

CS 380 - GPU and GPGPU Programming Lecture 16: GPU Texturing, Pt. 3

Markus Hadwiger, KAUST

Reading Assignment #10 (until Nov 8)

Read (required):

• Brook for GPUs: Stream Computing on Graphics Hardware lan Buck et al., SIGGRAPH 2004

http://graphics.stanford.edu/papers/brookgpu/

Read (optional):

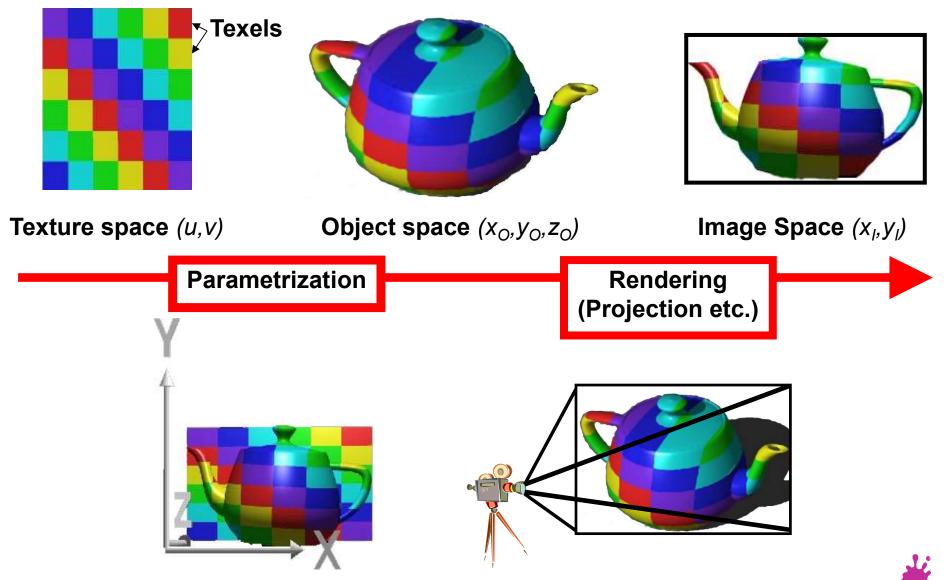
• The Imagine Stream Processor Ujval Kapasi et al.; IEEE ICCD 2002

http://cva.stanford.edu/publications/2002/imagine-overview-iccd/

• Merrimac: Supercomputing with Streams Bill Dally et al.; SC 2003

https://dl.acm.org/citation.cfm?doid=1048935.1050187

Texturing: General Approach



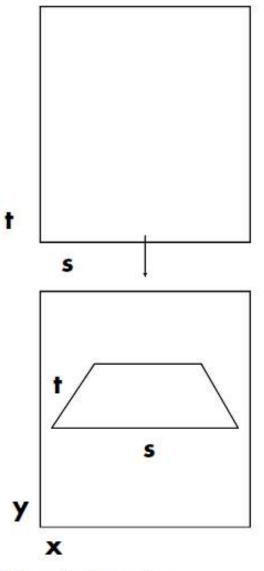
Eduard Gröller, Stefan Jeschke

Interpolation Type + Purpose #1: Interpolation of Texture Coordinates

(Linear / Rational-Linear Interpolation)

Texture Mapping

2D (3D) Texture Space **Texture Transformation** 2D Object Parameters Parameterization 3D Object Space **Model Transformation** 3D World Space **Viewing Transformation 3D Camera Space** Projection 2D Image Space



Kurt Akeley, Pat Hanrahan

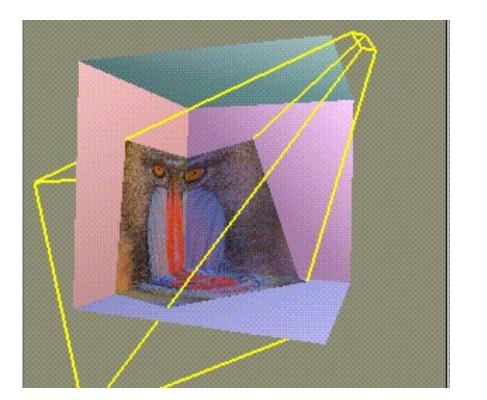
Perspective-Correct Interpolation Recipe

