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Reading Assignment #11 (until Nov 15)

Read (required):

• Programming Massively Parallel Processors book, 3rd edition

Chapter 5 (Performance Considerations) [was Chap. 6 in 2nd ed.]

• Read

https://en.wikipedia.org/wiki/Stream_processing

Read (optional):

• Linear algebra operators for GPU implementation of numerical algorithms,
Krueger and Westermann, SIGGRAPH 2003

https://dl.acm.org/doi/10.1145/882262.882363

• A Survey of General-Purpose Computation on Graphics Hardware (2007)

https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2007.01012.x
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Quiz #2: Nov 10

Organization

• First 30 min of lecture

• No material (book, notes, ...) allowed

Content of questions

• Lectures (both actual lectures and slides)

• Reading assigments

• Programming assignments (algorithms, methods)

• Solve short practical examples



Stream Computing and GPGPU
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Types of Parallelism

Bit-Level Parallelism (70s and 80s)

• Doubling the word size 4, 8, 16, 32-bit (64-bit ~2003)

Instruction-Level Parallelism (mid 80s-90s)

• Instructions are split into stages  multi stage pipeline

• Superscalar execution, …

Data Parallelism

• Multiple processors execute the same instructions on different 
parts of the data

Task Parallelism

• Multiple processors execute instructions independently
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From GPU to GPGPU

1990s Fixed function graphics-pipeline used for more general 
computations in academia (e.g., rasterization, z-buffer)

2001 Shaders changed the API to access graphics cards

2004 Brook for GPUs changed the terminology

Since then: 

ATI’s Stream SDK (originally based on Brook)

NVIDIA’s CUDA (started by Brook developers)

OpenCL (platform independent)

GLSL Compute Shaders (platform independent)

Vulkan Compute Shaders (platform independent)

DirectX 12 Compute Shaders
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Early GPGPU: Linear Algebra Operators

Vector and matrix representation and operators

• Early approach based on graphics primitives 

• Now CUDA makes this much easier

• Linear systems solvers

Krüger and Westermann (2003)
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Stream Programming Abstraction

Goal: SW programming model that matches data parallelism

Streams

• Collection of data records

• All data is expressed in streams

Kernels

• Inputs/outputs are streams

• Perform computation on streams
(each data record is processes independently)

• Can be chained together

Courtesy John Owens
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Why Streams?

• Exposing parallelism

• Data parallelism

• Task parallelism

for(i = 0; i<size; i++)
{

a[i] = 2*b[i];
}

for(each a, b)
{

a = 2*b;
}

for(i = 0; i<size; i++)
{

a[i] = a[i+1]*2;
}

for(each a)
{

???
}

• Multiple stream elements can be processed in parallel
• Multiple tasks can be processed in parallel
• Predictable memory access pattern
• Optimize for throughput of all elements, not latency of one
• Processing many elements at once allows latency hiding





































































Thank you.

• John Owens

• Ian Buck et al.

• AMD


