CS 380 - GPU and GPGPU Programming
Lecture 19: CUDA Memory, Pt. 1

kﬁnarku . : -

Reading Assignment #11 (until Nov 15)

Read (required):
« Programming Massively Parallel Processors book, 3™ edition

Chapter 5 (Performance Considerations) [was Chap. 6 in 2" ed.]
* Read

https://en.wikipedia.org/wiki/Stream_processing

Read (optional):

* Linear algebra operators for GPU implementation of numerical algorithms,
Krueger and Westermann, SIGGRAPH 2003

https://dl.acm.org/doi/10.1145/882262.882363
» A Survey of General-Purpose Computation on Graphics Hardware (2007)

https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2007.01012.Xx

CUDA Highlights: Scatter

« CUDA provides generic DRAM memory addressing
— Gather:

Control

— And scatter: no longer limited to write one pixel

=== More programming flexibility

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

CUDA Highlights: On-Chip Shared Memory

« CUDA enables access to a parallel on-chip shared
memory for efficient inter-thread data sharing

Shared Shared

memory memory

===) Big memory bandwidth savings

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

CUDA Memory:

Overview

Markus Hadwiger, KAUST 5

Kernel Memory Access
® Per-thread

«—> EEEE On-chip
Thread

<« | ez NEgei Off-chip, uncached

e
<- ® Per-block

Block Y Shared . IC:Jn-chip, small
— .
i Memory ast

® Per-device

El . — i e

* Persistent across
kernel launches
e Kernel 1/O

AnNvibDiA

Memory and Cache Types

Global memory

» [Device] L2 cache

 [SM] L1 cache (shared mem carved out; or L1 shared with tex cache)
 [SM/TPC] Texture cache (separate, or shared with L1 cache)

 [SM] Read-only data cache (storage might be same as tex cache)

Shared memory

* [SM] Shareable only between threads in same thread block

Constant memory: Constant (uniform) cache

Unified memory programming: Device/host memory sharing

Markus Hadwiger, KAUST

Memory Configurations and Types
for Different Compute Capabilities

Markus Hadwiger, KAUST 8

Compute Capab. 3.x (Kepler, Part 1)

A multiprocessor has a read-only constant cache that is shared by all functional units
and speeds up reads from the constant memory space, which resides in device memory.

There is an L1 cache for each multiprocessor and an L2 cache shared by all
multiprocessors. The L1 cache is used to cache accesses to local memory, including
temporary register spills. The L2 cache is used to cache accesses to local and global
memory. The cache behavior (e.g., whether reads are cached in both L1 and L2 or in
L2 only) can be partially configured on a per-access basis using moditfiers to the load
or store instruction. Some devices of compute capability 3.5 and devices of compute
capability 3.7 allow opt-in to caching of global memory in both L1 and L2 via compiler
options.

The same on-chip memory is used for both L1 and shared memory: It can be configured

as 48 KB of shared memory and 16 KB of L1 cache or as 16 KB of shared memory

and 48 KB of L1 cache or as 32 KB of shared memory and 32 KB of L1 cache, using
cudaFuncSetCacheConfig () /cuFuncSetCacheConfig():

Compute Capab. 3.x (Kepler, Part 2)

Devices of compute capability 3.7 add an additional 64 KB of shared memory to each
of the above configurations, yielding 112 KB, 96 KB, and 80 KB shared memory per
multiprocessor, respectively. However, the maximum shared memory per thread block
remains 48 KB.

Applications may query the L2 cache size by checking the 12CacheSize device property
(see Device Enumeration). The maximum L2 cache size is 1.5 MB.

Each multiprocessor has a read-only data cache of 48 KB to speed up reads from device
memory. It accesses this cache either directly (for devices of compute capability 3.5

or 3.7), or via a texture unit that implements the various addressing modes and data
filtering mentioned in Texture and Surface Memory. When accessed via the texture unit,
the read-only data cache is also referred to as texture cache.

Compute Capab. 3.x (Kepler, Part 3)

Global memory accesses for devices of compute capability 3.x are cached in L2 and for
devices of compute capability 3.5 or 3.7, may also be cached in the read-only data cache
described in the previous section; they are normally not cached in L1. Some devices of
compute capability 3.5 and devices of compute capability 3.7 allow opt-in to caching of
global memory accesses in L1 via the -Xptxas -dlcm=ca option to nvce.