$$r_i(x,y) = \frac{r_i(x,y)/w(x,y)}{1/w(x,y)}$$

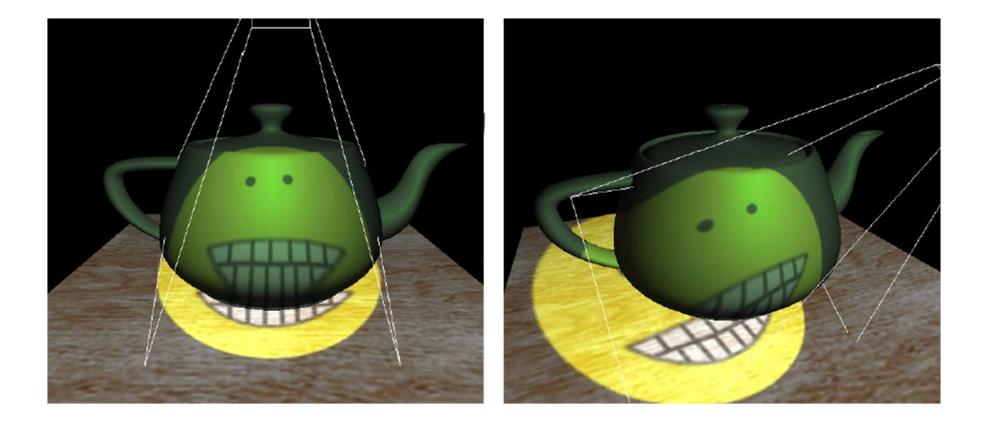
- (1) Associate a record containing the *n* parameters of interest (r_1, r_2, \dots, r_n) with each vertex of the polygon.
- (2) For each vertex, transform object space coordinates to homogeneous screen space using 4×4 object to screen matrix, yielding the values (xw, yw, zw, w).
- (3) Clip the polygon against plane equations for each of the six sides of the viewing frustum, linearly interpolating all the parameters when new vertices are created.
- (4) At each vertex, divide the homogeneous screen coordinates, the parameters r_i , and the number 1 by w to construct the variable list $(x, y, z, s_1, s_2, \dots, s_{n+1})$, where $s_i = r_i/w$ for $i \leq n$, $s_{n+1} = 1/w$.
- (5) Scan convert in screen space by linear interpolation of all parameters, at each pixel computing r_i = s_i/s_{n+1} for each of the n parameters; use these values for shading.
 Heckbert and Moreton

Projective Texture Mapping

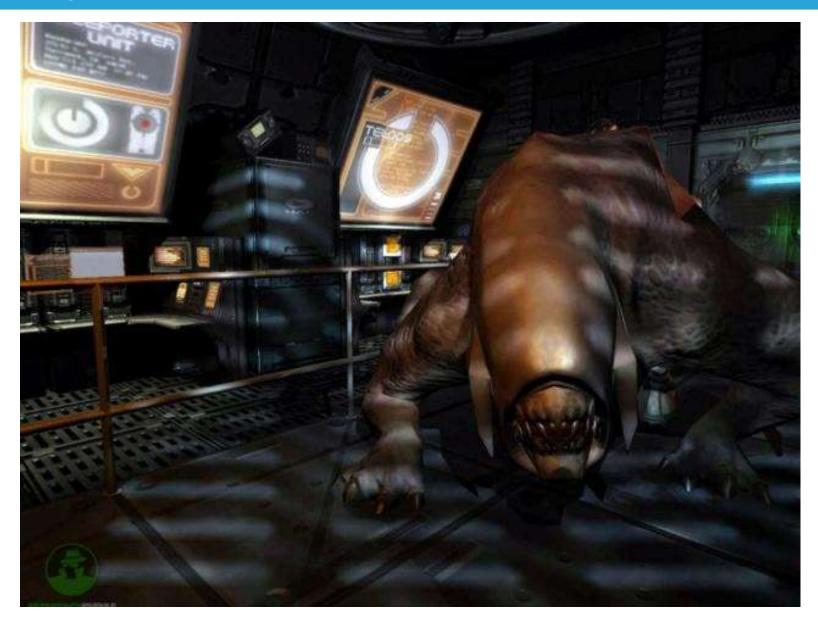
- Want to simulate a beamer
 - ... or a flashlight, or a slide projector
- Precursor to shadows
- Interesting mathematics:
 2 perspective
 projections involved!
- Easy to program!



Projective Texture Mapping



Projective Shadows in Doom 3



Vienna University of Technology

Projective Texturing

- What about homogeneous texture coords?
- Need to do perspective divide also for projector!
 - (s, t, q) \rightarrow (s/q, t/q) for every fragment
- How does OpenGL do that?
 - Needs to be perspective correct as well!
 - Trick: interpolate (s/w, t/w, r/w, q/w)
 - (s/w) / (q/w) = s/q etc. at every fragment
- Remember: s,t,r,q are equivalent to x,y,z,w in projector space! → r/q = projector depth!

