CS 380 - GPU and GPGPU Programming
Lecture 13: GPU Compute APIs, Pt. 3

kﬁnarku . : -

Reading Assignment #7 (until Oct 20)

Read (required):

* Programming Massively Parallel Processors book, 3rd edition,
Chapter 7 (Parallel Patterns: Convolution)

* PTX Instruction Set Architecture 7.4 (https://docs.nvidia.com/cuda/pdf/ptx_isa_7 .4 .pdf)
Read Chapters 1 — 3; get an overview of Chapter 12;
browse through the other chapters to get a feeling for what PTX looks like

« CUDA SASS, Chapter 4. https://docs.nvidia.com/cuda/pdf/CUDA Binary Utilities.pdf

Read (optional):
* Inline PTX Assembly in CUDA (CUDA SDK: Inline PTX Assembly.pdf)
 Dissecting GPU Architecture through Microbenchmarking:

Volta: https://arxiv.org/abs/1804.06826
Turing: https://arxiv.org/abs/1903.07486

https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/
s9839-discovering-the-turing-t4-gpu-architecture-with-microbenchmarks.pdf

Am pere. https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s33322/

Semester Project (proposal until Oct 25!)

» Choosing your own topic encouraged!
(we will also suggest some topics)

 Pick something that you think is really cool!

» Can be completely graphics or completely computation, or both combined
» Can be built on CS 380 frameworks, NVIDIA OpenGL SDK, CUDA SDK, ...

 Write short (1-2 pages) project proposal by end of Sep (announced later)

» Talk to us before you start writing!
(content and complexity should fit the lecture)

« Submit semester project with report (deadline: Dec 9)

* Present semester project (event in final exams week: Dec 13 (tentative))

Semester Project Ideas (1)

Some ideas for topics

* Procedural shading with noise + marble etc. (GPU Gems 2, chapter 26)

* Procedural shading with noise + bump mapping (GPU Gems 2, chapter 26)
» Subdivision surfaces (GPU Gems 2, chapter 7)

* Ambient occlusion, screen space ambient occlusion

« Shadow mapping, hard shadows, soft shadows

* Deferred shading

* Particle system rendering + CUDA particle sort

» Advanced image filters: fast bilateral filtering, Gaussian kD trees

» Advanced image de-convolution (e.g., convex L1 optimization)

» PDE solvers (e.g., anisotropic diffusion filtering, 2D level set segmentation,
2D fluid flow)

Semester Project Ideas (2)

Some ideas for topics

* Distance field computation (GPU Gems 3, chapter 34)

* Livewire (“intelligent scissors®) segmentation in CUDA

* Linear systems solvers, matrix factorization (Cholesky, ...); with/without CUBLAS
« CUDA + matlab

* Fractals (Sierpinski, Koch, ...)

* Image compression

* Bilateral grid filtering for multichannel images

* Discrete wavelet transforms

 Fast histogram computations

* Terrain rendering from height map images; clipmaps or adaptive tesselation

Matrix-Matrix Multiplication

P=NN

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

Programming Model: Square Matrix

Multiplicafion

e P=M*N of size WIDTH x WIDTH 3
« Without tiling:
— One thread handles one element of P

— M and N are loaded WIDTH times from
global memory

B

B
Ll

A

Y

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

Multiply Using One Thread Block

* One block of threads computes
matrix P

— Each thread computes one element
of P

» Each thread
— Loads a row of matrix M
— Loads a column of matrix N

— Perform one multiply and addition for
each pair of M and N elements

— Compute to off-chip memory access
ratio close to 1:1 (not very high)

» Size of matrix limited by the number
of threads allowed in a thread block

N

[
>

A

BLOCK _SIZE

M P

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

Matrix Multiplication
Device-Side Kernel Function (cont.)

for (int k = 0; k < M.width; ++k)

{
float Melement = M.elements[ty * M.pitch + k];
float Nelement = Nd.elements[k * N.pitch + tx];
Pvalue += Melement * Nelement;

}

// Write the matrix to device memory;

// each thread writes one element

P.elements[ty * blockDim.x+ tx] = Pvalue;

A
A 4
A

A 4

Handling Arbitrary Sized Square Matrices

« Have each 2D thread block to compute a
(BLOCK_WIDTH)? sub-matrix (tile) of the
result matrix

— Each has (BLOCK_WIDTH)?threads

* Generate a 2D Grid of
(WIDTH/BLOCK_WIDTH)? blocks

You still need to put a by
loop around the kernel

call for cases where ty
WIDTH is greater than bx |tx

Max grid size!