A cache line is 128 bytes and maps to a 128 byte aligned segment in device memory.
Memory accesses that are cached in both L1 and L2 are serviced with 128-byte memory
transactions whereas memory accesses that are cached in L2 only are serviced with
32-byte memory transactions. Caching in L2 only can therefore reduce over-fetch, for
example, in the case of scattered memory accesses.

Compute Capab. 3.x (Kepler, Part 4)

If the size of the words accessed by each thread is more than 4 bytes, a memory
request by a warp is first split into separate 128-byte memory requests that are issued
independently:

» Two memory requests, one for each half-warp, it the size is 8 bytes,
» Four memory requests, one for each quarter-warp, if the size is 16 bytes.

Each memory request is then broken down into cache line requests that are issued
independently. A cache line request is serviced at the throughput of L1 or L2 cache in
case of a cache hit, or at the throughput of device memory, otherwise.

Note that threads can access any words in any order, including the same words.

Data that is read-only for the entire lifetime of the kernel can also be cached in the read-
only data cache described in the previous section by reading it using the _ 1dg ()
function (see Read-Only Data Cache Load Function). When the compiler detects that
the read-only condition is satisfied for some data, it will use _ 1dg() to read it. The
compiler might not always be able to detect that the read-only condition is satisfied

for some data. Marking pointers used for loading such data with both the const and
__restrict qualifiers increases the likelihood that the compiler will detect the read-
only condition.

PolyMorph Engine 2.0
1 mowor][Viewseritomaiom
Attribute Satup | l . i : |

GK104 SMX

Warp Scheduler _ Worp Scheduler Winrp Stheduler Warp Soheduler

Dispaich Unil Dispeich Unii Dispeich Unit Disgstch Unil Dispacch Umit DispatshiUni Oigpatch Unlt Dispoteh Lk

£ s 2 £ R 3 R 3 + R 4

Register Fila (65,536 x 32-bit)

& & 2 2 & e 4+ & &

« 192 CUDA cores —
(192 =6 " 32) ——

32 LD/ST units Gore| (0% oo sru B

Core

« 32 SFUs ' con

Core

o 16 texture units

Cora
Core LOST

Core

Two dispatch units
per warp scheduler
exploit ILP .
(instruction-level parallelism)

Core

SMX

Warp Scheduler | Warp Scheduler Warp Scheduler | | Warp Scheduler

Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch
3 + 3 E 8 1 I B 3

Register File (65,536 x 32-bit)

A . 8 i - E 2 B 4 & £ Ei kS . E 5 £
Care Cora| Corg SFU Core. Core LDIET SFU

« 192 CUDA cores z o 570 ot B

(192 - 6 * 32) Core T SFU Core] SFU
. 64 DP units = ——

e 32 LD/ST units o1 SFU. Core

« 32 SFUs st 570

SFU

GK110 SMX

e 16 texture units

SFU
SFU

SFU

New read-only =T
data cache (48KB) |

Y - e

Compute Capab. 5.x (Maxwell, Part 1)

A multiprocessor has:

» aread-only constant cache that is shared by all functional units and speeds up reads
from the constant memory space, which resides in device memory,
» aunified L1/texture cache of 24 KB used to cache reads from global memory,

» 64 KB of shared memory for devices of compute capability 5.0 or 96 KB of shared
memory for devices of compute capability 5.2.

The unified L1/texture cache is also used by the texture unit that implements the various
addressing modes and data filtering mentioned in Texture and Surface Memory.

There is also an L2 cache shared by all multiprocessors that is used to cache accesses to
local or global memory, including temporary register spills. Applications may query the
L2 cache size by checking the 12CacheSize device property (see Device Enumeration).

The cache behavior (e.g., whether reads are cached in both the unified L1/texture cache
and L2 or in L2 only) can be partially configured on a per-access basis using modifiers to
the load instruction.

Markus Hadwiger, KAUST 15

Compute Capab. 5.x (Maxwell, Part 2)

Global memory accesses are always cached in L2 and caching in L2 behaves in the same
way as for devices of compute capability 3.x (see Global Memory).

