

CS 380 - GPU and GPGPU Programming Lecture 15: GPU Texturing, Pt. 2

Markus Hadwiger, KAUST

Reading Assignment #9 (until Nov 1)

Read (required):

• MIP-Map Level Selection for Texture Mapping

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=765326

Don't forget:

Homogeneous Coordinates

```
https://en.wikipedia.org/wiki/Homogeneous coordinates
```

Interpolation for Polygon Texture Mapping and Shading, Paul Heckbert and Henry Moreton

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.7886

Read (optional):

Vulkan Tutorial

https://vulkan-tutorial.com

This week is IEEE VIS: registration is free for students

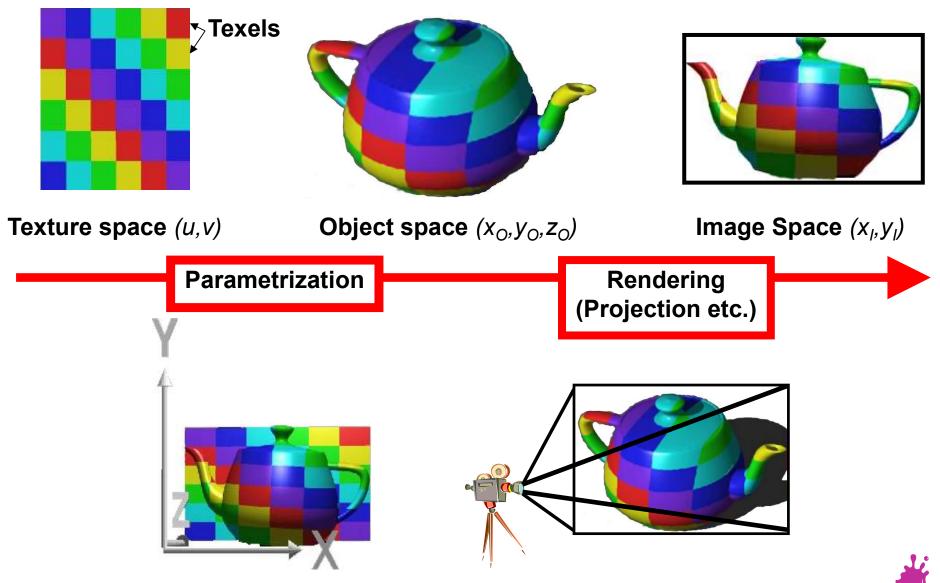
ieeevis.org

virtual.ieeevis.org

GPU Texturing

Rage / id Tech 5 (id Software)

Texturing: General Approach



Texture Mapping

2D (3D) Texture Space **Texture Transformation** 2D Object Parameters **Parameterization** t 3D Object Space S Model Transformation 3D World Space Viewing Transformation **3D Camera Space** S Projection 2D Image Space X

Kurt Akeley, Pat Hanrahan

Interpolation Type + Purpose #1:

Interpolation of Texture Coordinates

(Linear / Rational-Linear Interpolation)

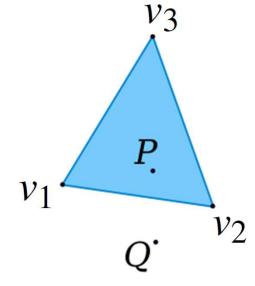
Linear Interpolation / Convex Combinations

Linear combination (*n*-dim. space):

$$\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n = \sum_{i=1}^n \alpha_i v_i$$

Affine combination: Restrict to (n-1)-dim. subspace:

$$\alpha_1 + \alpha_2 + \ldots + \alpha_n = \sum_{i=1}^n \alpha_i = 1$$



Convex combination:

$$\alpha_i \geq 0$$

(restrict to simplex in subspace)

Linear Interpolation / Convex Combinations

The weights α_i are the (normalized) barycentric coordinates

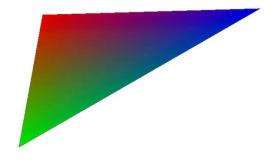
→ linear attribute interpolation in simplex

$$\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n = \sum_{i=1}^n \alpha_i v_i$$

$$\alpha_1 + \alpha_2 + \ldots + \alpha_n = \sum_{i=1}^n \alpha_i = 1$$

$$\alpha_i \geq 0$$

attribute interpolation



spatial position interpolation

wikipedia

Homogeneous Coordinates (1)

