
CS 380 - GPU and GPGPU Programming
Lecture 12: GPU Compute APIs, Pt. 2

Markus Hadwiger, KAUST

2

Reading Assignment #7 (until Oct 18)

Read (required):

• Programming Massively Parallel Processors book, 3rd edition,
Chapter 7 (Parallel Patterns: Convolution)

• PTX Instruction Set Architecture 7.4 (https://docs.nvidia.com/cuda/pdf/ptx_isa_7.4.pdf)
Read Chapters 1 – 3; get an overview of Chapter 12;
browse through the other chapters to get a feeling for what PTX looks like

• CUDA SASS, Chapter 4: https://docs.nvidia.com/cuda/pdf/CUDA_Binary_Utilities.pdf

Read (optional):

• Inline PTX Assembly in CUDA (CUDA SDK: Inline_PTX_Assembly.pdf)

• Dissecting GPU Architecture through Microbenchmarking:

Volta: https://arxiv.org/abs/1804.06826

Turing: https://arxiv.org/abs/1903.07486

https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/
s9839-discovering-the-turing-t4-gpu-architecture-with-microbenchmarks.pdf

Ampere: https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s33322/

CUDA Compilation Trajectory

Markus Hadwiger, KAUST 5

CUDA Compiler Driver
(NVCC) docs:

CUDA_Compiler_Driver_NVCC.pdf

CUDA Compilation Trajectory / Code Gen

Markus Hadwiger, KAUST 6

CUDA Compilation Trajectory / Code Gen

Look at compatibility guides:
https://docs.nvidia.com/cuda/pdf/NVIDIA_Ampere_GPU_Architecture_Compatibility_Guide.pdf

CUDA Multi-Threading

• CUDA model groups threads
into blocks; blocks into grid

• Execution on actual
hardware:

– Block assigned to SM
(up to 8, 16, or 32
blocks per SM; depending
on compute capability)

– 32 threads grouped into
warp

8

cached on Fermi or newer

cached on Fermi
or newer

* cached on Fermi or newer

*

*

(Memory) State Spaces

PTX ISA 7.4 (Chapter 5)

Unified memory space can be enabled on Fermi / CUDA 4.x and newer

recursion supported on __device__ functions from
cc. 2.x (i.e., basically on all current GPUs)

except: (*) and (**)

(**) also: mapped pinned (page-locked) memory (“zero-copy memory”) :
allocate memory with cudaMallocHost(); beware of low performance!!

(*) “unified memory programming” introduced with CUDA 6 (cc. 3.x +):
allocate memory with cudaMallocManaged(); uses automatic migration

Note: UVA (“unified virtual addressing”; cc. 2.x +) is something different!!
just pertains to unified pointers (see cudaPointerGetAttributes(), …)

()

CUDA 6+: __managed__ (with __device__) for managed
memory (unified memory programming)

CUDA 4.x or newer:
cudaDeviceSynchronize() and
cudaStreamSynchronize()

Plus newer sync functions, e.g., from compute capability 2.x:
__syncthreads_count(), __syncthreads_and/or(),
__threadfence_block(), __threadfence_system(), …

Now: Must use versions with _sync suffix, because of
Independent Thread Scheduling (compute capability 7.x and newer)!

Example: Matrix Multiplication (1)

• Copy matrices to device; invoke kernel; copy result matrix
back to host

52

Example: Matrix Multiplication (2)

53

Example: Matrix Multiplication (3)

• Multiply matrix block-wise

• Set BLOCK_SIZE for efficient hardware
use, e.g., to 16 on cc. 1.x or
16 or 32 on cc. 2.x +

• Maximize parallelism
– Launch as many threads

per block as block elements

– Each thread fetches one
element of block

– Perform row * column
dot products in parallel

54

Example: Matrix Multiplication (4)

55

__global__ void MatrixMul(float *matA, float *matB, float *matC, int w)
{

__shared__ float blockA[BLOCK_SIZE][BLOCK_SIZE];
__shared__ float blockB[BLOCK_SIZE][BLOCK_SIZE];

int bx = blockIdx.x; int tx = threadIdx.x;
int by = blockIdx.y; int ty = threadIdx.y;

int col = bx * BLOCK_SIZE + tx;
int row = by * BLOCK_SIZE + ty;

float out = 0.0f;
for (int m = 0; m < w / BLOCK_SIZE; m++) {

blockA[ty][tx] = matA[row * w + m * BLOCK_SIZE + tx];
blockB[ty][tx] = matB[col + (m * BLOCK_SIZE + ty) * w];
__syncthreads();

for (int k = 0; k < BLOCK_SIZE; k++) {
out += blockA[ty][k] * blockB[k][tx];

}
__syncthreads();

}

matC[row * w + col] = out;
}

Caveat: for brevity, this code assumes matrix sizes
are a multiple of the block size (either because
they really are, or because padding is used;
otherwise guard code would need to be added)

Thank you.

