CS 380 - GPU and GPGPU Programming
Lecture 24: GPU Parallel Prefix Sum / Scan

kﬁnarku . -

Reading Assignment #13 (until Nov 30)

Read (required):

« Programming Massively Parallel Processors book, 3™ edition
Chapter 9 (Parallel patterns — parallel histogram computation)

« Programming Massively Parallel Processors book, 3™ edition
Chapter 13 (CUDA dynamic parallelism)

Read (optional):

* Prefix Sums and Their Applications, Guy Blelloch
https://www.cs.cmu.edu/~guyb/papers/Ble93.pdf

GPU Parallel Prefix Sum

Markus Hadwiger, KAUST 3

Parallel Prefix Sum (Scan)

+ Definition:
The all-prefix-sums operation takes a binary associative operator
@ with identity /, and an array of n elements
[ap; @45 -5 @54]
and returns the ordered set
[/, a,, (a,® a,), ..., (a,® a,® ... ® a,,)]-

« Example:
if @ is addition, then scan on the set

[3170416 3]
returns the set
[03411111516 2

(From Blelloch, 1990, “Prefix
Sums and Their Applications)

Parallel08 — Control Flow

Applications of Scan

« Scan is a simple and useful parallel building block

— Convert recurrences from sequential :
for (j=1;j<n;j++)

out[j] = out[j-1] + £(3):
— into parallel:
forall(j) { templj] = £(3) 1};

scan (out, temp);

» Useful for many parallel algorithms:
* radix sort * Polynomial evaluation

* quicksort * Solving recurrences
e String comparison ¢ Tree operations

* Lexical analysis * Range Histograms
Etc.

« Stream compaction

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Scan on the CPU

void scan(float* scanned, float* input, int length)

{
scanned[0] = 0O;
for(int 1i = 1; i < length; ++1i)
{

scanned[i] = input[i-1] + scanned[i-1];
}
}

+ Just add each element to the sum of the elements
before it

« Trivial, but sequential
« Exactly n adds: optimal in terms of work efficiency

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Prefix Sum Application
- Compaction -

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Parallel Data Compaction

« Given an array of marked values
301714 2|15 |6

Sl
(O O0[0]0[0MNO[O]

« Output the compacted list of marked values

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Using Prefix Sum

« Calculate prefix sum on index array
3

0

1

1

7 4 2

1

0

0

1
0

sill (on] =

0

2

2

2

2

2

0

1
0

3

3

* For each marked value lookup the destination index in
the prefix sum

« Parallel write to separate destination elements

Parallel08 — Control Flow

Hendrik Lensch and Robert Strzodka

Prefix Sum Application
- Range Histogram -

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Range Histogram

« A histogram calculate the occurance of each value in an
array.

hii] = J| J={l vDl =i}

 Range query: humber over elements in interval [a,b].

+ Slow answer:
hrange = 0;
for (i = a; i<=b; ++i)
hrange += h[i];

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Fast Range Histogram

« Compute prefix sum of histogram

+ Fast answer:
hrange = pref[B] - prefl[A];

=Y Hlil-Y Ali]=>_Ali]

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Prefix Sum Application
- Summed Area Tables -

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Summed Area Tables

« Per texel, store sum from (0, 0) to (u, v)

A

B

* Many bits per texel (sum!)
« Evaluation of 2D integrals in constant time!

AxAy

jj](x,y)dxdy:A—B—C+D

BxCy

.

Parallel08 — Control Flow

Hendrik Lensch and Robert Strzodka

Summed Area Table with Prefix Sums

* One possible way:
« Compute prefix sum horizontally

* ... then vertically on the result

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Work Efficiency

Guy E. Blelloch and Bruce M. Maggs:
Parallel Algorithms, 2004 (https://www.cs.cmu.edu/~guyb/papers/BMo4.pdf)

In designing a parallel algorithm, it is more important to make it efficient than to make it
asymptotically fast. The efficiency of an algorithm is determined by the total number of
operations, or work that it performs. On a sequential machine, an algorithm's work is the
same as its time. On a parallel machine, the work is simply the processor-time product.
Hence, an algorithm that takes time t on a P-processor machine performs work W = Pt. In
either case, the work roughly captures the actual cost to perform the computation, assuming
that the cost of a parallel machine is proportional to the number of processors in the
machine.

