
CS 380 - GPU and GPGPU Programming
Lecture 11: GPU Compute APIs, Pt. 1

Markus Hadwiger, KAUST

2

Reading Assignment #6 (until Oct 11)

Read (required):

• CUDA NVCC doc (https://docs.nvidia.com/cuda/pdf/CUDA_Compiler_Driver_NVCC.pdf)
Read Chapters 1 – 3; Chapter 5; get an overview of the rest

• Programming Massively Parallel Processors book,
3rd edition: Chapter 4 (Memory and Data Locality), OR
2nd edition: Chapter 5 (CUDA Memories)

• Look at the “Tuning Guides“ for different architectures in the CUDA SDK

Read (optional):

• PTX Instruction Set Architecture 7.4 (https://docs.nvidia.com/cuda/pdf/ptx_isa_7.4.pdf)
Read Chapters 1 – 3; get an overview of Chapter 12;
browse through the other chapters to get a feeling for what PTX looks like

• CUDA SASS, Chapter 4: https://docs.nvidia.com/cuda/pdf/CUDA_Binary_Utilities.pdf

GPU Compute APIs

Markus Hadwiger, KAUST 3

NVIDIA CUDA

• Old acronym: “Compute Unified Device Architecture”

• Extensions to C(++) programming language

• __host__, __global__, and __device__ functions

• Heavily multi-threaded

• Synchronize threads with __syncthreads(), ...

• Atomic functions
(before compute capability 2.0 only integer, from 2.0 on also float)

• Compile .cu files with NVCC

• Uses general C compiler (Visual C, gcc, ...)

• Link with CUDA run-time (cudart.lib) and cuda core (cuda.lib)

4

CUDA Multi-Threading

• CUDA model groups threads
into blocks; blocks into grid

• Execution on actual
hardware:

– Block assigned to SM
(up to 8, 16, or 32
blocks per SM; depending
on compute capability)

– 32 threads grouped into
warp

5

Threads in Block, Blocks in Grid

• Identify work of thread via
– threadIdx

– blockIdx

6

…
float x =
input[threadIdx];
float y = func(x);
output[threadIdx] = y;
…

threadIdx

Thread Block 0

…
…
float x =
input[threadIdx];
float y = func(x);
output[threadIdx] = y;
…

Thread Block 1

…
float x =
input[threadIdx];
float y = func(x);
output[threadIdx] = y;
…

Thread Block N - 1
76543210 76543210 76543210

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

blockIdx == 0 blockIdx == 1

CUDA Memory Model and Usage

•cudaMalloc(), cudaFree()

•cudaMallocArray(),
cudaMalloc2DArray(),
cudaMalloc3DArray()

•cudaMemcpy()

•cudaMemcpyArray()

• Host ↔ host
Host ↔ device
Device ↔ device

• Asynchronous transfers
possible (DMA)

7

Grid

Global
Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Register
s

Thread (1, 0)

Register
s

Block (1, 0)

Shared Memory

Thread (0, 0)

Register
s

Thread (1, 0)

Register
s

Host

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

CUDA Compilation Trajectory

Markus Hadwiger, KAUST 10

CUDA Compiler Driver
(NVCC) docs:

CUDA_Compiler_Driver_NVCC.pdf

CUDA Compilation Trajectory / Code Gen

Markus Hadwiger, KAUST 11

CUDA Compilation Trajectory / Code Gen

Look at compatibility guides:
https://docs.nvidia.com/cuda/pdf/NVIDIA_Ampere_GPU_Architecture_Compatibility_Guide.pdf

cached on Fermi or newer

cached on Fermi
or newer

* cached on Fermi or newer

*

*

(Memory) State Spaces

PTX ISA 7.4 (Chapter 5)

Unified memory space can be enabled on Fermi / CUDA 4.x and newer

Thank you.