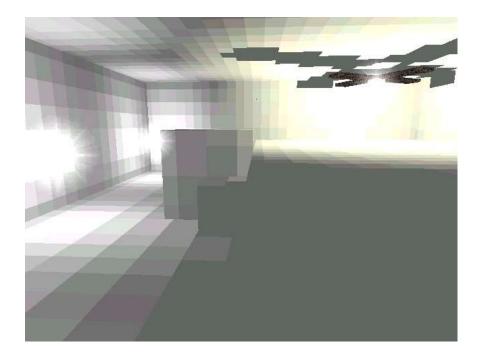
- Apply multiple textures in one pass
- Integral part of programmable shading
 - e.g. diffuse texture map + gloss map
 - e.g. diffuse texture map + light map
- Performance issues
 - How many textures are free?
 - How many are available

Vienna University of Technology

Example: Light Mapping

- Used in virtually every commercial game
- Precalculate diffuse lighting on static objects
 - Only low resolution necessary
 - Diffuse lighting is view independent!
- Advantages:
 - No runtime lighting necessary
 - VERY fast!
 - Can take global effects (shadows, color bleeds) into account

Light Mapping

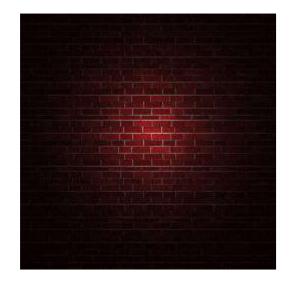


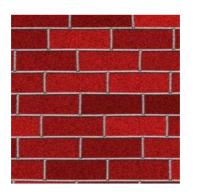
Original LM texels

Bilinear Filtering

Vienna University of Technology

Why premultiplication is bad...





Full Size Texture (with Lightmap)

Tiled Surface Texture plus Lightmap

 \rightarrow use tileable surface textures and low resolution lightmaps

Light Mapping



Original scene

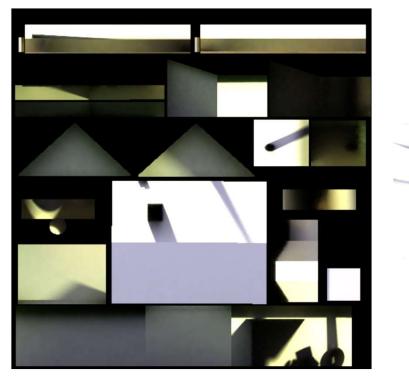
Light-mapped

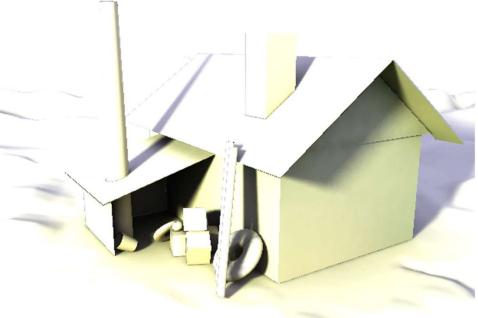
Vienna University of Technology

Example: Light Mapping

- Precomputation based on non-realtime methods
 - Radiosity
 - Ray tracing
 - Monte Carlo Integration
 - Path tracing
 - Photon mapping

Light Mapping





Lightmap

mapped

Vienna University of Technology

Light Mapping

Original scene

Light-mapped

Vienna University of Technology

Interpolation Type + Purpose #2: Interpolation of Samples in Texture Space

(Multi-Linear Interpolation)

Types of Textures

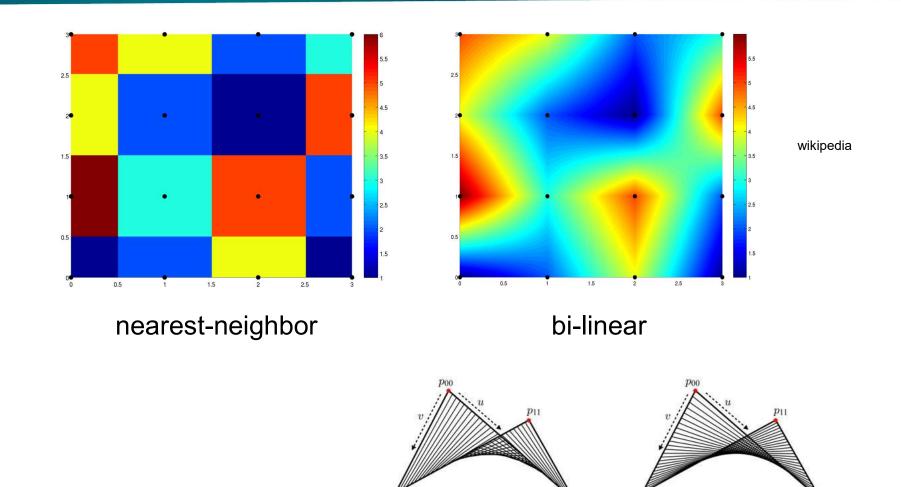
- Spatial layout
 - Cartesian grids: 1D, 2D, 3D, 2D_ARRAY, …
 - Cube maps, …
- Formats (too many), e.g. OpenGL
 - GL_LUMINANCE16_ALPHA16
 - GL_RGB8, GL_RGBA8, …: integer texture formats
 - GL_RGB16F, GL_RGBA32F, ...: float texture formats
 - compressed formats, high dynamic range formats, …
- External (CPU) format vs. internal (GPU) format
 - OpenGL driver converts from external to internal