We call an algorithm work-efficient (or just efficient) if it performs the same amount of
work, to within a constant factor, as the fastest known sequential algorithm.

For example, a parallel algorithm that sorts n keys in O(sgrt(n) log(n)) time using sgrt(n)
processors is efficient since the work, O(n log(n)), is as good as any (comparison-based)
sequential algorithm.

However, a sorting algorithm that runs in O(log(n)) time using n”2 processors is not
efficient.

The first algorithm is better than the second - even though it is slower - because its work,
or cost, is smaller. Of course, given two parallel algorithms that perform the same amount of
work, the faster one is generally better.

16

Vector Reduction

Array elements ——

iterations

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Typical Parallel Programming Pattern

* log(n) steps

v
iterations -

Helpful fact for counting nodes of full binary trees:
If there are N leaf nodes, there will be N-1 non-leaf nodes

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Courtesy John Owens

Kogge-Stone Scan

Circuit family

A Parallel Algorithm for the Efficient Solution of a General Class of
Recurrence Equations, Kogge and Stone, 1973

See “carry lookahead” adders vs. “ripple carry” adders

Courtesy John Owens

O(n log n) Scan

T B B e e B A

2(Xo..Xg) | 2(Xo..X1) | 2(X1..X2) | Z(X2..X3) | (X3..X4) Z(X4..Xs5) | 2(X5..X6) | 2(X6..X7)

Z(Xo..Xo) Z(Xo..Xl) Z(Xo..Xz) Z(Xo..Xg,) Z(Xl..X4) Z(Xz..X5) Z(Xg..X6) Z(X4..X7)

Z(Xo..Xo) Z(Xo..Xl) E(Xo..Xg) Z(Xo..Xg) Z(Xo..X4) Z(Xo..X5) Z(Xo..X6) Z(XO..X‘?)

e Step efficient (log n steps)
¢ Not work efficient (n log n work)
e Requires barriers at each step (WAR dependencies)

Courtesy John Owens
Hillis-Steele Scan Implementation

No WAR conflicts, O(2N) storage

i
e-@-@“@“@

By, Blxgx,)| Blg.x5)| Blx,.x,) B0..x)| Blx,.x) Blx,.x)

D—00) @‘@

B(Xge X)) BXg)| BxgeXs) BlxgX,) BXp-Xs) By Xe) BlxgX7)

A First-Attempt Parallel Scan
Algorithm

0 In 3 1 7 0 4 1 6 3 1. Rea_d input from
~ - a sl N 8 device memory to
\\ \\ \\ \ \ shared memory. Set
To0 | o 3 1 7 0 4 1 6 first element to zero
and shift others right
by one.

Each thread reads one value from the input
array in device memory into shared memory array TO.
Thread O writes 0 into shared memory array.

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

A First-Attempt Parallel Scan
Algorithm

\3\3\\\\ '\\ 1. (previous slide)

2. lterate log(n)
s ! 0 X L - times: Threads stride

elements stride

Double stride at each
iteration. (note must
double buffer shared
mem arrays)

Stride 1 B oD P P P > > to n: Add pairs of
T1 elements apart.
lteration #1 * Active threads: stride to n-1 (n-stride threads)
setrﬁ d'grl 1 » Thread j adds elements j and j-stride from TO and

writes result into shared memory buffer T1 (ping-pong)

Parallel08 — Control Flow

Hendrik Lensch and Robert Strzodka

A First-Attempt Parallel Scan

Algorithm

T1

Stride 2

0| O

lteration #2
Stride =2

. Read input from

device memory to
shared memory. Set
first element to zero
and shift others right
by one.