Projective geometry

- (Real) projective spaces RPⁿ:
 Real projective line RP¹, real projective plane RP², ...
- A point in RPⁿ is a line through the origin (i.e., all the scalar multiples
 of the same vector) in an (n+1)-dimensional (real) vector space

Homogeneous coordinates of 2D projective point in RP²

Coordinates differing only by a non-zero factor λ map to the same point

(
$$\lambda x$$
, λy , λ) dividing out the λ gives (x , y , 1), corresponding to (x , y) in \mathbb{R}^2

Coordinates with last component = 0 map to "points at infinity"

(
$$\lambda x$$
, λy , 0) division by last component not allowed; but again this is the same point if it only differs by a scalar factor, e.g., this is the same point as (x , y , 0)

Homogeneous Coordinates (2)

Examples of usage

- Translation (with translation vector \vec{b})
- Affine transformations (linear transformation + translation)

$$ec{y} = Aec{x} + ec{b}.$$

With homogeneous coordinates:

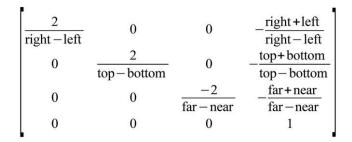
$$\left[egin{array}{c|c} ec{y} \ 1 \end{array}
ight] = \left[egin{array}{c|c} A & ec{b} \ 0 & \dots & 0 \end{array} egin{array}{c|c} ec{b} \ 1 \end{array}
ight] \left[egin{array}{c|c} ec{x} \ 1 \end{array}
ight]$$

- Setting the last coordinate = 1 and the last row of the matrix to [0, ..., 0, 1] results in translation of the point \vec{x} (via addition of translation vector \vec{b})
- The matrix above is a linear map, but because it is one dimension higher, it does not have to move the origin in the (n+1)-dimensional space for translation

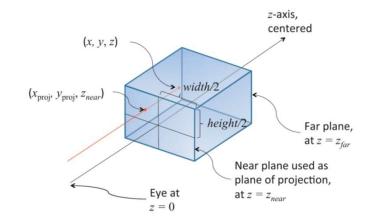
Homogeneous Coordinates (3)

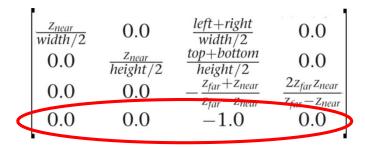
Examples of usage

Projection (e.g., OpenGL projection matrices)

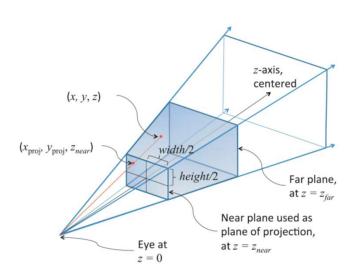


orthographic





perspective

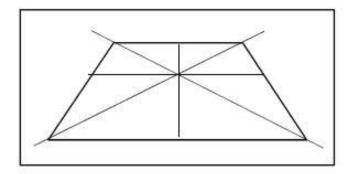


Texture Mapping

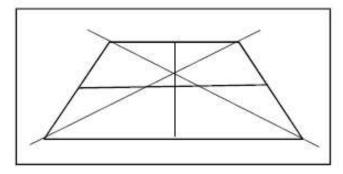
2D (3D) Texture Space **Texture Transformation** 2D Object Parameters **Parameterization** t 3D Object Space S Model Transformation 3D World Space Viewing Transformation **3D Camera Space** S Projection 2D Image Space X

