
CS 380 - GPU and GPGPU Programming
Lecture 16: GPU Texturing, Pt. 3

Markus Hadwiger, KAUST

2

Reading Assignment #10 (until Nov 8)

Read (required):

• Brook for GPUs: Stream Computing on Graphics Hardware
Ian Buck et al., SIGGRAPH 2004

http://graphics.stanford.edu/papers/brookgpu/

Read (optional):

• The Imagine Stream Processor
Ujval Kapasi et al.; IEEE ICCD 2002

http://cva.stanford.edu/publications/2002/imagine-overview-iccd/

• Merrimac: Supercomputing with Streams
Bill Dally et al.; SC 2003

https://dl.acm.org/citation.cfm?doid=1048935.1050187

Eduard Gröller, Stefan Jeschke 3

Texturing: General Approach

Texture space (u,v) Object space (xO,yO,zO) Image Space (xI,yI)

Parametrization Rendering
(Projection etc.)

Texels

Interpolation Type + Purpose #1:

Interpolation of Texture Coordinates

(Linear / Rational-Linear Interpolation)

Markus Hadwiger, KAUST 4

5

Perspective Projection

6

Perspective-Correct Interpolation Recipe

Heckbert and Moreton

Vienna University of Technology 7

Projective Texture Mapping

Want to simulate a beamer

… or a flashlight, or a slide projector

Precursor to shadows

Interesting mathematics:
2 perspective
projections involved!

Easy to program!

Vienna University of Technology 8

Projective Texture Mapping

Vienna University of Technology 9

Projective Shadows in Doom 3

Vienna University of Technology 10

Projective Texturing

What about homogeneous texture coords?

Need to do perspective divide also for projector!

(s, t, q)  (s/q, t/q) for every fragment

How does OpenGL do that?

Needs to be perspective correct as well!

Trick: interpolate (s/w, t/w, r/w, q/w)

(s/w) / (q/w) = s/q etc. at every fragment

Remember: s,t,r,q are equivalent to x,y,z,w in
projector space!  r/q = projector depth!

Vienna University of Technology 11

Multitexturing

Apply multiple textures in one pass

Integral part of programmable shading
e.g. diffuse texture map + gloss map

e.g. diffuse texture map + light map

Performance issues
How many textures are free?

How many are available

Vienna University of Technology 12

Example: Light Mapping

Used in virtually every commercial game

Precalculate diffuse lighting on static objects
Only low resolution necessary

Diffuse lighting is view independent!

Advantages:
No runtime lighting necessary

VERY fast!

Can take global effects (shadows, color
bleeds) into account

Vienna University of Technology 13

Light Mapping

Original LM texels Bilinear Filtering

Vienna University of Technology 14

Light Mapping Issues

Why premultiplication is bad…

 use tileable surface textures and low
resolution lightmaps

vs.

+

Full Size Texture
(with Lightmap)

Tiled Surface Texture
plus Lightmap

Vienna University of Technology 15

Light Mapping

Original scene Light-mapped

Vienna University of Technology 16

Example: Light Mapping

Precomputation based on non-realtime
methods

Radiosity

Ray tracing
Monte Carlo Integration

Path tracing

Photon mapping

Vienna University of Technology 17

Light Mapping

Lightmap mapped

Vienna University of Technology 18

Light Mapping

Original scene Light-mapped

Interpolation Type + Purpose #2:

Interpolation of Samples in Texture Space

(Multi-Linear Interpolation)

Markus Hadwiger, KAUST 19

Vienna University of Technology 20

Types of Textures

Spatial layout

Cartesian grids: 1D, 2D, 3D, 2D_ARRAY, …

Cube maps, …

Formats (too many), e.g. OpenGL

GL_LUMINANCE16_ALPHA16

GL_RGB8, GL_RGBA8, …: integer texture formats

GL_RGB16F, GL_RGBA32F, …: float texture formats

compressed formats, high dynamic range formats, …

External (CPU) format vs. internal (GPU) format
OpenGL driver converts from external to internal

21

Magnification (Bi-linear Filtering Example)