. Iterate log(n)

times: Threads stride
to n. Add pairs of
elements stride
elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

Parallel08 — Control Flow

Hendrik Lensch and Robert Strzodka

A First-Attempt Parallel Scan

Algorithm

TO 0 3
1 Y : \
Stride 1 l\>@\>@
T1 0
Stride 2
TO 0 3
%‘i i 4NP 4NV,
T1 0 3
lteration #3
Stride =4

. Read input from

device memory to
shared memory. Set
first element to zero
and shift others right
by one.

. Iterate log(n)

times: Threads stride
to n. Add pairs of
elements stride
elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

Parallel08 — Control Flow

Hendrik Lensch and Robert Strzodka

A First-Attempt Parallel Scan

Algorithm

T0 7 6
b
Stride 1 \)@ \).\ \
T1
Stride 2
TO| 0 | 3 | 4
\S_ e 2 b4
Y \ 2 \ 4 o W X Ny,
M| 0|3 |4 |11]11]15
Vbl
Out| 0 3 4 |11 |11 |15 | 16 | 22

. Read input from

device memory to
shared memory. Set
first element to zero
and shift others right
by one.

. Iterate log(n)

times: Threads stride
to n. Add pairs of
elements stride
elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

. Write output to device

memory.

Parallel08 — Control Flow

Hendrik Lensch and Robert Strzodka

Work Efficiency Considerations

+ The first-attempt Scan executes log(n) parallel
iterations

— Total adds: n * (log(n) — 1) + 1 = O(n*log(n)) work

« This scan algorithm is not very work efficient
— Sequential scan algorithm does n adds
— A factor of log(n) hurts: 20x for 10*6 elements!

« A parallel algorithm can be slow when execution
resources are saturated due to low work efficiency

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Balanced Trees

 For improving efficiency
« A common parallel algorithm pattern:

— Build a balanced binary tree on the input data and sweep it to and from the

root
— Tree is not an actual data structure, but a concept to determine what each

thread does at each step

» Forscan:
— Traverse down from leaves to root building partial sums at internal nodes
in the tree
Root holds sum of all leaves
— Traverse back up the tree building the scan from the partial sums

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Typical Parallel Programming Pattern

+ 2 log(n) steps

log(n)

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Typical Parallel Programming Pattern

+ 2 log(n) steps

I B I
|]
]
]
I I I

‘"N

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Courtesy John Owens
Brent Kung Scan

Circuit family

Xo X X X X X5 X Xy Xy X X A Ky X3 Xy Ags

\}\\\\\1\\}.
\ s

\ AR

_ _ NI
NNNNNNNS

X, X X X, % XgiX, X 2 ~
*o 0yt X 2x0:x3x0 4x0:x5x0 Gxo:x7x0 ® iy 0 10x0:xux0 12x0:x13x0 1y,

A Regular Layout for Parallel Adders, Brent and Kung, 1982

O(n) Scan [Blelloch] Courtesy John Owens

X0 |Zxex1)| X2 |Z(xe-x3)| xs¢ |E(xaxs)| x| Z(x0.x7)
d=2 M
X0 | Z(xex1)| X2 |Z(x0-x3)| xa |Z(x4.X5)| X6 Z(X;..xﬂ
Xo |EZ®ex1)| x Z(Xz'..X3) Xy | Z(xeXs)| xs E(Xﬁ—..X-;)
a1 1 T
w | oxmo | om | om | osm | ox | x| w
X0 | ZGex)| % | Z(exs)| X |EXexs)| Xs | Z(o.Xr)
Z%o
% | E(Xe.%X1)
d=10
%o | 2(%p.X;)
d=1 ¢
* Work efficient (O(n) work) » | 0
e Bank conflicts, and lots of ‘em “ 7 _»—><a = ><a
0 Xo | Z(%.X1) | Z(%o.X2) | T(Xo..X3) | E(%0..Xa) | E(%0..X5) | E(Xo..X6)

Build the Sum Tree

Assume array is already in shared memory

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Build the Sum Tree

Stride \; \>‘ \‘ \)é eration 1, n/2 threads

lterate log(n) times. Each thread adds value stride /2 elements away to its own vallue.

