
CS 380 - GPU and GPGPU Programming
Lecture 13: GPU Compute APIs, Pt. 3

Markus Hadwiger, KAUST

2

Reading Assignment #7 (until Oct 20)

Read (required):

• Programming Massively Parallel Processors book, 3rd edition,
Chapter 7 (Parallel Patterns: Convolution)

• PTX Instruction Set Architecture 7.4 (https://docs.nvidia.com/cuda/pdf/ptx_isa_7.4.pdf)
Read Chapters 1 – 3; get an overview of Chapter 12;
browse through the other chapters to get a feeling for what PTX looks like

• CUDA SASS, Chapter 4: https://docs.nvidia.com/cuda/pdf/CUDA_Binary_Utilities.pdf

Read (optional):

• Inline PTX Assembly in CUDA (CUDA SDK: Inline_PTX_Assembly.pdf)

• Dissecting GPU Architecture through Microbenchmarking:

Volta: https://arxiv.org/abs/1804.06826

Turing: https://arxiv.org/abs/1903.07486

https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/
s9839-discovering-the-turing-t4-gpu-architecture-with-microbenchmarks.pdf

Ampere: https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s33322/

3

Semester Project (proposal until Oct 25!)

• Choosing your own topic encouraged!
(we will also suggest some topics)

• Pick something that you think is really cool!

• Can be completely graphics or completely computation, or both combined

• Can be built on CS 380 frameworks, NVIDIA OpenGL SDK, CUDA SDK, ...

• Write short (1-2 pages) project proposal by end of Sep (announced later)

• Talk to us before you start writing!
(content and complexity should fit the lecture)

• Submit semester project with report (deadline: Dec 9)

• Present semester project (event in final exams week: Dec 13 (tentative))

4

Semester Project Ideas (1)

Some ideas for topics

• Procedural shading with noise + marble etc. (GPU Gems 2, chapter 26)

• Procedural shading with noise + bump mapping (GPU Gems 2, chapter 26)

• Subdivision surfaces (GPU Gems 2, chapter 7)

• Ambient occlusion, screen space ambient occlusion

• Shadow mapping, hard shadows, soft shadows

• Deferred shading

• Particle system rendering + CUDA particle sort

• Advanced image filters: fast bilateral filtering, Gaussian kD trees

• Advanced image de-convolution (e.g., convex L1 optimization)

• PDE solvers (e.g., anisotropic diffusion filtering, 2D level set segmentation,
2D fluid flow)

5

Semester Project Ideas (2)

Some ideas for topics

• Distance field computation (GPU Gems 3, chapter 34)

• Livewire (“intelligent scissors“) segmentation in CUDA

• Linear systems solvers, matrix factorization (Cholesky, ...); with/without CUBLAS

• CUDA + matlab

• Fractals (Sierpinski, Koch, ...)

• Image compression

• Bilateral grid filtering for multichannel images

• Discrete wavelet transforms

• Fast histogram computations

• Terrain rendering from height map images; clipmaps or adaptive tesselation

Example: Matrix Multiplication (1)

• Copy matrices to device; invoke kernel; copy result matrix
back to host

13

Example: Matrix Multiplication (2)

14

Example: Matrix Multiplication (3)

• Multiply matrix block-wise

• Set BLOCK_SIZE for efficient hardware
use, e.g., to 16 on cc. 1.x or
16 or 32 on cc. 2.x +

• Maximize parallelism
– Launch as many threads

per block as block elements

– Each thread fetches one
element of block

– Perform row * column
dot products in parallel

15

Example: Matrix Multiplication (4)

16

__global__ void MatrixMul(float *matA, float *matB, float *matC, int w)
{

__shared__ float blockA[BLOCK_SIZE][BLOCK_SIZE];
__shared__ float blockB[BLOCK_SIZE][BLOCK_SIZE];

int bx = blockIdx.x; int tx = threadIdx.x;
int by = blockIdx.y; int ty = threadIdx.y;

int col = bx * BLOCK_SIZE + tx;
int row = by * BLOCK_SIZE + ty;

float out = 0.0f;
for (int m = 0; m < w / BLOCK_SIZE; m++) {

blockA[ty][tx] = matA[row * w + m * BLOCK_SIZE + tx];
blockB[ty][tx] = matB[col + (m * BLOCK_SIZE + ty) * w];
__syncthreads();

for (int k = 0; k < BLOCK_SIZE; k++) {
out += blockA[ty][k] * blockB[k][tx];

}
__syncthreads();

}

matC[row * w + col] = out;
}

Caveat: for brevity, this code assumes matrix sizes
are a multiple of the block size (either because
they really are, or because padding is used;
otherwise guard code would need to be added)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

17

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

18

Memory Coalescing

• When accessing global memory, peak performance
utilization occurs when all threads in a half warp (full
warp on Fermi) access continuous memory locations.

• Requirements relaxed on >=1.2 devices; L1 cache on Fermi!

Md Nd

W
ID
T
H

WIDTH

Thread 1
Thread 2

Not coalesced coalesced

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

19

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M
T1 T2 T3 T4

Time Period 1

T1 T2 T3 T4

Time Period 2

Access
direction in
Kernel
code

…

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

20

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M
T1 T2 T3 T4

Time Period 1

T1 T2 T3 T4

Time Period 2

Access
direction in
Kernel
code

…

Thank you.

