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Reading Assignment #7 (until Oct 20)

Read (required):

• Programming Massively Parallel Processors book, 3rd edition,
Chapter 7 (Parallel Patterns: Convolution)

• PTX Instruction Set Architecture 7.4 (https://docs.nvidia.com/cuda/pdf/ptx_isa_7.4.pdf)
Read Chapters 1 – 3; get an overview of Chapter 12;
browse through the other chapters to get a feeling for what PTX looks like

• CUDA SASS, Chapter 4: https://docs.nvidia.com/cuda/pdf/CUDA_Binary_Utilities.pdf

Read (optional):

• Inline PTX Assembly in CUDA (CUDA SDK: Inline_PTX_Assembly.pdf)

• Dissecting GPU Architecture through Microbenchmarking:

Volta: https://arxiv.org/abs/1804.06826

Turing: https://arxiv.org/abs/1903.07486

https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/
s9839-discovering-the-turing-t4-gpu-architecture-with-microbenchmarks.pdf

Ampere:  https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s33322/
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Semester Project (proposal until Oct 25!)

• Choosing your own topic encouraged!
(we will also suggest some topics)

• Pick something that you think is really cool!

• Can be completely graphics or completely computation, or both combined

• Can be built on CS 380 frameworks, NVIDIA OpenGL SDK, CUDA SDK, ...

• Write short (1-2 pages) project proposal by end of Sep (announced later)

• Talk to us before you start writing!
(content and complexity should fit the lecture)

• Submit semester project with report (deadline: Dec 9)

• Present semester project (event in final exams week: Dec 13 (tentative))
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Semester Project Ideas (1)

Some ideas for topics

• Procedural shading with noise + marble etc. (GPU Gems 2, chapter 26)

• Procedural shading with noise + bump mapping (GPU Gems 2, chapter 26)

• Subdivision surfaces (GPU Gems 2, chapter 7)

• Ambient occlusion, screen space ambient occlusion

• Shadow mapping, hard shadows, soft shadows

• Deferred shading

• Particle system rendering + CUDA particle sort

• Advanced image filters: fast bilateral filtering, Gaussian kD trees

• Advanced image de-convolution (e.g., convex L1 optimization)

• PDE solvers (e.g., anisotropic diffusion filtering, 2D level set segmentation,
2D fluid flow)
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Semester Project Ideas (2)

Some ideas for topics

• Distance field computation (GPU Gems 3, chapter 34)

• Livewire (“intelligent scissors“) segmentation in CUDA

• Linear systems solvers, matrix factorization (Cholesky, ...); with/without CUBLAS

• CUDA + matlab

• Fractals (Sierpinski, Koch, ...)

• Image compression

• Bilateral grid filtering for multichannel images

• Discrete wavelet transforms

• Fast histogram computations

• Terrain rendering from height map images; clipmaps or adaptive tesselation

















Example: Matrix Multiplication (1)

• Copy matrices to device; invoke kernel; copy result matrix 
back to host
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Example: Matrix Multiplication (2)
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Example: Matrix Multiplication (3)

• Multiply matrix block-wise

• Set BLOCK_SIZE for efficient hardware
use, e.g., to 16 on cc. 1.x or
16 or 32 on cc. 2.x +

• Maximize parallelism
– Launch as many threads

per block as block elements

– Each thread fetches one
element of block

– Perform row * column
dot products in parallel
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Example: Matrix Multiplication (4)
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__global__ void MatrixMul( float *matA, float *matB, float *matC, int w )
{

__shared__ float blockA[ BLOCK_SIZE ][ BLOCK_SIZE ];
__shared__ float blockB[ BLOCK_SIZE ][ BLOCK_SIZE ];

int bx = blockIdx.x; int tx = threadIdx.x;
int by = blockIdx.y; int ty = threadIdx.y;

int col = bx * BLOCK_SIZE + tx;
int row = by * BLOCK_SIZE + ty;

float out = 0.0f;
for ( int m = 0; m < w / BLOCK_SIZE; m++ ) {

blockA[ ty ][ tx ] = matA[ row * w +   m * BLOCK_SIZE + tx       ];
blockB[ ty ][ tx ] = matB[ col     + ( m * BLOCK_SIZE + ty ) * w ];
__syncthreads();

for ( int k = 0; k < BLOCK_SIZE; k++ ) {
out += blockA[ ty ][ k ] * blockB[ k ][ tx ];

}
__syncthreads();

}

matC[ row * w + col ] = out;
}

Caveat: for brevity, this code assumes matrix sizes 
are a multiple of the block size (either because 
they really are, or because padding is used; 
otherwise guard code would need to be added) 
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Memory Coalescing

• When accessing global memory, peak performance 
utilization occurs when all threads in a half warp (full 
warp on Fermi) access continuous memory locations.

• Requirements relaxed on >=1.2 devices; L1 cache on Fermi!
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Thank you.