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Build the Sum Tree

T 1

Stride 2 \)é \é
T | 3 4 6

Stride 4 Iteration 2, n/4 threads
T | 3 4 6 | 14

lterate log(n) times. Each thread adds value stride /2 elements away to its own vallue.

Parallel08 — Control Flow

Hendrik Lensch and Robert Strzodka

Build the Sum Tree

T 3
Stride 2
T 3
Stride 4
T 3
Stride 8 Iteration log(n), 1 thread
T 3

lterate log(n) times. Each thread adds value stride /2 elements away to its own vaIlIJe.

Note that this algorithm operates in-place: no need for double buffering

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Down-Sweep Variant 1: Exclusive Scan

We now have an array of partial sums. Since this is an exclusive scan,
set the last element to zero. It will propagate back to the first element.

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Build Scan From Partial Sums

T | 3

4

7

11

4

5

6

0

Parallel08 — Control Flow

Hendrik Lensch and Robert Strzodka

Build Scan From Partial Sums

Iteration 1
1 thread

Stride 8

lterate log(n) times. Each thread adds value stride /2 elements away to its own value.
and sets the value sfride elements away to its own previous value.

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Build Scan From Partial Sums

0
v
Stride 8 D
b ¥
0 1
- = v - = £ 7 .
Stride 4 P D , Iteration 2
¥ ¥ 2 threads
4 6

lterate log(n) times. Each thread adds value stride /2 elements away to its own I
and sets the value stride /2 elements away to its own previous value.

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Build Scan From Partial Sums

0
_—Aé

Stride 8 iy — ==
¥

T |3 |4 |7 O 4| 5|6 |11

= ,.—.Iq = ,—q-
Stride 4 /\\> \/\>®

D
¥ ¥ ¥ ¥
T 0 7 4 4 [11 6 [16
N ¥ A v A \ 4 V .
_ S », » \ Iteration log(n)
Stride 1 v /? v ? V ? Y ,? ni2 threads
T 0 3 4 (11 (11 |15 | 16 | 22

Done! We now have a completed scan that we can write out to device memory.

Total steps: 2 * log(n).
Total work: 2 * (n-1) adds = O(n) Work Efficient!

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Down-Sweep Variant 2: Inlusive Scan

25

We now have an array of partial sums. Let’s propagate the sums back.

Parallel08 — Control Flow

Hendrik Lensch and Robert Strzodka

Build Scan From Partial Sums

11

Stride 8 %§ no operation

11

lterate log(n) times. Each thread adds value stride /2 elements away to its own value.
First element adds zero.

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Build Scan From Partial Sums

11
ride 8 9?
4 11 5
. Y Y Iteration 2
ride 4 ? ? 2 threads
4 6

lterate log(n) times. Each thread adds value stride /2 elements away to its own value.
First element adds zero.

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Build Scan From Partial Sums

T|3 | 4|7 25
Stride 8

T|3 | 4|7 25

¥

Stride zl\)

T |3 | 4|7 25
Stride 2\) é \)é Iteration log(n)

¥ ¥ n/2 threads
T|3 | 4 |11 25

Done! We now have a completed scan that we can write out to device memory.

Total steps: 2 * log(n).
Total work: <2 * (n-1) adds = O(n) Work Efficient!

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Application to Large Arrays

Scan Block 0

Scan Block 1

Scan Block 2

Scan Block 3

__

Store Block Sum to Auxiliary Array

Scan Block Sums

Add Scanned Block Sum i to All
Values of Scanned Block i + 1

]
|
i
I
]
|
v

s D

v Final A

[Mark Harris]

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Courtesy John Owens

Scan papers

o Daniel Horn, Stream Reduction Operations for GRGPU Applications, GPU Gems 2, Chapter 36, pp. 573-589, March 200s.