Magnification (Bi-linear Filtering Example)

Original image

Bi-linear filtering

Nearest-Neighbor vs. Bi-Linear Interpolation



Markus Hadwiger

 p_{01}

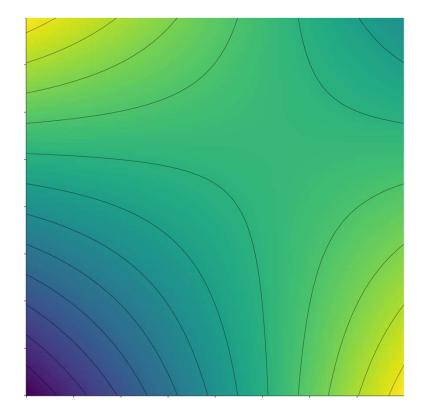
P10

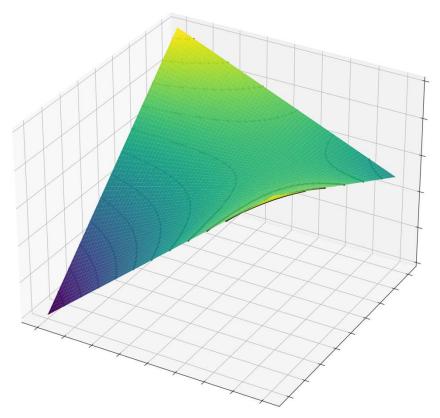
Bilinear patch (courtesy J. Han)

 p_{01}

Consider area between 2x2 adjacent samples (e.g., pixel centers)

Example #2: 1 at top-left and bottom-right, 0 at bottom-left, 0.5 at top-right





Consider area between 2x2 adjacent samples (e.g., pixel centers):

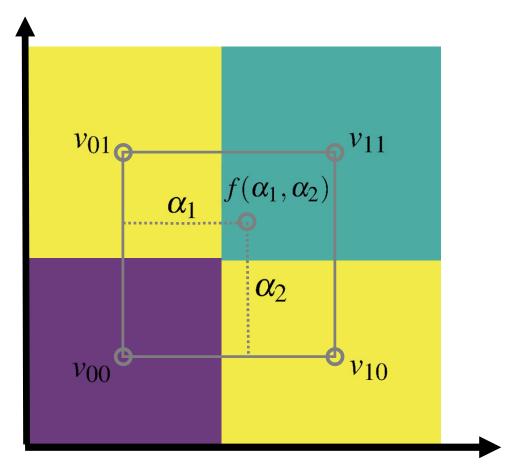
Given any (fractional) position

$\alpha_1 := x_1 - \lfloor x_1 \rfloor$	$\alpha_1 \in [0.0, 1.0)$
$\alpha_2 := x_2 - \lfloor x_2 \rfloor$	$lpha_2 \in [0.0, 1.0)$

and 2x2 sample values

$$\begin{bmatrix} v_{01} & v_{11} \\ v_{00} & v_{10} \end{bmatrix}$$

Compute: $f(\alpha_1, \alpha_2)$



Consider area between 2x2 adjacent samples (e.g., pixel centers):

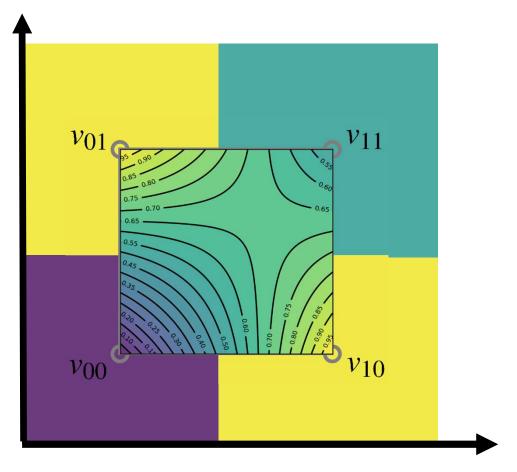
Given any (fractional) position

$\alpha_1 := x_1 - \lfloor x_1 \rfloor$	$\alpha_1 \in [0.0, 1.0)$
$\alpha_2 := x_2 - \lfloor x_2 \rfloor$	$lpha_2 \in [0.0, 1.0)$