Original image

Nearest neighbor Bi-linear filtering
Vienna University of Technology

Nearest-Neighbor vs. Bi-Linear Interpolation

nearest-neighbor bi-linear

Markus Hadwiger 22

wikipedia

Bilinear patch (courtesy J. Han)

Consider area between 2x2 adjacent samples (e.g., pixel centers)

Example #2: 1 at top-left and bottom-right, 0 at bottom-left, 0.5 at top-right

Bi-Linear Interpolation

Markus Hadwiger, KAUST 23

Consider area between 2x2 adjacent samples (e.g., pixel centers):

Given any (fractional) position

and 2x2 sample values

Compute:

Bi-Linear Interpolation

Markus Hadwiger, KAUST 24

Consider area between 2x2 adjacent samples (e.g., pixel centers):

Given any (fractional) position

and 2x2 sample values

Compute:

Bi-Linear Interpolation

Markus Hadwiger, KAUST 25

Weights in 2x2 format:

Interpolate function at (fractional) position :

Bi-Linear Interpolation

Markus Hadwiger, KAUST 26

Interpolate function at (fractional) position :

Bi-Linear Interpolation

Markus Hadwiger, KAUST 27

Interpolate function at (fractional) position :

Bi-Linear Interpolation

Markus Hadwiger, KAUST 28

REALLY IMPORTANT:

this is a different thing (for a different purpose)
than the linear (or, in perspective, rational-linear)

interpolation of texture coordinates!!

Markus Hadwiger, KAUST 29

Texture Minification

Markus Hadwiger, KAUST 30

31

Texture Aliasing: Minification

Problem: One pixel in image space covers many texels

Vienna University of Technology

32

Texture Aliasing: Minification

Caused by undersampling: texture information is lost

Texture space

Image space
Vienna University of Technology

33

Texture Anti-Aliasing: Minification

A good pixel value is the weighted mean of the pixel
area projected into texture space

Texture space u

v

Image space

Pixel

X

X

Vienna University of Technology

34

Texture Anti-Aliasing: MIP Mapping

MIP Mapping (“Multum In Parvo”)
Texture size is reduced by factors of 2
(downsampling = "many things in a small place")

Simple (4 pixel average) and memory efficient

Last image is only ONE texel

Vienna University of Technology

Texture Anti-Aliasing: MIP Mapping

MIP Mapping (“Multum In Parvo”)
Texture size is reduced by factors of 2
(downsampling = "many things in a small place")

Simple (4 pixel average) and memory efficient

Last image is only ONE texel

Vienna University of Technology

geometric series:

Eduard Gröller, Stefan Jeschke 36

Texture Anti-Aliasing: MIP Mapping

MIP Mapping Algorithm

D := ld(max(d1,d2))

T0 := value from texture D0= trunc (D)
Use bilinear interpolation

d1

d2

Bilinear interpolation Trilinear interpolation

X

"Mip Map level"

MIP-Map Level Computation

Markus Hadwiger, KAUST 37

• Use the partial derivatives of texture coordinates with respect to
screen space coordinates

• This is the Jacobian matrix

• Area of parallelogram is the
absolute value of the Jacobian determinant (the Jacobian)

=

MIP-Map Level Computation (OpenGL)

Markus Hadwiger, KAUST 38

• OpenGL 4.6 core specification, pp. 251-264

Does not use area of parallelogram but greater hypotenuse [Heckbert, 1983]

• Approximation without square-roots

(3D tex coords!)

MIP-Map Level Interpolation

Markus Hadwiger, KAUST 39

• Level of detail value is fractional!

• Use fractional part to blend (lin.) between two adjacent mipmap levels

40

Texture Anti-Aliasing: MIP Mapping

Trilinear interpolation:
T1 := value from texture D1 = D0+1 (bilin.interpolation)

Pixel value := (D1–D)·T0 + (D–D0)·T1

Linear interpolation between successive MIP Maps

Avoids "Mip banding" (but doubles texture lookups)

Vienna University of Technology

41

Texture Anti-Aliasing: MIP Mapping

Other example for bilinear vs. trilinear filtering

Vienna University of Technology

Thank you.