) Shubhabrata Sengupta, Aaron E. Lefohn, and John D. Owens. A Work-Efficient Step-Efficient Prefix Sum Algorithm. In
Proceedings of the 2006 Workshop on Edge Computing Using New Commodity Architectures, pages D-26-27, May 2006

. Mark Harris, Shubhabrata Sengupta, and John D. Owens.Parallel Prefix Sum (Scan) with CUDA. In Hubert Nguyen, editor,
GPU Gems 3, chapter 39, pages 851-876. Addison Wesley, August 2007.

) Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D. Owens. Scan Primitives for GPU Computing. In Graphics
Hardware 2007, pages 97—-106, August 2007.

° Y. Dotsenko, N. K. Govindaraju, P. Sloan, C. Boyd, and J. Manferdelli, “Fast scan algorithms on graphics processors,” in ICS
'08: Proceedings of the 22nd Annual International Conference on Supercomputing, 2008, pp. 205-213.

. Shubhabrata Sengupta, Mark Harris, Michael Garland, and John D. Owens. Efficient Parallel Scan Algorithms for many-core
GPUs. In Jakub Kurzak, David A. Bader, and Jack Dongarra, editors, Scientific Computing with Multicore and Accelerators,
Chapman & Hall/CRC Computational Science, chapter 19, pages 413—-442. Taylor & Francis, January 2011.

) D. Merrill and A. Grimshaw, Parallel Scan for Stream Architectures. Technical Report CS2009-14, Department of Computer
Science, University of Virginia, 2009, 54pp.

o Shengen Yan, Guoping Long, and Yunquan Zhang. 2013. StreamScan: fast scan algorithms for GPUs without global barrier
synchronization. In Proceedings of the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP '13). ACM, New York, NY, USA, 229-238.

Bank Conflicts in Scan
- Non-power-of-two -

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Initial Bank Conflicts on Load

« Each thread loads two shared mem data elements

 Tempting to interleave the loads
temp[2*thid] = g 1data[Z*thid];
temp[Z2*thid+l] = g 1datal[Z2*thid+1l];

+ Threads:(0,1,2,...,8,9,10,...)>banks:(0,2,4,...,0,2,4,...)

+ Better to load one element from each half of the array
temp[thid] = g _idata[thid];
temp[thid + (n/2)] = g idata[thid + (n/2)];

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

thm

the tree algori

ICtS In

Bank Confl

When we build the sums, each thread reads two shared

tes one:

d wr

memory locations an
Th(0,8) access bank 0

0

15

14

13

P

12

1

e
£

10

9

8

3|11(7|0|14(1|16|3|5(8|2|0(3|3(1|9(4|5|7

EAALAARALAEALE

Bank

3|14|7|7|14(5(6[9|5|13|/2|2|3|6(1(10{4|9]|7

o
S
i

oo
e
o
i

R
R
ey
L

i3z
£
S
3

e
st
e
e

E:

e
S

e

i
Bk

i

P

il
e

b

o
i
i

S

S0
SRR
SR
e
S

o

o
£

i

o
o

<
z:
=

o
:

Hendrik Lensch and Robert Strzodka

Parallel08 — Control Flow

thm

the tree algori

ICtS In

Bank Confl

, each thread reads two shared

When we build the sums

tes one:

d wr
Th(1,9) access bank 2, etc.

memory locations an

0

15

0

14

15

13

14

12

13

1"

12

10

1

10

9

8

1

0

3|11(7|0|14(1|16|3|5(8|2|0(3|3(1|9(4|5|7

hAALAARALAAELE

Bank

3|14|7|7|14(5(6[9|5|13|/2|2|3|6(1(10{4|9]|7

S

S
s
02070107 on0ri00
e
e
delgas

e
i
o

il
o

S
R

£
T
o

o
b
i

S

A
e
i

5
e

o
%
5

o

5

i
3
i

o
2k
£ 8

i

Bt
o
2

T 7
T
S adoome no]

R

Hendrik Lensch and Robert Strzodka

Parallel08 — Control Flow

thm

the tree algori

ICtS In

Bank Confl

2Md jteration

for example

even worse

etc.