Data that is read-only for the entire lifetime of the kernel can also be cached in the
unified L1/texture cache described in the previous section by reading it using the
___1dg () function (see Read-Only Data Cache Load Function). When the compiler
detects that the read-only condition is satisfied for some data, it will use _ 1dg() to
read it. The compiler might not always be able to detect that the read-only condition
is satisfied for some data. Marking pointers used for loading such data with both the
constand _restrict qualifiers increases the likelihood that the compiler will
detect the read-only condition.

Data that is not read-only for the entire lifetime of the kernel cannot be cached in the
unified L1/texture cache for devices of compute capability 5.0. For devices of compute
capability 5.2, it is, by default, not cached in the unified L1/texture cache, but caching
may be enabled

Markus Hadwiger, KAUST 16

PolyMorph Engine 3.0

I[Tessallator | Viewport Transform

somiesown | [swamovpu___|

Maxwell (GM) Architecture ———

Warp Scheduler

Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit
3 E + .

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

. Core |Core | LD/ST Core <Core Core Core LD/ST
M u |t| p ro Cessor: S M M Core LD/ST Core Core |Core Core LD/ST

Core LD/ST Core Core Core Core LD/ST
« 128 CUDA
CO re S Core LD/ST Core Core Core LDIST

Core LD/ST Core Core LD/ST

* 4 DP units = | |
Core ! SFU Core LDIST

4 partitions inside SMM HE -~ = |l
» 32 CUDA cores each ——
« 8 LD/ST units each | s St | s s

Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit
£ 4+ | 2 +

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

« Each has its own warp scheduler,
two dispatch units, register file

Core Core Core LDST Core Core |Core LDST

Core Core Core LD/ST Core Core Core LD/ST

Core Core | Core LDST Core Core |Core LDST

Shared memory and L1 cache now
separate! =

Core Core LoisT SFU Core LD/IST

* L1 cache shares with texture cache

LD/ST SFU LOIST

» Shared memory is its own space [=77

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

Compute Capab. 6.x (Pascal, Part 1)

A multiprocessor has:

» aread-only constant cache that is shared by all functional units and speeds up reads
from the constant memory space, which resides in device memory,

» aunified L1/texture cache for reads from global memory of size 24 KB (6.0 and 6.2)
or 48 KB (6.1),

» ashared memory of size 64 KB (6.0 and 6.2) or 96 KB (6.1).

The unified L1/texture cache is also used by the texture unit that implements the various
addressing modes and data filtering mentioned in Texture and Surface Memory.

There is also an L2 cache shared by all multiprocessors that is used to cache accesses to
local or global memory, including temporary register spills. Applications may query the
L2 cache size by checking the 12CacheSize device property (see Device Enumeration).

The cache behavior (e.g., whether reads are cached in both the unified L1/texture cache
and L2 or in L2 only) can be partially configured on a per-access basis using modifiers to
the load instruction.

Markus Hadwiger, KAUST 18

Compute Capab. 6.x (Pascal, Part 2)

H.5.2. Global Memory

Global memory behaves the same way as devices of compute capability 5.x (See Global
Memory).

H.5.3. Shared Memory

Shared memory behaves the same way as devices of compute capability 5.x (See Shared
Memory).

Markus Hadwiger, KAUST 19

NVIDIA Pascal SM

Multiprocessor: SM Instruction Buffer]| AR B

Warp Scheduler | Warp Scheduler

Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit

* 64 CUDA cores : 2 2 -

Register File (32,768 x 32-bit) Register File (32,768 x 32-bit)
hd 32 DP U nItS Core - Core Core - LD/ST Core

|

Core - LD/ST Core

Core - LDIST Core
|

Core - LD/ST Core
|

Core - LD/ST Core
|

Core - LD/ST SFU Core
Core - LDIST SFU Core
|

SFU Core
|

Texture / L1 Cache

2 partitions inside SM
» 32 CUDA cores each; 16 DP units each; 8 LD/ST units each

» Each has its own warp scheduler, two dispatch units, register file

Compute Capab. 7.x (Volta/Turing, Part 1)

A multiprocessor has:

» aread-only constant cache that is shared by all functional units and speeds up reads
from the constant memory space, which resides in device memory,

» aunified data cache and shared memory with a total size of 128 KB (Volta) or 96 KB
(Turing).

Shared memory is partitioned out of unified data cache, and can be configured to
various sizes (See Shared Memory.) The remaining data cache serves as an L1 cache and
is also used by the texture unit that implements the various addressing and data filtering
modes mentioned in Texture and Surface Memory.

