
CS 380 - GPU and GPGPU Programming
Lecture 14: GPU Texturing, Pt. 1

Markus Hadwiger, KAUST

2

Reading Assignment #8 (until Oct 25)

Read (required):

• Interpolation for Polygon Texture Mapping and Shading,
Paul Heckbert and Henry Moreton
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.7886

• Homogeneous Coordinates
https://en.wikipedia.org/wiki/Homogeneous_coordinates

3

Semester Project (proposal until Oct 25!)

• Choosing your own topic encouraged!
(we will also suggest some topics)

• Pick something that you think is really cool!

• Can be completely graphics or completely computation, or both combined

• Can be built on CS 380 frameworks, NVIDIA OpenGL SDK, CUDA SDK, ...

• Write short (1-2 pages) project proposal by end of Sep (announced later)

• Talk to us before you start writing!
(content and complexity should fit the lecture)

• Submit semester project with report (deadline: Dec 9)

• Present semester project (event in final exams week: Dec 13 (tentative))

4

GPU Texturing

Rage / id Tech 5 (id Software)

Vienna University of Technology 5

Remember: Basic Shading

Flat shading

compute light interaction per polygon

the whole polygon has the same color

Gouraud shading

compute light interaction per vertex

interpolate the colors

Phong shading

interpolate normals per pixel

Remember: difference between

Phong Lighting Model

Phong Shading

Vienna University of Technology 6

Traditional OpenGL Lighting

Phong lighting model at each vertex (glLight, …)
Local model only (no shadows, radiosity, …)
ambient + diffuse + specular (glMaterial!)

Fixed function: Gouraud shading
Note: need to interpolate specular separately!

Phong shading: evaluate Phong lighting model in
fragment shader (per-fragment evaluation!)

7

Why Texturing?

Idea: enhance visual appearance of surfaces by
applying fine / high-resolution details

Vienna University of Technology

Vienna University of Technology 8

OpenGL Texture Mapping

Basis for most real-time rendering effects

Look and feel of a surface

Definition:

A regularly sampled function that is mapped onto
every fragment of a surface

Traditionally an image, but…

Can hold arbitrary information

Textures become general data structures

Sampled and interpreted by fragment programs

Can render into textures important!

Vienna University of Technology 9

Types of Textures

Spatial layout

Cartesian grids: 1D, 2D, 3D, 2D_ARRAY, …

Cube maps, …

Formats (too many), e.g. OpenGL

GL_LUMINANCE16_ALPHA16

GL_RGB8, GL_RGBA8, …: integer texture formats

GL_RGB16F, GL_RGBA32F, …: float texture formats

compressed formats, high dynamic range formats, …

External (CPU) format vs. internal (GPU) format
OpenGL driver converts from external to internal

Eduard Gröller, Stefan Jeschke 10

Texturing: General Approach

Texture space (u,v) Object space (xO,yO,zO) Image Space (xI,yI)

Parametrization Rendering
(Projection etc.)

Texels

11

Perspective Projection

2D Texture Mapping

Texture

R G B A
For each fragment:

interpolate the
texture coordinates

(barycentric)
Or:

Use arbitrary, computed coordinates

Texture-Lookup:
interpolate the
texture data
(bi-linear)

Or:
Nearest-neighbor for “array lookup”

3D Texture Mapping

R G B A

R

G
B

For each fragment:
interpolate the

texture coordinates
(barycentric)

Or:
Use arbitrary, computed coordinates

Texture-Lookup:
interpolate the
texture data
(tri-linear)

Or:
Nearest-neighbor for “array lookup”

Vienna University of Technology 14

Texture Projectors

Where do texture coordinates come from?

Online: texture matrix/texcoord generation

Offline: manually (or by modeling program)

spherical cylindrical planar natural

Vienna University of Technology 15

Texture Projectors
Where do texture coordinates come from?

Offline: manual UV coordinates by DCC program

Note: a modeling problem!

Vienna University of Technology 16

Texture Wrap Mode

How to extend texture beyond the border?

Border and repeat/clamp modes

Arbitrary (s,t,…) [0,1] x [0,1] [0,255] x [0,255]

repeat mirror/repeat clamp border

Interpolation Type + Purpose #1:

Interpolation of Texture Coordinates

(Linear / Rational-Linear Interpolation)

Markus Hadwiger, KAUST 17

Linear Interpolation / Convex Combinations

Linear interpolation in 1D:

Line embedded in 2D (linear interpolation of vertex coordinates/attributes):

Line segment: (→ convex combination)

Compare to line parameterization
with parameter t:

Markus Hadwiger 18

wikipedia

piecewise linear

Linear Interpolation / Convex Combinations

Linear combination (-dim. space):

Affine combination: Restrict to dim. subspace:

Convex combination:

(restrict to simplex in subspace)

Markus Hadwiger 19

Linear Interpolation / Convex Combinations

Re-parameterize to get affine coordinates:

Markus Hadwiger 20

The weights are the (normalized) barycentric coordinates

→ linear attribute interpolation in simplex

Linear Interpolation / Convex Combinations

Markus Hadwiger 21

wikipedia

attribute interpolation

spatial position
interpolation

Homogeneous Coordinates (1)

Projective geometry

• (Real) projective spaces RPn:

Real projective line RP1, real projective plane RP2, ...

• A point in RPn is a line through the origin (i.e., all the scalar multiples
of the same vector) in an (n+1)-dimensional (real) vector space

Homogeneous coordinates of 2D projective point in RP2

• Coordinates differing only by a non-zero factor λ map to the same point

(λx, λy, λ) dividing out the λ gives (x, y, 1), corresponding to (x,y) in R2

• Coordinates with last component = 0 map to “points at infinity”

(λx, λy, 0) division by last component not allowed; but again this is the
same point if it only differs by a scalar factor, e.g., this is the
same point as (x, y, 0)

Markus Hadwiger, KAUST

Homogeneous Coordinates (2)

Examples of usage

• Translation (with translation vector)

• Affine transformations (linear transformation + translation)

• With homogeneous coordinates:

• Setting the last coordinate = 1 and the last row of the matrix to [0, ..., 0, 1]
results in translation of the point (via addition of translation vector)

• The matrix above is a linear map, but because it is one dimension higher, it
does not have to move the origin in the (n+1)-dimensional space for translation

Markus Hadwiger, KAUST

Homogeneous Coordinates (3)

Examples of usage

• Projection (e.g., OpenGL projection matrices)

Markus Hadwiger, KAUST

perspective

orthographic

Thank you.