\ 4

Multiply Using Several Blocks - Idea

* One thread per element of P

 Load sub-blocks of M and N into
shared memory

- Each thread reads one element of i i] 3

M and one of N

« Reuse each sub-block for all 1
threads, i.e. for all elements of P 1

« Outer loop on sub-blocks

4+ —r e a—

[

ol B
- Lot

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

Ll
v

Multiply Using Several Blocks - Idea

* One thread per element of P

 Load sub-blocks of M and N into
shared memory

« Each thread reads one element of A
M and one of N]

« Reuse each sub-block for all
threads, i.e. for all elements of P 1 1

« Outer loop on sub-blocks

4+ —r > a—

[

ol B
- Lot

Parallel08 — Memory Access Hendrik Lensch and Robert Strzodka

Ll
v

Example: Matrix Multiplication (1)

« Copy matrices to device; invoke kernel; copy result matrix
back to host

[/ Matrix multipli

cation — Host code

// Matrix dimensions are assumed to be multiples of B

1

—
[=1
[=]

vold MatMul (const Matrix A, const Matrix B, Matrix C)

{

It

[/ Load A and

Matrix d A:;

d A.width = d A.stride = A.width; d A.height = A.height;

size t size = A.width * A.height * sizeof (float):

cudaMalloc((void**) &d A.elements, size);

cudaMemcpy (d A.elements, A.elements, size,
cudaMemcpyHostToDevice) ;

Matrix d B;

d B.width = d B.stride = B.width; d B.height = B.height:;

size = B.width * B.height * sizeof(float):

cudaMalloc((void**) &d B.elements, size):;

cudaMemcpy (d B.elements, B.elements, size,
cudaMemcpyHostToDevice) ;

to device memory

13

Example: Matrix Multiplication (2)

Matrlx d e

d C.width = d C.stride = C.width; d C.height = C.height:
size = C.width * C.height * sizeof(float):
cudaMalloc((void**) &d C.elements, size):

// Invoke kernel

dim3 dimBlock (BLOCK SIZE, BLOCK SIZE):;

dim3 dimGrid(B.width / dimBlock.x, A.height / dimBlock.y):
MatMulKernel<<<dimGrid, dimBlock>>>(d A, d B, d C)~

// Read C from device memory
cudaMemcpy (C.elements, d C.elements, size,
cudaMemcpyDeviceToHost) ;

I'|.|

ree device memory
cudaFree{d A.elements);
cudaFree (d B.elements):;
cudaFree (d C.elements):;

g

14

Example: Matrix Multiplication (3)

* Multiply matrix block-wise

» Set BLOCK_SIZE for efficient hardware
use, e.g.,to 16 on cc. 1.x or
16 or 32 oncc. 2.x +

* Maximize parallelism A

— Launch as many threads
per block as block elements

— Each thread fetches one
element of block

— Perform row * column

dot products in parallel

w
B N
)
¥
3
=] =
2 5
w2
N o
il
3
Q
©
|
@
1 T
¢ : iR
| l: a:
: bl A
| [N} Q
: 1 9
0 col o'
]
““““ ‘U’ =] T
1 w
C_r.ul) :: u i
1) U]I .5
| . |3 2
] =T B :
: o S <
BLOCK_SIZE-1 &
4+—r4—r 4>
BLOCK_SIZE BLOCK_SIZE BLOCK_SIZE
A.width B.width

v

v

15

Example: Matrix Multiplication (4)

__global void MatrixMul(float *matA, float *matB, float *matC, int w)

{
__shared float blockA[BLOCK SIZE][BLOCK SIZE];
__shared float blockB[BLOCK SIZE][BLOCK SIZE];
int bx = blockIdx.x; int tx = threadIdx.x;
int by = blockIdx.y; int ty = threadIdx.y;
int col = bx * BLOCK SIZE + tx;
int row = by * BLOCK SIZE + ty;
float out = 0.0f;
for (int m = 0; m < w / BLOCK SIZE; m++) {
blockA[ty][tx] = matA[row * w + m * BLOCK SIZE + tx 1;
blockB[ty][tx] = matB[col + (m * BLOCK SIZE + ty) * w];
___syncthreads() ;
for (int k = 0; k < BLOCK SIZE; k++) {
out += blockA[ty][k] * blockB[k][tx];
}
___syncthreads() ;
} . : .
Caveat: for brevity, this code assumes matrix sizes
matC[row * w + col] = out; are a multiple of the block size (either because
} they really are, or because padding is used;
16 otherwise guard code would need to be added)

Memory Layout of a Matrix in C

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of lllinois, Urbana-Champaign

17

Memory Coalescing

* When accessing global memory, peak performance
utilization occurs when all threads 1n a half warp (full
warp on Fermi) access continuous memory locations.

* Requirements relaxed on >=1.2 devices; L1 cache on Fermi!

Not coalesced coalesced
Thread 2=
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 18

ECE 498AL, University of lllinois, Urbana-Champaign

Memory Layout of a Matrix in C

Access
direction in
Kernel
code

Time Period 1 Time Period 2
T, T, T, T,(|T; T, T; T,
M

MO,O

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of lllinois, Urbana-Champaign

Memory Layout of a Matrix in C

Access
direction in
Kernel
code
Time Period 2 °
T, T, T, T,
7Yy 7y 7Yy

A
Tilne Period 1

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of lllinois, Urbana-Champaign

Thank you.