Markus Hadwiger, KAUST 21

Compute Capab. 7.x (Volta/Turing, Part 2)

H.6.3. Global Memory

Global memory behaves the same way as devices of compute capability 5.x (See Global
Memory).

H.6.4. Shared Memory

Similar to the Kepler architecture, the amount of the unified data cache reserved for
shared memory is configurable on a per kernel basis. For the Volta architecture (compute
capability 7.0), the unified data cache has a size of 128 KB, and the shared memory
capacity can be set to 0, 8, 16, 32, 64 or 96 KB. For the Turing architecture (compute
capability 7.5), the unified data cache has a size of 96 KB, and the shared memory
capacity can be set to either 32 KB or 64 KB. Unlike Kepler, the driver automatically
configures the shared memory capacity for each kernel to avoid shared memory
occupancy bottlenecks while also allowing concurrent execution with already launched
kernels where possible. In most cases, the driver's default behavior should provide
optimal performance.

Markus Hadwiger, KAUST 22

Compute Capab. 7.x (Volta/Turing, Part 3)

Because the driver is not always aware of the full workload, it is sometimes useful

for applications to provide additional hints regarding the desired shared memory
configuration. For example, a kernel with little or no shared memory use may request
a larger carveout in order to encourage concurrent execution with later kernels that
require more shared memory. The new cudaFuncSetAttribute () APl allows
applications to set a preferred shared memory capacity, or carveout, as a percentage
of the maximum supported shared memory capacity (96 KB for Volta, and 64 KB for
Turing).

cudaFuncSetAttribute () relaxes enforcement of the preferred shared capacity
compared to the legacy cudaFuncSetCacheConfig () APIintroduced with Kepler. The
legacy API treated shared memory capacities as hard requirements for kernel launch.
As a result, interleaving kernels with different shared memory configurations would
needlessly serialize launches behind shared memory reconfigurations. With the new
AP], the carveout is treated as a hint. The driver may choose a different configuration it
required to execute the function or to avoid thrashing.

Markus Hadwiger, KAUST 23

Compute Capab. 7.x (Volta/Turing, Part 4)

// Device code
__global wvoid MyKernel(...)

{
__shared _ float buffer[BLOCK_DIM];

}

// Host code

int carveout = 50; // prefer shared memory capacity 50% of maximum
// Named Carevout Values:

// carveout = cudaSharedmemCarveoutDefault; [/ (-1)

// carveout = cudaSharedmemCarveoutMaxLl; [/ (0)

// carveout = cudaSharedmemCarveoutMaxShared; // (100)

cudaFuncSetAttribute (MyKernel, cudaFuncAttributePreferredSharedMemoryCarveout,

carveout) ;
MyKernel <<<gridDim, BLOCK DIM>>>(...);

In addition to an integer percentage, several convenience enums are provided as listed
in the code comments above. Where a chosen integer percentage does not map exactly
to a supported capacity (SM 7.0 devices support shared capacities of 0, 8, 16, 32, 64, or
96 KB), the next larger capacity is used. For instance, in the example above, 50% of the
96 KB maximum is 48 KB, which is not a supported shared memory capacity. Thus, the
preference is rounded up to 64 KB.

Compute Capab. 7.x (Volta/Turing, Part 5)

Compute capability 7.x devices allow a single thread block to address the full capacity
of shared memory: 96 KB on Volta, 64 KB on Turing. Kernels relying on shared memory
allocations over 48 KB per block are architecture-specific, as such they must use dynamic
shared memory (rather than statically sized arrays) and require an explicit opt-in using
cudaFuncSetAttribute () as follows.

// Device code

__global wvoid MyKernel(...)
{

}

// Host code

int maxbytes = 98304; // 96 KB

cudaFuncSetAttribute (MyKernel, cudaFuncAttributeMaxDynamicSharedMemorySize,
maxbytes) ;

MyKernel <<<gridDim, blockDim>>>(...);

Otherwise, shared memory behaves the same way as devices of compute capability 5.x
(See Shared Memory).