H

access Bank 5

713)

9

5

1

(1

Th

]

ts
Th(0,4,8,12) access bank 1

4-way bank conflic

0

15

0

14

15

13

14

12

13

1"

12

10

1

10

9

8

314|7|4|14(5(6[9(5|13|12|12|3|6(1(10{4]9]|7

EECESEEEES

Bank

3|14|7|1114(5(6(14]5|13|/2|15/3|6(1(16]/4|9|7

..a.o.o.o.o.a.o.o.

Sl

SRR R

s

B o ot
£

R
EEOTR, g potio:
E o Ea

o,

2:;)5;
3‘3‘
e
e
HogN
SN
i i
e

i
SR

G
e

ST &
SRy
o
AR ok
e

o

i
e
R

sk

e
SR
S

s

Hendrik Lensch and Robert Strzodka

Parallel08 — Control Flow

Scan Bank Conflicts (1)

« A full binary tree with 64 leaf nodes:

Scale (s)
1
2
4
8
16
32

Conflicts
2-way
4-way
4-way
4-way
2-way

None

Thread addresses
0[2[4[6[8]10[12][14]16] 18] 20]22] 24][26]28]30]32] 34| 36]38[40[42[44[46]48]50]62]54]56] 58| 60] 62|
0 [4]8[12[16]20] 24| 28] 32| 36] 40| 44| 48] 52| 56] 60
0 | 8| 16]24[32]| 40| 48] 56
0 [16]32]48
032
[0]
Banks
6 10] 12 0|2 [4]s 10]12 JHEENEE HEE DEEE EiE
4 [4 B8Nl 12] 0 | 4 121 0] 4

[12] 0 |
[0]

|C)O

(@] fo] fe]]
(=)]
OE E-N
(w]

E

* Multiple 2-and 4-way bank conflicts

« Shared memory cost for whole tree
1 32-thread warp = 6 cycles per thread w/o conflicts
Counting 2 shared mem reads and one write (s[a] += s[b])

6 * (2+4+4+4+2+1) = 102 cycles

36 cycles if there were no bank conflicts (6 * 6)

Parallel08 — Control Flow

Hendrik Lensch and Robert Strzodka

Scan Bank Conflicts (2)

Scale () Thread addresses

2
4
8
16
32
64

It’s much worse with bigger trees!

A full binary tree with 128 leaf nodes
— Only the last 6 iterations shown (root and 5 levels below)

Conflicts |Banks

4-way
8-way
8-way
4-way
2-way
None

0 [4[8[12][16]20[24]28]32[36[40]44[48]52]56]60]64]68] 72| 76] 80] 84] 88] 92 | 96 [100]104]108]112]116[120][122]
0 | 8 [16[24[32[40| 48|56 |64 72| 80 88| 96 [104[112[120

0 [16|32 |48 [64[B0 96 [112

0 [32[64[%6

0 [64

0

0

0

0

0

O|o|o| o

Cost for whole tree:
— 12%2 + 6*(4+8+8+4+2+1) = 186 cycles
— 48 cycles if there were no bank conflicts! 12*1 + (6*6)

04 2] 04 2] 04 12]0 4 2] 04 AERE B R
R e T Y e ————

Parallel08 — Control Flow

Hendrik Lensch and Robert Strzodka

Bank Conflicts in the tree algorithm

« We can use padding to prevent bank conflicts
— Just add a word of padding every 16 words:

* No more conflicts! 32 for full warps!
9 |10 |11 (12|13 |14 | 15 1 2 3
0 1163 8203319.457...
\é s >8

4 (5|6 |78 12 | 13 | 1
3|14(7|7|14(5|/6(9(5|13/2(2|3|6(|1]|10 4197

Bank: | o 2 (3|4 |5]|6|7

—

N|jo

(48
-

—

o
-

Now, within a 16-thread half-warp, all threads access different banks.

32-thread full warp!
(Note that only arrows with the same color happen simultaneously.)