and 2x2 sample values

$$\begin{bmatrix} v_{01} & v_{11} \\ v_{00} & v_{10} \end{bmatrix}$$

Compute: $f(\alpha_1, \alpha_2)$



Weights in 2x2 format:

$$\begin{bmatrix} \alpha_2 \\ (1-\alpha_2) \end{bmatrix} \begin{bmatrix} (1-\alpha_1) & \alpha_1 \end{bmatrix} = \begin{bmatrix} (1-\alpha_1)\alpha_2 & \alpha_1\alpha_2 \\ (1-\alpha_1)(1-\alpha_2) & \alpha_1(1-\alpha_2) \end{bmatrix}$$

Interpolate function at (fractional) position (α_1, α_2):

$$f(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2) = \begin{bmatrix} \boldsymbol{\alpha}_2 & (1 - \boldsymbol{\alpha}_2) \end{bmatrix} \begin{bmatrix} v_{01} & v_{11} \\ v_{00} & v_{10} \end{bmatrix} \begin{bmatrix} (1 - \boldsymbol{\alpha}_1) \\ \boldsymbol{\alpha}_1 \end{bmatrix}$$

Interpolate function at (fractional) position (α_1, α_2):

$$f(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2) = \begin{bmatrix} \boldsymbol{\alpha}_2 & (1 - \boldsymbol{\alpha}_2) \end{bmatrix} \begin{bmatrix} v_{01} & v_{11} \\ v_{00} & v_{10} \end{bmatrix} \begin{bmatrix} (1 - \boldsymbol{\alpha}_1) \\ \boldsymbol{\alpha}_1 \end{bmatrix}$$

$$= \begin{bmatrix} \alpha_2 & (1 - \alpha_2) \end{bmatrix} \begin{bmatrix} (1 - \alpha_1)v_{01} + \alpha_1v_{11} \\ (1 - \alpha_1)v_{00} + \alpha_1v_{10} \end{bmatrix}$$

$$= \begin{bmatrix} \alpha_2 v_{01} + (1 - \alpha_2) v_{00} & \alpha_2 v_{11} + (1 - \alpha_2) v_{10} \end{bmatrix} \begin{bmatrix} (1 - \alpha_1) \\ \alpha_1 \end{bmatrix}$$

Interpolate function at (fractional) position (α_1, α_2):

$$f(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2) = \begin{bmatrix} \boldsymbol{\alpha}_2 & (1 - \boldsymbol{\alpha}_2) \end{bmatrix} \begin{bmatrix} v_{01} & v_{11} \\ v_{00} & v_{10} \end{bmatrix} \begin{bmatrix} (1 - \boldsymbol{\alpha}_1) \\ \boldsymbol{\alpha}_1 \end{bmatrix}$$

$$= (1 - \alpha_1)(1 - \alpha_2)v_{00} + \alpha_1(1 - \alpha_2)v_{10} + (1 - \alpha_1)\alpha_2v_{01} + \alpha_1\alpha_2v_{11}$$

$$= v_{00} + \alpha_1(v_{10} - v_{00}) + \alpha_2(v_{01} - v_{00}) + \alpha_1\alpha_2(v_{00} + v_{11} - v_{10} - v_{01})$$

REALLY IMPORTANT:

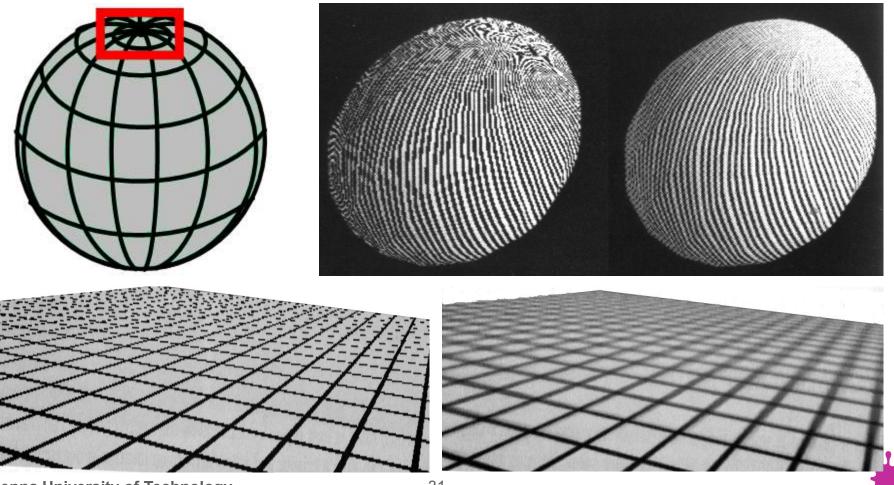
this is a different thing (for a different purpose) than the linear (or, in perspective, rational-linear) interpolation of texture coordinates!!