Kurt Akeley, Pat Hanrahan

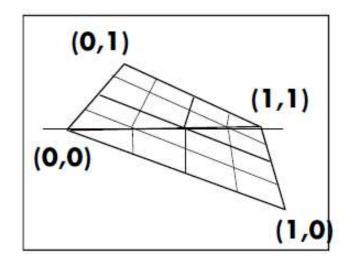
Linear Perspective



Correct Linear Perspective



Incorrect Perspective



Linear Interpolation, Bad

Perspective Interpolation, Good

Texture Mapping Polygons

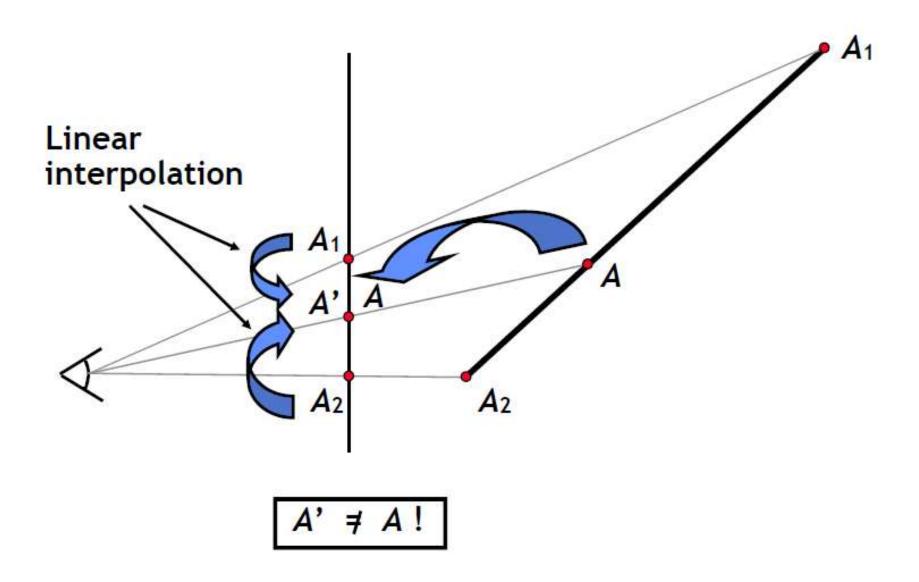
Forward transformation: linear projective map

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} s \\ t \\ r \end{bmatrix}$$

Backward transformation: linear projective map

$$\begin{bmatrix} s \\ t \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}^{-1} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Incorrect attribute interpolation



Linear interpolation

Compute intermediate attribute value

- Along a line: $A = aA_1 + bA_2$, a+b=1
- On a plane: $A = aA_1 + bA_2 + cA_3$, a+b+c=1

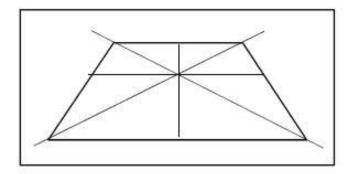
Only projected values interpolate linearly in screen space (straight lines project to straight lines)

- x and y are projected (divided by w)
- Attribute values are not naturally projected

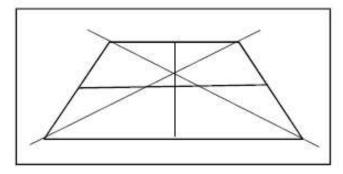
Choice for attribute interpolation in screen space

- Interpolate unprojected values
 - Cheap and easy to do, but gives wrong values
 - Sometimes OK for color, but
 - Never acceptable for texture coordinates
- Do it right