NVIDIA Volta SM

Multiprocessor: SM
64 FP32 + INT32 cores
» 32 FP64 cores

» 8 tensor cores
(FP16/FP32 mixed-precision)

4 partitions inside SM
* 16 FP32 + INT32 cores each
8 FP64 cores each
8 LD/ST units each
2 tensor cores each

Each has: warp scheduler,
dispatch unit, register file

L1 Instruction Cache

L0 Instruction Cache

L0 Instruction Cache

FP64

FP64

FP64

FP64

FP64

FP64

FP64

FP64

LD/ LD/
ST ST

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT INT FP32 FP32
INT INT FP32 FP32
INT INT FP32 FP32

INT INT FP32 FP32 TENSOR TENSOR

INT INT [FP32 FP32 HORE GORE

INT INT |[FP32 FP32
INT INT FP32 FP32

INT INT [FP32 FP32

LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST SFU

FP64

FP64

FP64

FP64

FP64

FP64

FP64

FP64

LD/ LD/
ST ST

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT INT FP32 FP32

INT INT FP32 FP32

INT INT FP32 FP32

INT INT FP32 FP32

TENSOR TENSOR

CORE CORE

INT INT FP32 FP32

INT INT [FP32 FP32

INT INT FP32 FP32

INT INT [FP32 FP32

LD/ LD/ LD/ LD/ LD/ LD
ST ST ST ST ST ST SFU

LOIr tion Cache

L0 Instruction Cache

FP64

FP64

FP64

FP64

FP64

FP64

FP64

FP64

LD/ LD/
ST ST

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT INT [FP32 FP32
INT INT FP32 FP32
INT INT FP32 FP32

INT INT FP32 FP32 TENSOR TENSOR

INT INT FP32 FP32 GOER GOEE

INT INT FP32 FP32
INT INT [FP32 FP32

INT INT [FP32 FP32

LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST SFU

FP64

FP64

FP64

FP64

FP64

FP64

FP64

FP64

LD/ LD/
ST ST

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT INT [FP32 FP32

INT INT FP32 FP32

INT INT FP32 FP32

INT INT FP32 FP32

TENSOR TENSOR

CORE CORE

INT INT FP32 FP32

INT INT FP32 FP32

INT INT [FP32 FP32

INT INT [FP32 FP32

LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST SFU

128KB L

Tex

NVIDIA Turing SM

Multiprocessor: SM
* 64 FP32 + INT32 cores
» 2 (') FP64 cores

8 Turing tensor cores
(FP16/32, INT4/8 mixed-precision)

* 1 RT (ray tracing) core

4 partitions inside SM
* 16 FP32 + INT32 cores each
* 4 LD/ST units each
» 2 Turing tensor cores each

« Each has: warp scheduler,
dispatch unit, 16K register file

| Warp Scheduler + Dispatch (32 thread/clk) | |~ Warp Scheduler + Dispatch (32 thread/cik)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

TENSOR
CORES

TENSOR

INT32 FP32 CORES

INT32 FP32

LDIST LDIST LD/ST LD/ST SFU LD/ST LDIST LDIST LD/ST SFU

Warp Schediler + Dispatch (32 thread/clk) Warp Scheduler + Dispatch (82 thread/olk)| |

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

TENSOR
CORES

TENSOR

INT32 FP32 CORES

INT32 FP32

LDIST LDIST LDIST LDIST SFU LDIST LDIST LDIST

96KB L1 Data Cache / Shared Memory

Tex Tex

|
L Ry C.RE

O]

Compute Capab. 8.x (Ampere, Part 1)

An SM has:

» aread-only constant cache that is shared by all functional units and speeds up reads from
the constant memory space, which resides in device memory,

» aunified data cache and shared memory with a total size of 192 KB for devices of compute
capability 8.0 (1.5x Volta's 128 KB capacity) and 128 KB for devices of compute capability
8.6.

Shared memory is partitioned out of the unified data cache, and can be configured to various
sizes (see Shared Memory section). The remaining data cache serves as an L1 cache and is
also used by the texture unit that implements the various addressing and data filtering modes
mentioned in Texture and Surface Memory.

Markus Hadwiger, KAUST 28

Compute Capab. 8.x (Ampere, Part 2)

1.7.2. Global Memory

Global memory behaves the same way as for devices of compute capability 5.x (See Global
Memory].