Texture Minification

Markus Hadwiger, KAUST

Texture Aliasing: Minification

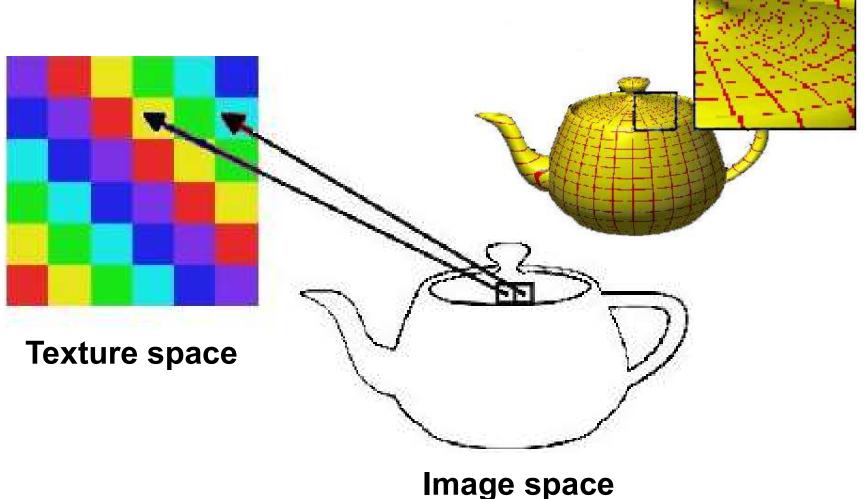
Problem: One pixel in image space covers many texels



Vienna University of Technology

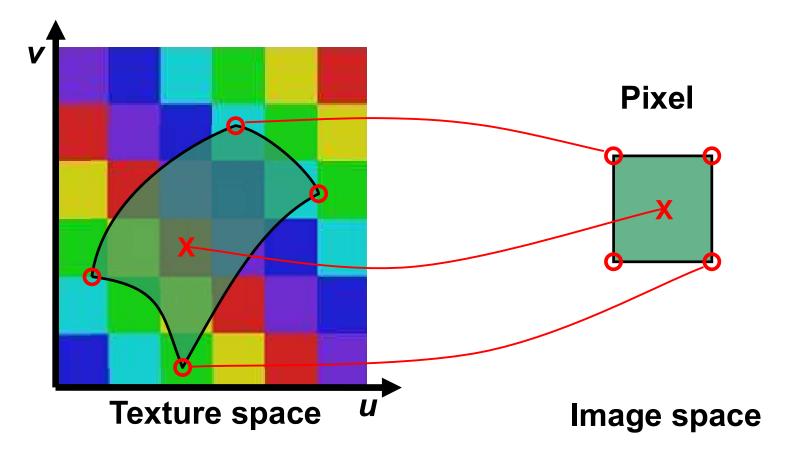
Texture Aliasing: Minification

Caused by undersampling: texture information is lost



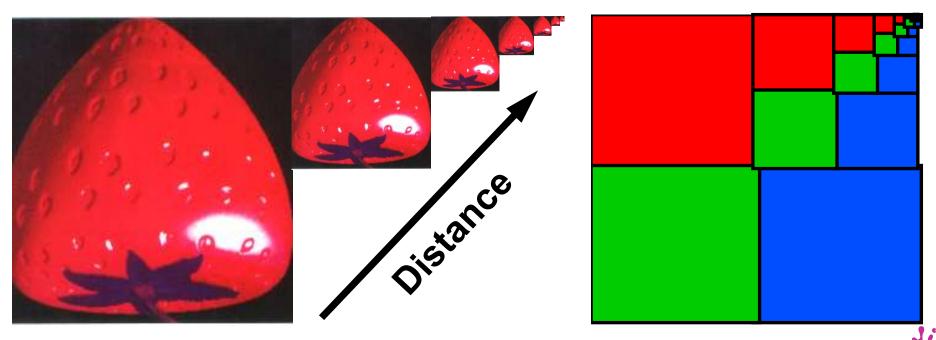
Texture Anti-Aliasing: Minification

A good pixel value is the weighted mean of the pixel area projected into texture space



Texture Anti-Aliasing: MIP Mapping

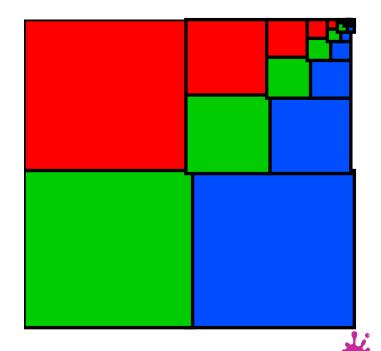
- MIP Mapping ("Multum In Parvo")
 - Texture size is reduced by factors of 2 (downsampling = "many things in a small place")
 - Simple (4 pixel average) and memory efficient
 - Last image is only ONE texel



