

CS 380 - GPU and GPGPU Programming Lecture 14: GPU Texturing, Pt. 1

Markus Hadwiger, KAUST

Reading Assignment #8 (until Oct 25)

Read (required):

• Interpolation for Polygon Texture Mapping and Shading, Paul Heckbert and Henry Moreton

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.7886

Homogeneous Coordinates

https://en.wikipedia.org/wiki/Homogeneous_coordinates

Semester Project (proposal until Oct 25!)

- Choosing your own topic encouraged! (we will also suggest some topics)
 - Pick something that you think is really cool!
 - Can be completely graphics or completely computation, or both combined
 - Can be built on CS 380 frameworks, NVIDIA OpenGL SDK, CUDA SDK, ...
- Write short (1-2 pages) project proposal by end of Sep (announced later)
 - Talk to us before you start writing! (content and complexity should fit the lecture)
- Submit semester project with report (deadline: Dec 9)
- Present semester project (event in final exams week: Dec 13 (tentative))

GPU Texturing

Rage / id Tech 5 (id Software)

Remember: Basic Shading

- Flat shading
 - compute light interaction per polygon
 - the whole polygon has the same color
- Gouraud shading
 - compute light interaction per vertex
 - interpolate the colors
- Phong shading
 - interpolate normals per pixel
- Remember: difference between
 - Phong Lighting Model
 - Phong Shading

Traditional OpenGL Lighting

- Phong lighting model at each vertex (glLight, ...)
- Local model only (no shadows, radiosity, ...)
- ambient + diffuse + specular (glMaterial!)

Fixed function: Gouraud shading
 Note: need to interpolate specular separately!
 Phong shading: evaluate Phong lighting model in fragment shader (per-fragment evaluation!)

Why Texturing?

Idea: enhance visual appearance of surfaces by applying fine / high-resolution details

Vienna University of Technology

OpenGL Texture Mapping

- Basis for most real-time rendering effects
- Look and feel of a surface
- Definition:
 - A regularly sampled function that is mapped onto every fragment of a surface
 - Traditionally an image, but...
- Can hold arbitrary information
 - Textures become general data structures
 - Sampled and interpreted by fragment programs
 - Can render into textures \rightarrow important!

Types of Textures

- Spatial layout
 - Cartesian grids: 1D, 2D, 3D, 2D_ARRAY, …
 - Cube maps, …
- Formats (too many), e.g. OpenGL
 - GL_LUMINANCE16_ALPHA16
 - GL_RGB8, GL_RGBA8, …: integer texture formats
 - GL_RGB16F, GL_RGBA32F, ...: float texture formats
 - compressed formats, high dynamic range formats, …
- External (CPU) format vs. internal (GPU) format
 - OpenGL driver converts from external to internal

Texturing: General Approach

Eduard Gröller, Stefan Jeschke

Texture Mapping

2D (3D) Texture Space **Texture Transformation** 2D Object Parameters Parameterization 3D Object Space **Model Transformation** 3D World Space **Viewing Transformation 3D Camera Space** Projection 2D Image Space

Kurt Akeley, Pat Hanrahan

2D Texture Mapping

RGBA

:

:

 $\overline{\ }$

O

3D Texture Mapping

Texture Projectors

Where do texture coordinates come from?

- Online: texture matrix/texcoord generation
- Offline: manually (or by modeling program)

spherical cylindrical planar

natural

Texture Projectors

Where do texture coordinates come from?

- Offline: manual UV coordinates by DCC program
- Note: a modeling problem!