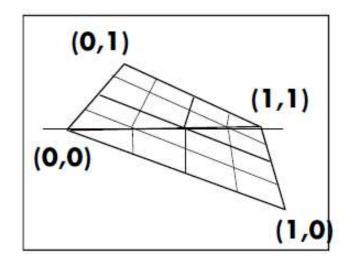
Linear Perspective



Correct Linear Perspective



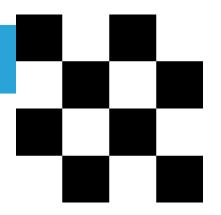
Incorrect Perspective



Linear Interpolation, Bad

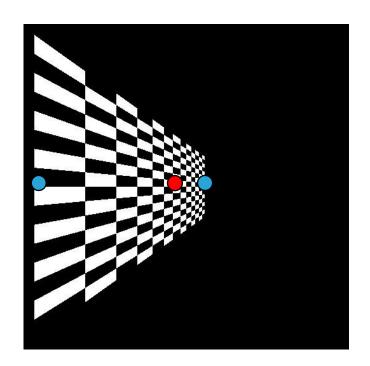
Perspective Interpolation, Good

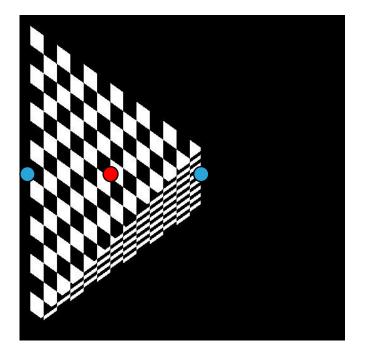
Perspective Texture Mapping



linear interpolation in object space

$$\frac{ax_1 + bx_2}{aw_1 + bw_2} \neq a \frac{x_1}{w_1} + b \frac{x_2}{w_2}$$
 linear interpolation in screen space





$$a = b_{19} = 0.5$$

Early Perspective Texture Mapping in Games

Ultima Underworld (Looking Glass, 1992)

Markus Hadwiger, KAUST 20

Early Perspective Texture Mapping in Games

DOOM (id Software, 1993)

Early Perspective Texture Mapping in Games

Quake (id Software, 1996)

Perspective-correct linear interpolation

Only projected values interpolate correctly, so project A

■ Linearly interpolate A_1/w_1 and A_2/w_2

Also interpolate 1/w₁ and 1/w₂

These also interpolate linearly in screen space

Divide interpolants at each sample point to recover A

- = (A/w) / (1/w) = A
- Division is expensive (more than add or multiply), so
 - Recover w for the sample point (reciprocate), and
 - Multiply each projected attribute by w

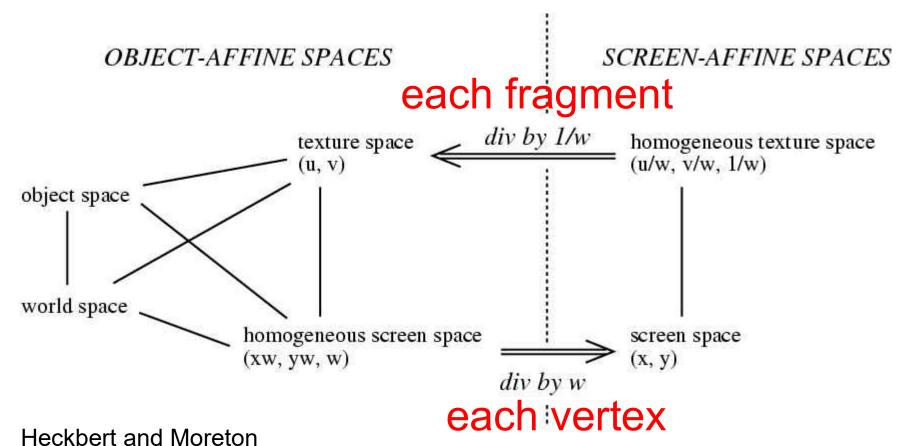
Barycentric triangle parameterization:

$$A = \frac{aA_1/w_1 + bA_2/w_2 + cA_3/w_3}{a/w_1 + b/w_2 + c/w_3}$$

$$a + b + c = 1$$

Perspective Texture Mapping

- Solution: interpolate (s/w, t/w, 1/w)
- (s/w) / (1/w) = s etc. at every fragment



Perspective-Correct Interpolation Recipe

$$r_i(x,y) = \frac{r_i(x,y)/w(x,y)}{1/w(x,y)}$$

- (1) Associate a record containing the n parameters of interest (r_1, r_2, \dots, r_n) with each vertex of the polygon.
- (2) For each vertex, transform object space coordinates to homogeneous screen space using 4×4 object to screen matrix, yielding the values (xw, yw, zw, w).
- (3) Clip the polygon against plane equations for each of the six sides of the viewing frustum, linearly interpolating all the parameters when new vertices are created.
- (4) At each vertex, divide the homogeneous screen coordinates, the parameters r_i , and the number 1 by w to construct the variable list $(x, y, z, s_1, s_2, \dots, s_{n+1})$, where $s_i = r_i/w$ for $i \le n$, $s_{n+1} = 1/w$.
- (5) Scan convert in screen space by linear interpolation of all parameters, at each pixel computing $r_i = s_i/s_{n+1}$ for each of the *n* parameters; use these values for shading.