- MIP Mapping ("Multum In Parvo")
 - Texture size is reduced by factors of 2 (*downsampling* = "many things in a small place")
 - Simple (4 pixel average) and memory efficient
 - Last image is only ONE texel

geometric series:

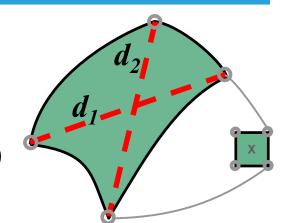
$$a + ar + ar^2 + ar^3 + \dots + ar^{n-1} = \ = \sum_{k=0}^{n-1} ar^k = a\left(rac{1-r^n}{1-r}
ight)$$

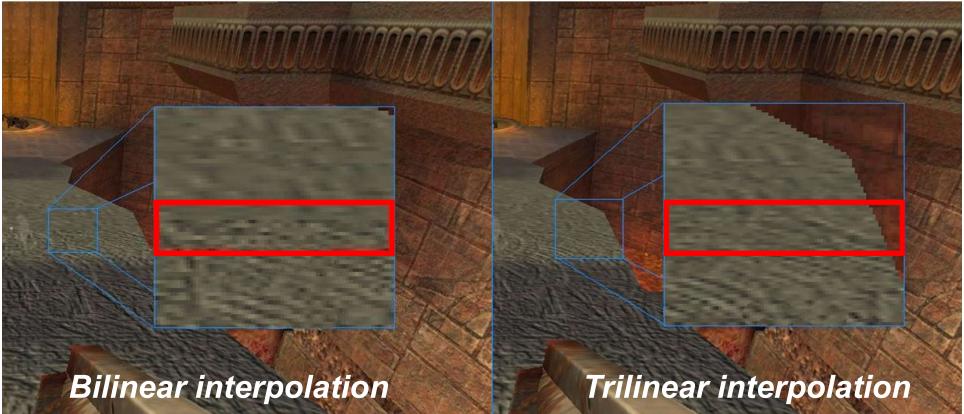


Vienna University of Technology

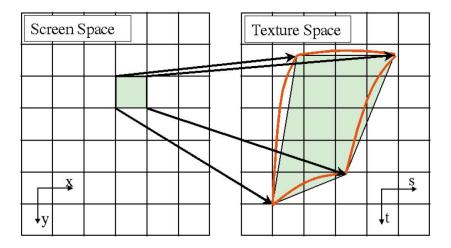
Texture Anti-Aliasing: MIP Mapping

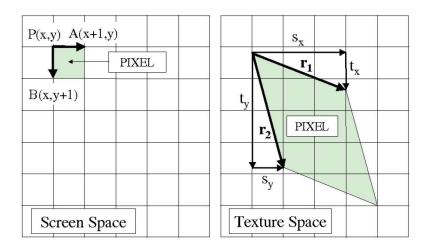
- MIP Mapping Algorithm
- $D := ld(max(d_1, d_2))$ "Mip Map level"
- $T_0 :=$ value from texture $D_0^{\bullet} = trunc$ (D)
 - Use bilinear interpolation





MIP-Map Level Computation





- Use the partial derivatives of texture coordinates with respect to screen space coordinates
- This is the Jacobian matrix

$$\begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{pmatrix} = \begin{pmatrix} s_{x} & s_{y} \\ t_{x} & t_{y} \end{pmatrix}$$

• Area of parallelogram is the absolute value of the Jacobian determinant (the Jacobian)

MIP-Map Level Computation (OpenGL)

• OpenGL 4.6 core specification, pp. 251-264

(3D tex coords!)

$$\lambda_{base}(x,y) = \log_2[\rho(x,y)]$$

$$\rho = \max\left\{\sqrt{\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial v}{\partial x}\right)^2 + \left(\frac{\partial w}{\partial x}\right)^2}, \sqrt{\left(\frac{\partial u}{\partial y}\right)^2 + \left(\frac{\partial v}{\partial y}\right)^2 + \left(\frac{\partial w}{\partial y}\right)^2}\right\}$$

Does not use area of parallelogram but greater hypotenuse [Heckbert, 1983]