Vienna University of Technology

Texture Wrap Mode

- How to extend texture beyond the border?
- Border and repeat/clamp modes
- Arbitrary (s,t,...) \rightarrow [0,1] x [0,1] \rightarrow [0,255] x [0,255]

Interpolation Type + Purpose #1: Interpolation of Texture Coordinates

(Linear / Rational-Linear Interpolation)

Linear interpolation in 1D:

$$f(\boldsymbol{\alpha}) = (1 - \boldsymbol{\alpha})v_1 + \boldsymbol{\alpha}v_2$$

 α_1, α_2

Line embedded in 2D (linear interpolation of vertex coordinates/attributes):

 $f(\alpha_1, \alpha_2) = \alpha_1 v_1 + \alpha_2 v_2 \qquad f(\alpha) = v_1 + \alpha (v_2 - v_1)$ $\alpha_1 + \alpha_2 = 1$ $\alpha = \alpha_2$

Line segment:

$$\geq 0$$
 ($ightarrow$ convex combinat

tion)

Compare to line parameterization with parameter t:

$$v(t) = v_1 + t(v_2 - v_1)$$

Markus Hadwiger

Linear combination (*n*-dim. space):

$$\alpha_1v_1 + \alpha_2v_2 + \ldots + \alpha_nv_n = \sum_{i=1}^n \alpha_iv_i$$

Affine combination: Restrict to (n-1)-dim. subspace:

$$\alpha_1 + \alpha_2 + \ldots + \alpha_n = \sum_{i=1}^n \alpha_i = 1$$

Convex combination:

 $\alpha_i \geq 0$

(restrict to simplex in subspace)

$$lpha_1 v_1 + lpha_2 v_2 + \ldots + lpha_n v_n = \sum_{i=1}^n lpha_i v_i$$

 $lpha_1 + lpha_2 + \ldots + lpha_n = \sum_{i=1}^n lpha_i = 1$

Re-parameterize to get affine coordinates:

$$\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 =$$

$$\tilde{\alpha}_1 (v_2 - v_1) + \tilde{\alpha}_2 (v_3 - v_1) + v_1$$

$$\tilde{\alpha}_1 = \alpha_2$$

$$\tilde{\alpha}_2 = \alpha_3$$

The weights α_i are the (normalized) barycentric coordinates

 \rightarrow linear attribute interpolation in simplex

$$lpha_1 v_1 + lpha_2 v_2 + \ldots + lpha_n v_n = \sum_{i=1}^n lpha_i v_i$$
 $lpha_1 + lpha_2 + \ldots + lpha_n = \sum_{i=1}^n lpha_i = 1$
 $lpha_i \ge 0$

attribute interpolation

Homogeneous Coordinates (1)

Projective geometry

• (Real) projective spaces RPⁿ:

Real projective line RP¹, real projective plane RP², ...

• A point in RPⁿ is a line through the origin (i.e., all the scalar multiples of the same vector) in an (n+1)-dimensional (real) vector space

Homogeneous coordinates of 2D projective point in RP²

• Coordinates differing only by a non-zero factor λ map to the same point

 $(\lambda x, \lambda y, \lambda)$ dividing out the λ gives (x, y, 1), corresponding to (x, y) in R²

• Coordinates with last component = 0 map to "points at infinity"

```
(\lambda x, \lambda y, 0) division by last component not allowed; but again this is the same point if it only differs by a scalar factor, e.g., this is the same point as (x, y, 0)
```

Homogeneous Coordinates (2)

Examples of usage

- Translation (with translation vector \vec{b})
- Affine transformations (linear transformation + translation)

$$ec{y} = Aec{x} + ec{b}.$$

• With homogeneous coordinates:

$$\left[egin{array}{c|c} ec{y} \\ 1 \end{array}
ight] = \left[egin{array}{c|c} A & ec{b} \\ 0 & \ldots & 0 & 1 \end{array}
ight] \left[egin{array}{c} ec{x} \\ 1 \end{array}
ight]$$

- Setting the last coordinate = 1 and the last row of the matrix to [0, ..., 0, 1] results in translation of the point \vec{x} (via addition of translation vector \vec{b})
- The matrix above is a linear map, but because it is one dimension higher, it does not have to move the origin in the (n+1)-dimensional space for translation

Homogeneous Coordinates (3)

Examples of usage

Thank you.