
CS 380 - GPU and GPGPU Programming
Lecture 18: Stream Computing and GPGPU

Markus Hadwiger, KAUST



2

Reading Assignment #11 (until Nov 15)

Read (required):

• Programming Massively Parallel Processors book, 3rd edition

Chapter 5 (Performance Considerations) [was Chap. 6 in 2nd ed.]

• Read

https://en.wikipedia.org/wiki/Stream_processing

Read (optional):

• Linear algebra operators for GPU implementation of numerical algorithms,
Krueger and Westermann, SIGGRAPH 2003

https://dl.acm.org/doi/10.1145/882262.882363

• A Survey of General-Purpose Computation on Graphics Hardware (2007)

https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2007.01012.x



3

Quiz #2: Nov 10

Organization

• First 30 min of lecture

• No material (book, notes, ...) allowed

Content of questions

• Lectures (both actual lectures and slides)

• Reading assigments

• Programming assignments (algorithms, methods)

• Solve short practical examples



Stream Computing and GPGPU

Markus Hadwiger, KAUST 4



Types of Parallelism

Bit-Level Parallelism (70s and 80s)

• Doubling the word size 4, 8, 16, 32-bit (64-bit ~2003)

Instruction-Level Parallelism (mid 80s-90s)

• Instructions are split into stages  multi stage pipeline

• Superscalar execution, …

Data Parallelism

• Multiple processors execute the same instructions on different 
parts of the data

Task Parallelism

• Multiple processors execute instructions independently

Markus Hadwiger, KAUST 5



From GPU to GPGPU

1990s Fixed function graphics-pipeline used for more general 
computations in academia (e.g., rasterization, z-buffer)

2001 Shaders changed the API to access graphics cards

2004 Brook for GPUs changed the terminology

Since then: 

ATI’s Stream SDK (originally based on Brook)

NVIDIA’s CUDA (started by Brook developers)

OpenCL (platform independent)

GLSL Compute Shaders (platform independent)

Vulkan Compute Shaders (platform independent)

DirectX 12 Compute Shaders

Markus Hadwiger, KAUST 6



7

Early GPGPU: Linear Algebra Operators

Vector and matrix representation and operators

• Early approach based on graphics primitives 

• Now CUDA makes this much easier

• Linear systems solvers

Krüger and Westermann (2003)



8

Stream Programming Abstraction

Goal: SW programming model that matches data parallelism

Streams

• Collection of data records

• All data is expressed in streams

Kernels

• Inputs/outputs are streams

• Perform computation on streams
(each data record is processes independently)

• Can be chained together

Courtesy John Owens



9

Why Streams?

• Exposing parallelism

• Data parallelism

• Task parallelism

for(i = 0; i<size; i++)
{

a[i] = 2*b[i];
}

for(each a, b)
{

a = 2*b;
}

for(i = 0; i<size; i++)
{

a[i] = a[i+1]*2;
}

for(each a)
{

???
}

• Multiple stream elements can be processed in parallel
• Multiple tasks can be processed in parallel
• Predictable memory access pattern
• Optimize for throughput of all elements, not latency of one
• Processing many elements at once allows latency hiding





































































Thank you.

• John Owens

• Ian Buck et al.

• AMD