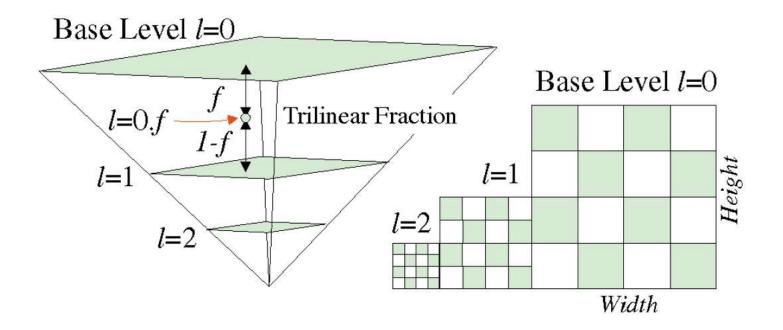
• Approximation without square-roots

$$m_u = \max\left\{ \left| \frac{\partial u}{\partial x} \right|, \left| \frac{\partial u}{\partial y} \right| \right\} \quad m_v = \max\left\{ \left| \frac{\partial v}{\partial x} \right|, \left| \frac{\partial v}{\partial y} \right| \right\} \quad m_w = \max\left\{ \left| \frac{\partial w}{\partial x} \right|, \left| \frac{\partial w}{\partial y} \right| \right\}$$

$$\max\{m_u, m_v, m_w\} \le f(x, y) \le m_u + m_v + m_w$$

Markus Hadwiger, KAUST

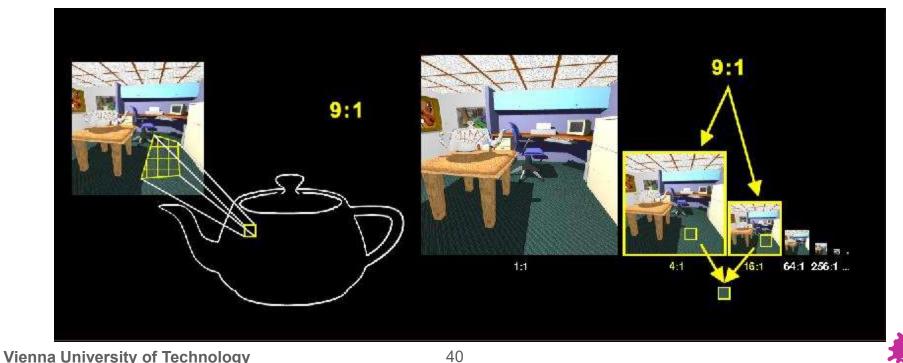
MIP-Map Level Interpolation



- Level of detail value is fractional!
- Use fractional part to blend (lin.) between two adjacent mipmap levels

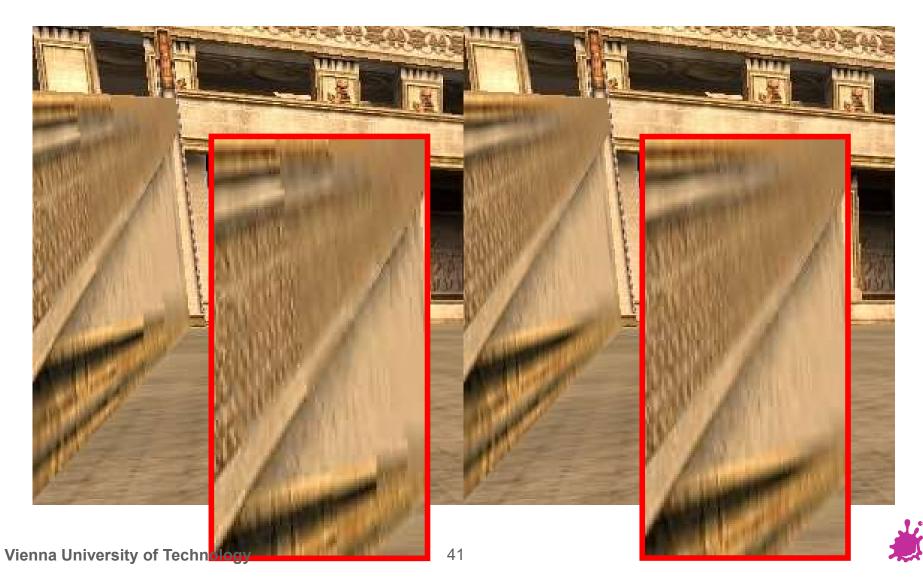
Texture Anti-Aliasing: MIP Mapping

- Trilinear interpolation:
 - T₁ := value from texture $D_1 = D_0 + 1$ (bilin.interpolation)
 - Pixel value := $(D_1 D) \cdot T_0 + (D D_0) \cdot T_1$
 - Linear interpolation between successive MIP Maps
 - Avoids "Mip banding" (but doubles texture lookups)



Texture Anti-Aliasing: MIP Mapping

Other example for bilinear vs. trilinear filtering



Thank you.