CS 380 - GPU and GPGPU Programming
Lecture 14: GPU Texturing, Pt. 1

kﬁnarku . : -

Reading Assignment #8 (until Oct 25)

Read (required):

* Interpolation for Polygon Texture Mapping and Shading,
Paul Heckbert and Henry Moreton

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.7886

« Homogeneous Coordinates

https://en.wikipedia.org/wiki/Homogeneous coordinates

Semester Project (proposal until Oct 25!)

» Choosing your own topic encouraged!
(we will also suggest some topics)

 Pick something that you think is really cool!

» Can be completely graphics or completely computation, or both combined
» Can be built on CS 380 frameworks, NVIDIA OpenGL SDK, CUDA SDK, ...

 Write short (1-2 pages) project proposal by end of Sep (announced later)

» Talk to us before you start writing!
(content and complexity should fit the lecture)

« Submit semester project with report (deadline: Dec 9)

* Present semester project (event in final exams week: Dec 13 (tentative))

GPU Texturing

Rage / id Tech 5 (id Software)

Remember: Basic Shading

Flat shading
= compute light interaction per polygon
= the whole polygon has the same color
= Gouraud shading
= compute light interaction per vertex
= Interpolate the colors
= Phong shading
= Interpolate normals per pixel
= Remember: difference between
= Phong Lighting Model
= Phong Shading

Vienna University of Technology 5

Traditional OpenGL Lighting

= Phong lighting model at each vertex (glLight, ...)

= Local model only (no shadows, radiosity, ...)
= ambient + diffuse + specular (glMaterial!)

.+

Fixed function: Gouraud shading
» Note: need to interpolate specu
= Phong shading: evaluate Phong lig

ar separately!
nting model in

fragment shader (per-fragment eva

Vienna University of Technology 6

uation!)

Why Texturing?

» |ldea: enhance visual appearance of surfaces by
applying fine / high-resolution details

Vienna University of Technology

OpenGL Texture Mapping

m Basis for most real-time rendering effects
» Look and feel of a surface
m Definition:

m A reqularly sampled function that is mapped onto
every fragment of a surface

= Traditionally an image, but...
= Can hold arbitrary information
m Textures become general data structures
m Sampled and interpreted by fragment programs
m Can render into textures = important!

Vienna University of Technology 8 é

Types of Textures

= Spatial layout
m Cartesian grids: 1D, 2D, 3D, 2D _ARRAY, ...
m Cube maps, ...

» Formats (too many), e.g. OpenGL
= GL LUMINANCE16_ALPHA16
= GL_RGB8, GL_RGBAS, ...: integer texture formats
» GL _RGB16F, GL _RGBA32F, ...: float texture formats
m compressed formats, high dynamic range formats, ...

= External (CPU) format vs. internal (GPU) format
m OpenGL driver converts from external to internal

Vienna University of Technology 9 é

Texturing: General Approach

yTeers

Texture space (u,v) Object space (xy,Y0,20) Image Space (x,y)

(Projection etc.)

Eduard Groller, Stefan Jeschke 10 é

Texture Mapping

2D (3D) Texture Space
|Texture Transformation
2D Object Parameters
Parameterization
3D Object Space
Model Transformation
3D World Space
[Viewing Transformation
3D Camera Space
Projection
2D Image Space

) 4

Kurt Akeley, Pat Hanrahan

2D Texture Mapping

Texture

For each fragment: Texture-Lookup:
interpolate the interpolate the
texture coordinates texture data
(barycentric) (bi-linear)
Or: Or:

Use arbitrary, computed coordinates Nearest-neighbor for “array lookup”

3D Texture Mapping

(807t07T0)

(82,t2>r2)

(s1,t1,71)

For each fragment:
interpolate the
texture coordinates
(barycentric)
Or:
Use arbitrary, computed coordinates

(s,t,1)

Texture-Lookup:
interpolate the
texture data
(tri-linear)
Or:
Nearest-neighbor for “array lookup”

RGBA

Texture Projectors

Where do texture coordinates come from?

