same bank,
N accesses are executed serially

multicast: N threads access the same word in one fetch
* Could be different bytes within the same word

Shared Memory Organization

Organized in 32 independent banks

Optimal access: no two words from
same bank

Separate banks per thread

Banks can multicast

Multiple words from same bank serialize

Bank Addressing Examples

* No Bank Conflicts * No Bank Conflicts
— Linear addressing — Random 1:1 Permutation
stride ==

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5

Thread 6
Thread 7

Thread O
Thread 1
Thread 2

Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Thread 15

Thread 15 Bank 15

Bank 15

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of lllinois, Urbana-Champaign

Bank Addressing Examples

« 2-way Bank Conflicts

— Linear addressing
stride ==

Thread 0
Thread 1

Thread 2 Vl‘
Thread 4 ~"1

Thread 8
Thread 9
Thread 10

Thread 11

Thread 15

« 8-way Bank Conflicts

— Linear addressing
stride ==

Thread O

Thread 1
Thread 2 "
Thread 3 | ‘

Thread 4 '
Thread 5 \
Thread 6 [

Thread 7

x8

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009

ECE 498AL, University of lllinois, Urbana-Champaign

15

How addresses map to banks on G80

« Each bank has a bandwidth of 32 bits per clock cycle

* Successive 32-bit words are assigned to successive
banks

* (G380 has 16 banks
— So bank = address % 16
— Same as the size of a half-warp

* No bank conflicts between different half-warps, only within a
single half-warp

Fermi and newer have 32 banks,
considers full warps instead of half warps!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 16
ECE 498AL, University of lllinois, Urbana-Champaign

Shared Memory Bank Conflicts

 Shared memory is as fast as registers if there are no bank
conflicts

» The fast case:
— If all threads of a half-warp access different banks, there is no bank conflict

— If all threads of a half-warp access the identical address, there is no bank
conflict (broadcast)

« The slow case:

— Bank Conflict: multiple threads in the same half-warp access the same
bank

— Must serialize the accesses
— Cost = max # of simultaneous accesses to a single bank

full warps instead of half warps on Fermi and newer!

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

Linear Addressing

« Given:

__shared float shared[256];
float foo =
shared[baseIndex + s * threadIdx.x];

« This is only bank-conflict-free if s
shares no common factors with the

number of banks
— 16 on G80, so s must be odd

Thread 0
Thread 1
Thread 2
Thread 3

Thread 4
Thread 5
Thread 6
Thread 7

' Bark 15

Thread 15

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4

Thread 5
Thread 6
Thread 7

Parallel08 — Memory Access

Hendrik Lensch and Robert Strzodka

Data Types and Bank Conflicts

« This has no conflicts if type of shared is 32-bits:

foo = shared[baseIndex + threadIdx.x]
Thread O
Thread 1
Thread 2

« But not if the data type is smaller —
— 4-way bank conflicts: SIS

Thread 6
shared char shared[]; Thread 7

foo = shared[baseIndex + threadIdx.x]:;

not true on Fermi, because of multi-cast!

Thread O
Thread 1

— 2-way bank conflicts: linlveid2

Thread 3

__shared short shared[]; Thread 4

foo = shared[baseIndex + threadIdx.x]; S

Thread 7

’I
Thread 15 Bank 15

not true on Fermi, because of multi-cast!

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

Structs and Bank Conflicts

« Struct assignments compile into as many memory accesses as there are
struct members:

Thread O

Thread 1 I
struct vector { flecat x, vy, z; }; R
struct myType { Thread 3
Thread 4
float f,' Thread 5
lnt c: Thread 6
. Thread 7
}: . .
__shared struct vector vectors[64]; H .
__shared struct myType myTypes[64]; —’ Bank 15
« This has no bank conflicts for vector; struct size is 3 words /\

— 3 accesses per thread, contiguous banks (no common factor with 16)

struct vector v = vectors[baselIndex + threadldx.x]:;

» This has 2-way bank conflicts for myType;
(each bank will be accessed by 2 threads simultaneously)
struct myType m = myTypes[baseIndex + threadIdx.x];

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

Broadcast on Shared Memory

« Each thread loads the same
element — no bank conlict

Thread O

x = shared[O0]; Thread 1

Thread 2

* Will be resolved implicitly Thread 3

Thread 4

Thread 5
Thread 6

Thread 7

multi-cast on Fermi and newer!

Bank 15

Thread 15

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

Common Array Bank Conflict Patterns
1D

» Each thread loads 2 elements into shared
mem:

— 2-way-interleaved loads result in
2-way bank conflicts:

Thread 0

Thread 1
int tid = threadIdx.x; =8
Thread 2

shared[2*tid] = global[2*tid]; Thread 3
shared[2*¥tid+1] = global[2*tid+1]; Thread 4

* This makes sense for traditional CPU

threads, locality in cache line usage and Thread 8

reduced sharing traffic. Thread 9
— Not in shared memory usage where there is TThizes N —
no cache line effects but banking effects Thread 11

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

A Better Array Access Pattern

« Each thread loads one element in
every consecutive group of

blockDim elements. Thread 0

Thread 1
shared[tid] = globall[tid]; Thread 2
shared[tid + blockDim.x] = Thread 3

global[tid + blockDim.x];

Thread 4
Thread 5

Thread 6

Thread 7

Thread 15 Bank 15

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

OPTIMIZE

Kernel Optimizations: Shared Memory Accesses

Case Study: Matrix Transpose

* Coalesced read
* Scattered write (stride N)

— Process matrix tile, not single
row/column, per block

= Transpose matrix tile within block

Case Study: Matrix Transpose

* Coalesced read
* Scattered write (stride N)

* Transpose matrix tile within block

— Need threads in a block to cooperate:
use shared memory

Transpose with coalesced read/write

__global transpose(float in[], float out[])
{

__shared float tile[TILE] [TILE];

int glob_in = xIndex + (yIndex)*N;
int glob _out = xIndex + (yIndex) *N;

tile[threadIdx.y] [threadIdx.x] = in[glob in];
__syncthreads() ;

out[glob out] = tile[threadIdx.x] [threadIdx.y]’

Fixed GMEM coalescing, but introduced SMEM bank conflicts

e e ————

transpose<<<grid, threads>>>(in, out);

Shared Memory: Avoiding Bank Conflicts

Example: 32x32 SMEM array

Warp accesses a column:
* 32-way bank conflicts (threads in a warp access the same bank)

warps:
2

Bank O 2

2

2

Shared Memory: Avoiding Bank Conflicts

Add a column for padding:
32x33 SMEM array

* Warp accesses a column:

+ 32 different banks, no bank conflicts
warps:
31 padding

Thank you.

