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Markus Hadwiger, KAUST



2

Reading Assignment #10 (until Nov 8)

Read (required):

• Brook for GPUs: Stream Computing on Graphics Hardware
Ian Buck et al., SIGGRAPH 2004

http://graphics.stanford.edu/papers/brookgpu/

Read (optional):

• The Imagine Stream Processor
Ujval Kapasi et al.; IEEE ICCD 2002

http://cva.stanford.edu/publications/2002/imagine-overview-iccd/

• Merrimac: Supercomputing with Streams
Bill Dally et al.; SC 2003

https://dl.acm.org/citation.cfm?doid=1048935.1050187
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Texturing: General Approach

Texture space (u,v) Object space (xO,yO,zO) Image Space (xI,yI)

Parametrization Rendering
(Projection etc.)

Texels



Interpolation Type + Purpose #1:

Interpolation of Texture Coordinates

(Linear / Rational-Linear Interpolation)
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Perspective Projection
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Perspective-Correct Interpolation Recipe

Heckbert and Moreton
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Projective Texture Mapping

Want to simulate a beamer

… or a flashlight, or a slide projector

Precursor to shadows

Interesting mathematics: 
2 perspective 
projections involved!

Easy to program!
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Projective Texture Mapping
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Projective Shadows in Doom 3
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Projective Texturing

What about homogeneous texture coords?

Need to do perspective divide also for projector!

(s, t, q)  (s/q, t/q) for every fragment

How does OpenGL do that?

Needs to be perspective correct as well!

Trick: interpolate (s/w, t/w, r/w, q/w)

(s/w) / (q/w) = s/q etc. at every fragment

Remember: s,t,r,q are equivalent to x,y,z,w in 
projector space!  r/q = projector depth!
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Multitexturing

Apply multiple textures in one pass

Integral part of programmable shading
e.g. diffuse texture map + gloss map

e.g. diffuse texture map + light map

Performance issues
How many textures are free?

How many are available
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Example: Light Mapping

Used in virtually every commercial game

Precalculate diffuse lighting on static objects
Only low resolution necessary

Diffuse lighting is view independent!

Advantages:
No runtime lighting necessary 

VERY fast!

Can take global effects (shadows, color 
bleeds) into account
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Light Mapping

Original LM texels Bilinear Filtering
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Light Mapping Issues

Why premultiplication is bad…

 use tileable surface textures and low 
resolution lightmaps 

vs.

+

Full Size Texture
(with Lightmap)

Tiled Surface Texture 
plus Lightmap



Vienna University of Technology 15

Light Mapping

Original scene Light-mapped
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Example: Light Mapping

Precomputation based on non-realtime 
methods

Radiosity

Ray tracing
Monte Carlo Integration

Path tracing

Photon mapping
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Light Mapping

Lightmap mapped
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Light Mapping

Original scene Light-mapped



Interpolation Type + Purpose #2:

Interpolation of Samples in Texture Space

(Multi-Linear Interpolation)
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Types of Textures

Spatial layout

Cartesian grids: 1D, 2D, 3D, 2D_ARRAY, …

Cube maps, …

Formats (too many), e.g. OpenGL

GL_LUMINANCE16_ALPHA16

GL_RGB8, GL_RGBA8, …: integer texture formats

GL_RGB16F, GL_RGBA32F, …: float texture formats

compressed formats, high dynamic range formats, …

External (CPU) format vs. internal (GPU) format
OpenGL driver converts from external to internal
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Magnification (Bi-linear Filtering Example)

Original image

Nearest neighbor Bi-linear filtering
Vienna University of Technology



Nearest-Neighbor vs. Bi-Linear Interpolation

nearest-neighbor                                bi-linear
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wikipedia

Bilinear patch (courtesy J. Han)



Consider area between 2x2 adjacent samples (e.g., pixel centers)

Example #2: 1 at top-left and bottom-right, 0 at bottom-left, 0.5 at top-right

Bi-Linear Interpolation
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Consider area between 2x2 adjacent samples (e.g., pixel centers):

Given any (fractional) position

and 2x2 sample values

Compute:

Bi-Linear Interpolation
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Consider area between 2x2 adjacent samples (e.g., pixel centers):

Given any (fractional) position

and 2x2 sample values

Compute:

Bi-Linear Interpolation
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Weights in 2x2 format:

Interpolate function at (fractional) position            :

Bi-Linear Interpolation
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Interpolate function at (fractional) position            :

Bi-Linear Interpolation
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Interpolate function at (fractional) position            :

Bi-Linear Interpolation
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REALLY IMPORTANT:

this is a different thing (for a different purpose)
than the linear (or, in perspective, rational-linear)

interpolation of texture coordinates!!
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Texture Minification
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Texture Aliasing: Minification

Problem: One pixel in image space covers many texels
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Texture Aliasing: Minification

Caused by undersampling: texture information is lost

Texture space

Image space
Vienna University of Technology
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Texture Anti-Aliasing: Minification

A good pixel value is the weighted mean of the pixel 
area projected into texture space 

Texture space u

v

Image space

Pixel

X

X

Vienna University of Technology
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Texture Anti-Aliasing: MIP Mapping

MIP Mapping (“Multum In Parvo”)
Texture size is reduced by factors of 2
(downsampling = "many things in a small place")

Simple (4 pixel average) and memory efficient

Last image is only ONE texel

Vienna University of Technology



Texture Anti-Aliasing: MIP Mapping

MIP Mapping (“Multum In Parvo”)
Texture size is reduced by factors of 2
(downsampling = "many things in a small place")

Simple (4 pixel average) and memory efficient

Last image is only ONE texel
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geometric series:
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Texture Anti-Aliasing: MIP Mapping

MIP Mapping Algorithm

D := ld(max(d1,d2))

T0 := value from texture D0= trunc (D)
Use bilinear interpolation

d1

d2

Bilinear interpolation Trilinear interpolation

X

"Mip Map level"



MIP-Map Level Computation
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• Use the partial derivatives of texture coordinates with respect to 
screen space coordinates

• This is the Jacobian matrix

• Area of parallelogram is the
absolute value of the Jacobian determinant (the Jacobian)

=



MIP-Map Level Computation (OpenGL)
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• OpenGL 4.6 core specification, pp. 251-264

Does not use area of parallelogram but greater hypotenuse [Heckbert, 1983]

• Approximation without square-roots

(3D tex coords!)



MIP-Map Level Interpolation
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• Level of detail value is fractional!

• Use fractional part to blend (lin.) between two adjacent mipmap levels
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Texture Anti-Aliasing: MIP Mapping

Trilinear interpolation:
T1 := value from texture D1 = D0+1 (bilin.interpolation)

Pixel value := (D1–D)·T0 + (D–D0)·T1

Linear interpolation between successive MIP Maps

Avoids "Mip banding" (but doubles texture lookups)

Vienna University of Technology
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Texture Anti-Aliasing: MIP Mapping 

Other example for bilinear vs. trilinear filtering

Vienna University of Technology



Thank you.