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Use Padding to Reduce Conflicts

« This is a simple modification to the last exercise

+ After you compute a shared mem address like this:
Address = stride * thid;

+ Add padding like this:

Address += (Address >> 4); // divid:

« This removes most bank conflicts
— Not all, in the case of deep trees

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Fixing Scan Bank Conflicts

* Insert padding every NUM_BANKS elements

const int LOG NUM BANKS = 4; // 16 banks
int tid = threadIdx.x;
int s = 1;
// Traversal from leaves up to root
for (d =n>>1; 4 > 0; d >>= 1)
{
if (thid <= d)
{
int a = s*(2*tid); int b = s* (2*tid+1)
a += (a >> LOG NUM BANKS); // insert pad word
b += (b >> LOG_NUM BANKS); // insert pad word
shared[a] += shared[b];

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Fixing Scan Bank Conflicts

» A full binary tree with 64 leaf nodes

Leaf Nodes Scale (s) Thread addresses

64 1 O[2[4[6 8 [10]12[14] a7 19]21[23]25[27 [2531 34] 36[38]40] 4244 46]48]B1]53[55]57]59] 6163]
2 0 [48 [12]d7 [21]25[29] 34| 3842|4651 55]| 55|63
4 0 [8 7| 25] 34| 42|57 59
8 0 [17]34]51
16 [0 |34 []= Padding inserted
32 [0
Conflicts Banks
None Z HEE EE D EREE
None 6
None
None
None
None

 No more bank conflicts!
— However, there are ~8 cycles overhead for addressing
 For each s[a] += s[b] (8 cycles/iter. * 6 iter. = 48 extra cycles)
— 8o just barely worth the overhead on a small tree
« 84 cycles vs. 102 with conflicts vs. 36 optimal

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Fixing Scan Bank Conflicts

« A full binary tree with 128 leaf nodes
Only the last 6 iterations shown (root and 5 levels below)

Scale (s) | Thread addresses

2 0|4 8|12 |17|21| 25| 29 |34|38|42]|46| 51 | 55| 59 | 63 68|72|76|80|85|89|93|97|102|106|110|114|119|123|127|131|
4 0| 8 [17]| 25 |34|42] 51 | 59 |68|76|85|93[102|110|119]| 127
8 0(17|34| 51 |68|85|102]|119
16 0|34|68]|102
32 |oles []= Padding inserted
64 0
Conflicts Banks
None |0O] 4 12-5 9 2610%3 6|10|14|2
None |O 9 |2]|10] 3 4112]| 5 6
None |0 3 |(4]|5] 6
None |0 6
None |0} 4
None 2

 No more bank conflicts!
Significant performance win:
106 cycles vs. 186 with bank conflicts vs. 48 optimal

Parallel08 — Control Flow

Hendrik Lensch and Robert Strzodka

Fixing Scan Bank Conflicts

« A full binary tree with 512 leaf nodes
— Only the last 6 iterations shown (root and 5 levels below)

Scale (s) Thread addresses

8 |0[17[34] 51| 68 [85[102][119]136]153[170]187]204]|221] 238255 | 272|289 306|323 [340[357 | 374|391 | 408 [425[442] 469|476 | 493 [510|527 |
16 [0] 34| 68 102[136] 170]204] 238] 272| 306] 340] 374 | 408] 442] 476] 510
32 [o] 68 [135]204]272]340] 408] 476
64 [0]186[272] 408
128 [0]272 []= Padding inserted
256 (0]
Conflicts |Banks
None [0 A E FEEHEHEOEE
2-way [0 6 10 12] 14
2-way |0
2-way |0
2-way |0
None |0O]

+ Wait, we still have bank conflicts
— Method is not foolproof, but still much improved
— 304 cycles vs. 570 with bank conflicts vs. 120 optimal

« But it does not pay of to optimize for the rest. Address
calculations are getting too expensive

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Summary

« Parallel Programming requires careful planning
— of the branching behavior
— of the memory access patterns
— of the work efficiency

* Vector Reduction
— branch efficient
— bank efficient

« Scan Algorithm
— based in Balanced Tree principle:
bottom up, top down traversal

Parallel08 — Control Flow Hendrik Lensch and Robert Strzodka

Thank you.

