7
gAbd i hdUT chn fyg: (((KAUST

CS 380 - GPU and GPGPU Programming
Lecture 3: Introduction, Pt. 3

Markuiiadwiger, KAUST

Reading Assignment #2 (until Sep 13)

Read (required):

» Orange book (GLSL), chapter 4 (The OpenGL Programmable Pipeline)

» Brief overviews of GLSL and legacy assembly shading language
https://en.wikipedia.org/wiki/OpenGL_Shading Language
https://en.wikipedia.org/wiki/ARB assembly language

» GPU Gems 2 book, chapter 30 (The GeForce 6 Series GPU Architecture)
http://download.nvidia.com/developer/GPU Gems 2/GPU_Gems2 ch30.pdf

£

Programming Assignments: Schedule (tentative

Assignment #1:
* Querying the GPU (OpenGL/GLSL and CUDA) due Sep 6

Assignment #2:

* Phong shading and procedural texturing (GLSL) due Sep 20
Assignment #3:

 Deferred Shading and Image Processing with GLSL due Oct 4

Assignment #4:
 Image Processing with CUDA
» Convolutional layers with CUDA due Oct 25

Assignment #5:
* Linear Algebra (CUDA) due Nov 15

OpenGL Tutorial

With Amani
Date+Time TBD

Come with your conceptual or coding questions!

Markus Hadwiger, KAUST 4

More Motivational Examples

Doom (2016)

http://www.adriancourreges.com/blog/2016/09/09/
doom-2016-graphics-study/

Doom Eternal

https://simoncoenen.com/blog/programming/graphics/
DoomEternalStudy.html

Unreal Engine 5

https://www.unrealengine.com/en-US/blog/
a-first-look-at-unreal-engine-5

Markus Hadwiger, KAUST 5

Real-time graphics primitives (entities)

Represent surface as a 3D triangle mesh

o4

o2

Vertices Primitives
(e.g., triangles, points, lines)

Courtesy Kayvon Fatahalian, CMU

QWU 15418, Spring 2015

Real-time graphics primitives (entities)

o3
o1
o4
o2
Vertices
]
LI 3 L]
OO CIE1E]
CECIEICd HEN
CIEEC HEI
CIC0C]
] O
L]
Fragments

Courtesy Kayvon Fatahalian, CMU

Primitives
(e.g., triangles, points, lines)

Pixels (in an image)

(MU 15-418, Spring 2015

What can the hardware do?

¢ Rasterization
¢ Decomposition into fragments
¢ Interpolation of color
¢ Texturing
¢ Interpolation/filtering
¢ Fragment shading

¢ Fragment operations
(or: raster operations)
¢ Depth test (Z-test)
¢ Alpha blending (compositing)
¢ ...

Graphics Pipeline

Scene Description Raster Image

Geometry i Fragment
Processing asterization o Qgperations

BRI

Vertices Primitives Fragments Pixels

Geometry Processing

Geometry
Processing

Per-Vertex Primitive Clipping,

preinsformatioh Lighting Assembly Perspect.Divide jumd

Multiplication with Per-Vertex Geometric Clip Space
Modelview and Local lllumination Primitives To
Projection Matrix (Blinn/Phong) (Points, Lines Screen Space
Triangles)
° °© - ° ogeo
o Vertices Primitives

Rasterization

Polygon
Rasterization

Decomposition
of primitives
into fragments

o Primitives

Texture
Fetch

Interpolation of
texture coordinates
Filtering of
texture color

Texture
Application

Combination of
primary color with
texture color

Fragments

Fragment (Raster) Operations

Fragment
Operations

Stencil Alpha
Test Blending
Discard all Discard a Discard all Combination of
fragments within fragment if occluded primary color with
a certain the stencil fragments texture color
alpha range buffer is set

I\

[l

d

Graphics Pipeline

Scene Description Pr ogr ammable P ipeline Raster Image

| Vertex Fragment Fragment
Shader Shader Operations

Vertices Primitives Fragments Pixels

Graphics Pipeline

Scene Description Pr ogr ammable P ipeline Raster Image

| Vertex Fragment Fragment
Shader Shader Operations

Vertices Primitives Fragments Pixels

ROPs = raster operations
(render output units)

Graphics pipeline architecture

Performs operations on vertices, triangles, fragments, and pixels

Vertex Generation

Vertex Creation
and Processing

3Dvertex stream |

Vertex Processing

Projected vertex stream

Primitive Generation

Primitive Creation

Primitive stream

Fragment Generation
Fragment Creation (Rasterization)
and Processing ~ Fragment stream

Fragment Processing

(olored fragment stream

Pixel Processing
Pixel Operations

21

Courtesy Kayvon Fatahalian, CMU

e 3

°4 Input: vertices in 3D space + connectivity

o2

Vertex processing stage computes were vertices
appear on screen given a camera position

Group vertices into triangles positioned on screen

Fragment generation creates one fragment for each
pixel covered by the triangle

Fragment processing colors the fragments based
on the surface characteristics at this pixel