1.7.3. Shared Memory

Similar to the Volta architecture, the amount of the unified data cache reserved for shared
memory Is configurable on a per kernel basis. For the NVIDIA Ampere GPU architecture, the
unified data cache has a size of 192 KB for devices of compute capability 8.0 and 128 KB for
devices of compute capability 8.6. The shared memory capacity can be set to 0, 8, 16, 32, 64,
100, 132 or 164 KB for devices of compute capability 8.0, and to 0, 8, 16, 32, 64 or 100 KB for
devices of compute capability 8.6.

An application can set the carveout, I.e., the preferred shared memory capacity, with the
cudaFuncSetAttribute ().

cudaFuncSetAttribute (kernel name, cudaFuncAttributePreferredSharedMemoryCarveout,
carveeut) ;

Markus Hadwiger, KAUST 29

Compute Capab. 8.x (Ampere, Part 3)

The API can specify the carveout either as an integer percentage of the maximum
supported shared memory capacity of 164 KB for devices of compute capability 8.0 and

100 KB for devices of compute capability 8.6 respectively, or as one of the following

values: {cudaSharedmemCarveoutDefault, cudaSharedmemCarveoutMaxLl, Or
cudaSharedmemCarveoutMaxShared. When using a percentage, the carveout is rounded
up to the nearest supported shared memory capacity. For example, for devices of compute
capability 8.0, 50% will map to a 100 KB carveout instead of an 82 KB one. Setting the
cudaFuncAttributePreferredSharedMemoryCarveout is considered a hint by the driver;
the driver may choose a different configuration, If needed.

Devices of compute capability 8.0 allow a single thread block to address up to 163 KB of
shared memory, while devices of compute capability 8.6 allow up to 99 KB of shared memory.
Kernels relying on shared memory allocations over 48 KB per block are architecture-specific,
and must use dynamic shared memory rather than statically sized shared memory arrays.
These kernels require an explicit opt-in by using cudaFuncSetAttribute () to set the
cudaFuncAttributeMaxDynamicSharedMemorySize; see Shared Memory for the Volta
architecture.

Note that the maximum amount of shared memory per thread block is smaller than the
maximum shared memory partition available per SM. The 1 KB of shared memory not made
available to a thread block is reserved for system use.

Markus Hadwiger, KAUST 30

NVIDIA GA100 SM

Multiprocessor: SM

64 FP32 + 64 INT32 cores
32 FP64 cores
4 31 gen tensor cores

1 2nd gen RT (ray tracing) core

4 partitions inside SM

16 FP32 + 16 INT32 cores
8 FP64 cores

8 LD/ST units each

1 3" gen tensor core each

Each has: warp scheduler,
dispatch unit, 16K register file

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

LD/ LD/
ST ST

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

LD/ LD/
ST ST

L0 Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

gister File (16,384 x 32-bit)

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

LD/ LD/
ST sT

FPB4
FPG4
FP64
FP64
TENSOR CORE
FP64
FP64
FP64
FP64

Lo/ LD/ LD/ LD/
ST ST ST ST SFU

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP3z

LD/ LD/
ST ST

FP64
FP84
FP64
FP64

TENSOR CORE
FP84
FP64

FP64

FP64

LD/ LD/ LD/
ST ST ST

INT32INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

LD/ LD/
ST ST

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

LD/ Lo/
ST ST

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

LD/ LD/
ST ST

FPB4

FPB4

FP64
FP64

TENSOR CORE
FPB4
FP64
FP64
FP64

LDV LD/ LD/ LD/
8T ST ST ST SFU

'LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

LD/ LD/
ST ST

FP64
FPB4
FPB4
FP64

TENSOR CORE
FPB4
FP64

FP64

FP64

LD/ LD/ LD/ LD/
sT ST ST ST SFU

LO i-Cache + Warp Scheduler + Dispatch (32 thread/clk) LO i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

NVIDIA GA10x SM

TENSOR TENSOR
CORE CORE

Multiprocessor: SM 3rd Gen
» 128 (64+64) FP32 + 64 INT32 cores
» 2 (') FP64 cores

b 4 3rd gen tensor CO reS Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

« 1 2"d gen RT (ray tracing) core

4 partitions inside SM TENSOR Fpsz | TENSOR
. 16+16 FP32 + 16 INT32 cores - —
« 4 LD/ST units each

« 1 31 gen tensor core each

128KB L1 Data Cache / Shared Memory

Tex Tex

« Each has: warp scheduler,
dispatch unit, 16K register file | RT

CORE

‘ —
N [Zﬁd']G%neratloh -

Thank you.