= Online: texture matrix/texcoord generation

m Offline: manually (or by modeling program)
Spherica cylindrical planar natural

Vienna University of Technology 14

Texture Projectors

Where do texture coordinates come from?
m Offline: manual UV coordinates by DCC program

- Polygons Subdivs View Select Tool Image Textures UV Sets Pane

View Shading

Nl T L-NE

) EE|ESE

Lighting Show Renderer Panels

'I.f'ﬂq:’l,‘:ﬁi* L 3
‘G- 30249 356

Vienna University of Technology

Texture Wrap Mode

= How to extend texture beyond the border?
m Border and repeat/clamp modes
m Arbitrary (s,t,...) 2 [0,1] x [0,1] = [0,255] x [0,255]

repeat mirror/repeat clamp border

"" & e lj g

"

Vienna University of Technology 16 é

Interpolation Type + Purpose #1:

Interpolation of Texture Coordinates

(Linear / Rational-Linear Interpolation)

Markus Hadwiger, KAUST 17

'i‘ wikipedia

Linear interpolation in 1D:

< > piecewise linear

Line embedded in 2D (linear interpolation of vertex coordinates/attributes):

flay, o) =av +apv fla)=vi+a(vy—v)
o +or =1 o= 0h

Line segment: op,00 >0 (— convex combination)
Compare to line parameterization v(t) =vi+t(va—vy)

with parameter t:

Markus Hadwiger

18

Linear Interpolation / Convex Combinations

Linear combination (#n-dim. space):
n
v +00OVvy +...+ 0V, = Z oLV
i=1
Affine combination: Restrict to (n — 1)-dim. subspace:

n
a1+a2+...+an:2ai:1 Vi
=1

1= Qo

Convex combination: o >0

(restrict to simplex in subspace)

Markus Hadwiger 19

n
o1V +00hvy +...+ 0V, = Z oLVv;

n
(Xl—I—OCQ—I—...—I—OCn:ZOCiZI
i=1

Re-parameterize to get affine coordinates:

Vi
X1V + 0 vy + 0zvy = . V2
Q) (va —vi)+ (v —vi)+v Q
0 = 0
0 = 03

Markus Hadwiger 20

Linear Interpolation / Convex Combinations

The weights O; are the (normalized) barycentric coordinates

— linear attribute interpolation in simplex attribute interpolation

n
vy +00oVvy+...+ 0V, = Z o, Vi
=1

n
061—|—062—|—...—|—Otn:ZOCi:1
i=1

o >0

spatial position wikinedia
interpolation —

Markus Hadwiger 21

Homogeneous Coordinates (1)

Projective geometry
* (Real) projective spaces RP™:
Real projective line RP1, real projective plane RP?, ...

A pointin RP" is a line through the origin (i.e., all the scalar multiples
of the same vector) in an (n+1)-dimensional (real) vector space

Homogeneous coordinates of 2D projective point in RP?2
« Coordinates differing only by a non-zero factor A map to the same point

(AX, Ay, A) dividing out the A gives (x, y, 1), corresponding to (x,y) in R?
« Coordinates with last component = 0 map to “points at infinity”

(Ax, Ay, 0) division by last component not allowed; but again this is the
same point if it only differs by a scalar factor, e.g., this is the
same pointas (x,y, 0)

Markus Hadwiger, KAUST

Homogeneous Coordinates (2)

Examples of usage
 Translation (with translation vectorg)

« Affine transformations (linear transformation + translation)
j = A% + b.

« With homogeneous coordinates:

HE AlH

» Setting the last coordinate = 1 and the last row of the matrix to [O, - 0,1]
results in translation of the point z (via addition of translation vector b)

A
0O ... 0

* The matrix above is a linear map, but because it is one dimension higher, it
does not have to move the origin in the (n+1)-dimensional space for translation

Markus Hadwiger, KAUST

Homogeneous Coordinates (3)

Examples of usage

z-axis,

I 1 : : : centered
 Projection (e.g., OpenGL projection matrices) ma) ~ -
. n . , -
2 0 0 _right +left ('\pr:\y Yorojr "ﬂu(") "\\\
right —left right—left '
2 __top+bottom Sy :[Fia:”e:
top — bottom top— bottom () rt h Og ra p h IC /‘,/ far
0 0 =2 far+near // Near plane used as
far—near far—near ~ plane of projection,
0 0 0 1 \ ;E.V:e gt atz = Znear
" L
R |
width /2 0.0 width /2 0.0 (x, ¥, z)
Zyear top+bottom
00 itz “heignisz 0.0 perspective
0 0 O 0 Z/Zn""zurur zzfiu'zm'm (o Vorcis Znonr)
. ! — = — proj .* proj> “near
ﬂ 0.0 7—_,'(_17'1_:0fllur : 5 Slmr c
5 . =1 5 ‘. Far plane,
<|\ /|> atz =z,

Markus Hadwiger, KAUST

Near plane used as
— plane of projection,
at : = Zlh'ﬂl’

Thank you.