Output image pixels contain color of the

-

closest fragment at each pixel

QWU 15418, Spring 2015

Direct3D 10 Pipeline (~OpenGL 3.2)

New geometry shader stage:

fixed
* Vertex -> geometry -> pixel shaders
programmable
» Stream output after geometry shader
. memory
Constant Constant Constant
\ 4 \ 4 | \ 4

bler > Shader * Shader | Rasterizer > Shader

i ' =] it
P~ e - P » - ~ T o
o, | O e e e I L
Sy " =mMTrA: s ol
| p R \
< 2t == ===

Depin Renaer :

Courtesy David Blythe, Microsoft 16

Direct3D 11 Pipeline (~OpenGL 4.x)

New tessellation stages

Inpail-Assambar

Memory Resources
[Buffier, Texiure,
Constant Buffer)

Stage

* Hull shader

Vertex Shader
Stage e

(OpenGL.: tessellation control)

» Tessellator

Hull Shader i
Stage '

(OpenGL.: tessellation primitive generator)

 Domain shader

(OpenGL.: tessellation evaluation)

Gaometry Shader

Stage

Stream Output
Stage

Outside this pipeline SR
« Compute shader i
Stage

Y

* (Ray tracing cores, D3D 12)

* (Mesh shader pipeline, D3D 12.2)

Cutput-Marger
Stage

Y

17

First version 2015 (Windows 10)
New from March 2018: DXR (DX12 ray tracing)
DX 12 Ultimate (March 2020; PC and Xbox Series X)

Optional shader stage

Descriptor tables

Descriptor tables

Root signature data

Static samplers

% Root arguments

Hull shader

Domain shader

Geometry shader

Pixel shader

18

Direct3D 12 Mesh Shader Pipeline

Reinventing the Geometry Pipeline

+ Mesh and amplification shaders: new high-performance geometry pipeline based on compute shaders
(DX 12 Ultimate / feature level 12.2)

» Compute shader-style replacement of IA/VS/HS/Tess/DS/GS

Legacy D3D12 graphics pipeline

A) VS) HS =) Tess) DS =) GS =pRaster == PS

Mesh shader pipeline

Amplification
Shader

Mesh
Shader

See talk by Shawn Hargreaves: https://www.youtube.com/watch?v=CFXKTXtil34

Raster =% PS

Vulkan 1.1/1.2

Draw

-~

¥

Input Assembler

2

Vertex Shader

Indirect Buffer

uh<an.

h 4

Index Buffer

A4

A

Vertex Buffer

~

Dispatch

h 4

Compute Shader

A

el e e o - -

2

A~

Tessellation Control Shader [« - Descriptor Sets
¥ |
hC
Tessellation Primitive Generator : - Eush ConsuER
¥ - Uniform Buffer
Tessellation Evaluation Shader [¢ : Uniform Texel Buffers
1 -
> - Sampled Images
A 4 I F
Geometry Shader ¢ - Storage Buffers
> :: Storage Texel Buffers
L 4
L
Vertex Post-Processing " grotsee Imasss
- e ————————————— '
Rasterization
' =
Early Per-Fragment Tests € > Depth/Stencil Attachments
* i
Fragment Shader € = Input Attachments
3 I
Late Post-Fragment Tests [€
* =
Blending € > Color Attachments

h 4

Some Vulkan commands specify geometric objects
to be drawn or computational work to be performed,
while others specify state controlling how objects
are handled by the various pipeline stages, or control
data transfer between memory organized as images
and buffers. Commands are effectively sent through
a processing pipeline, either a graphics pipeline or a
compute pipeline.

[Jrixed Function Stage
[Ishader Stage
1 Storage Images

Vulkan 1.1/1.2 Vul<an.

* Mesh and task shaders: new high-performance geometry pipeline based on compute shaders

(Mesh and task shaders also available as OpenGL 4.5/4.6 extension: GL_NV_mesh_shader)

TRADITIONAL PIPELINE

VERTEX TESS. TESS.
ATTRIBUTE "'E'" conroL. @ TesseLLanion [EVALUATION GEHMEE{ RASTER sﬂ.ﬁfu
FETCH SHADER SHADER
o,
|

Pipelined memory, keeping interstage data on chip

TASK/MESH PIPELINE

MESH PIXEL
| '-L}

l Pipelined
Optional Expansion pelined memory

GPU Structure Before Unified Shaders

Vertex Processors Example

i | | | | I NVIDIA Geforce 6/7,

(Cull/Clip/Setup) 2004, 2005
I

>(Z-CuIIH Rasterization)
|

v v v

A 4

Texture Cache <

Fragment Processors - H% %%

I L
(Fragment Crossbar J
I

Memory Access
Z-Compare and

Blending (ROPs)

Memory |4 Memory | ¢ Memory |4 Memory
Partition Partition Partition Partition

A 4

A 4
A 4

Thank you.

